Black-hole thermodynamics

Including black holes in the scheme of thermodynamics has disclosed
a deep-seated connection between gravitation, heat and the quantum that
may lead us to a synthesis of the corresponding branches of physics.

Jacob D. Bekenstein

To the physicist casually interested in
gravitation, a black hole is a passive object
that swallows anything near it and cannot
be made to disgorge it; it absorbs but
cannot emit. At the close of the last
decade the experts shared this view.
Recently, however, this simple picture has
changed entirely. Perhaps no single de-
velopment highlighted more the new
views about hlack holes than the quantum
argument presented by Stephen Hawking
of Cambridge University in 1974 that a
black hole must radiate spontaneously
with a thermal spectrum. The impor-
tance of this phenomenon is not so much
in possible practical applications, not even
in its astrophysical implications, but
rather in that it has confirmed earlier
suspicions that gravitation, thermody-
namics and the quantum world are deeply
interconnected. This connection, which
might be svmbolized by the thermody-
namic engine shown in figure 1, engenders
hope that we may achieve a synthesis of
these three branches of physics in our
time and bears witness to the profound
unity of physics, a unity too often veiled
in an age of increasing specialization,
Black holes emerged as solutions of the
gravitational field equations of Albert
Einstein’s general relativity which de-
scribe regions of space-time invisible from
their exterior. The first such known so-
lution, found in 1916 by the noted physi-
cist and astronomer Karl Schwarzschild,
represents the space-time geometry
(gravitational field) of a spherical static
black hole; the only adjustable parameter
of the solution is the object’s mass M. In
a famous paper, published on the day
marking the outbreak of World War IT, .J.
Robert Oppenheimer and Harlan Snyder
demonstrated that this Schwarzschild
solution describes the final state of a
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spherically collapsing massive star (see
figure 2). This paper was the first to re-
gard the black hole as a central phenom-
enon in astrophysics. But this is not the
aspect of interest here. Rather, we are
interested in the black hole as a state of
the gravitational field that resembles an
ordinary object in many respects, espe-
cially in its interactions with the rest of
the universe.

By the 1960's the most general black
hole solution known was one describing a
rotating electrically charged hole in sta-
tionary state. It is parameterized by the
object’s mass M, charge § and angular
momentum L (see table 1), and is gener-
ally known as the charged Kerr black
hole! after Roy Kerr who discovered the
special case with @ = 0 in 1962. The
Schwarzschild hole has L = @ = 0.

Black holes have no hair

In principle one would expect equilib-
rium black holes with more parameters
describing shape and various other
properties. Yet in the late 1960’s John A.
Wheeler, then at Princeton University,
suggested! that in fact the charged Kerr
black holes are the most general equilib-
rium black holes states as far as exterior
properties are concerned. (See also the
article by Remo Ruffini and Wheeler,
“Introducing the black hole,” PHYSICS
TODAY, January 1971, page 30.) He was
led to this conjecture, which he whim-
sically paraphrased as “black holes have
no hair,” by uniqueness theorems of
Werner Israel and Brandon Carter re-
garding the Schwarzschild and Kerr holes.
Since then an impressive amount of evi-
dence has piled up in favor of the conjec-
ture; in particular, it has become clear
that there is no way to introduce quan-
tities like baryon and lepton numbers,
strangeness, etc. as black-hole parame-
ters. True, over the years black-hole so-
lutions having magnetic monopole, scalar

field charge, quark color, and other den-
izens of the theorist’s mind as parameters
have been exhibited. But no extension of
the charged Kerr solution has ever
emerged as a description of equilibrium
black holes, and no “quantum number”
other than M, §, and L, has been found to
characterize the state of black holes. (For
example, its baryon and lepton numbers
would be unobservable outside the black
hole, the magnetic pole strength is, as far
as we know, not a freely occurring quan-
tity and present theory regards all ob-
servable hadrons—from which the black
hole would form—as “colorless.”)

This conclusion appears to be theory
independent. Black-hole solutions of
several of general relativity’s competitor
gravitational theories (scalar-tensor
theories and supergravity) have been
found. They all belong to the charged
Kerr family. The principle “‘black holes
have no hair” evidently transcends the
bounds of general relativity, and may be
regarded as a general law of black-hole
physics.

Irreversibility of black holes

As a graduate student of Wheeler’s at
Princeton I found “black holes have no
hair” distressing for a reason he brought
home to me ina 1971 conversation. The
principle, he argued, allows a wicked
creature—call it Wheeler's demon—to
commit the perfect crime against the
second law of thermodynamics. It only
has to drop a package containing some
entropy into a stationary black hole, thus
decreasing the entropy in the part of the
universe visible from the exterior. The
associated changes in M, §, and L do not
uniquely reveal how much entropy is then
inside the hole, so an exterior observer
with no inside information about the
package can never be sure that the total
entropy in the universe has not decreased.
For him the second law is transcended—
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made irrelevant. It loses its predictive
power, so that black holes seem to be
outside the province of thermodynamics.
This eircumstance seemed disastrous, not
only because it would deprive us of the use
of model-free thermodynamic reasoning
in investigating the bizarre black holes,
but also because it could be seen as
throwing doubt on their very existence,
even in principle.

While mulling over this dilemma I was
struck by the possible relevance of a dis-
covery that Demetrios Christodoulou,
another of Wheeler’s students, had made
not long before. While investigating the
efficiency of certain processes proposed
by Roger Penrose for extracting rotational
energy from a Kerr black hole and con-
verting it to mechanical energy of parti-
cles, Christodoulou noticed that the most
efficient processes are those associated
with reversible changes of the black hole.!
Less efficient processes are all connected
with the irreversible increase of a certain
“irreducible mass” M;—the inextractable
part of the mass of the hole. Since in
thermodynamics reversible processes are
the most efficient ones for converting
energy from one form into another, there
was a clear thermodynamic ring to all this.
So black holes might be in harmony with
thermodynamics after all.

If there were any doubts as to the gen-
erality of the irreversibility, they were
dispelled by a theorem proved by Hawk-
ing: The surface area A of the boundary
or herizon of any black hole cannot de-
crease and will increase in a dynamical
process. For a Kerr hole A is propor-
tional to M;,2, so the area theorem implies
Christodoulou's result that all but very
idealized processes increase M;,. But the
theorem shows irreversibility to be a
property of all black hole processes, not
just those of near-equilibrium holes. And
it points to a formal analogy between
black hole area and entropy of a closed
system—both like to increase.

Black-hole entropy

It occurred to me that some monotonic
increasing function of A might play the
role of entropy of black holes—entropy on
the same footing as ordinary thermal en-
tropy. In my 1972 dissertation I dis-
cussed various questions connected with
such an identification, and showed how to
use it to defeat the schemes of Wheeler's
demon and make black hole physics con-
sistent with thermodynamics.

The first question was, what function
of A is to be identified with the entropy
St of the black hole. There are several
other conditions an entropy function
must meet besides the inability to de-
crease spontaneously: It must also be
additive for independent systems, for
example. From the outset the most likely
prospects were proportionalities to A or
to \))I . The second appeared especially
attractive, because it makes the entropy
proportional to the mass for black holes
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A gravitational-thermodynamic engine for converting heat to work, conceived by Robert Geroch,
uses a black hole as heat sink. The box is filled with thermal radiation and lowered in the hole's
field to its horizon. The gravitational field does work on the box in this process. The radiation
is then allowed to escape into the hole, and the box is hauled back up at expense of less work than
was obtained in the first stage. It can then be refilled with thermal radiation from the reservoir.
Because the box cannot be allowed to touch the horizon, the efficiency of conversion is less than
1 and not unity as originally thought. (Drawing by Louis Fulgoni) Figure 1
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Spherical collapse to a black hole. We show the spacetime histories of the collapsing body’s
surface (illustrated as one-dimensional), of the resulting singularity and of the horizon expanding
to engulf the body. The tilting of the light cone by gravitation explains why the region Interior to
the horizon is invisible from outside. The spacelike hypersurfaces labeled 2 supplant, in relativity,

the concept of space at a given time.

with the same ratios of L/M? and Q/M;
for ordinary matter, also, the entropy is
proportional to mass, other things being
equal. But this choice leads to trouble.
When two black holes coalesce, Hawking's
area theorem says the surface area must
be at least as large as the sum of the areas
of the two holes. However, the sum of the
square roots of the original areas can ex-
ceed the square root of the final area, so
making Syn proportional to /A would
endow it with unacceptable behavior. No
problem arises if Sypis proportional to A.
Thus 1 chose? Sy, to be proportional to
the area of the horizon.

Determination of the proportionality
constant was more problematic. There
is an obvious constant with dimensions of
entropy—Boltzmann’s constant k. 'What
was missing was the scale of length whose
square should be used to reduce A to a
dimensionless quantity. Wheeler sug-
gested the fundamental length

Lpw = (hG/e?)"2 = 1.61 X 10~33 cm

which was introduced into physics by
Mazx Planck after his discovery of the law
for the blackbody spectrum. Planck
noted that this seale involves fundamen-
tal constants independent of particle
properties, in contrast to other lengths
stuich as the classical radius of the electron.
Later, Wheeler stressed the role Lpw
must play in the ultimate theory of
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Figure 2

quantum gravitation. He has argued that
Lpw must represent the smallest scale at
which spacetime can be regarded as a
smooth manifold; at smaller scales it must
have a foam-like consistency; Lpyw is often
called the Planck-Wheeler length.

Wheeler’s suggestion led? to a formula
for black hole entropy independent of the
properties of matter

Shh = ﬂkA/Ll-w"'{

Here 7 is a pure number, presumably of
order unity, to be determined separately.
This formula links a purely thermody-
namic quantity—entropy—to a purely
gravitational one—horizon area, and the

connection becomes meaningless if one
goes to the classical limit A — 0. Thus it
reflects the deep connection of gravita-
tion, thermodynamics and the quantum
world I alluded to.

Information and entropy

By now the reader of these lines must
be wondering about the physical meaning
of Syp. It cannot be the thermal entropy
of the matter inside the hole. For con-
sider a sun-like star with mass 2 X 10%3g,
Its thermal entropy is 10°%k in order of
magnitude. Were the star to collapse
completely, it would make a stationary
black hole with surface area of order 100
km? (see table 1). Our formula associates
with it an entropy of order 107%k. Yet no
known dissipative process can generate
enough entropy during the collapse to
multiply the matter’s entropy by a factor
1020, Thus Sy is something else than
thermal entropy. In statistical physics,
as well as other fields, entropy has come
to stand for missing information. With
that interpretation, the thermal entropy
of a cube of sugar simply measures our
ignorance as to the precise microscopic
state of the molecules in the cube, while
its macroscopic state is fully described by
chemical composition, temperature, vol-
ume and perhaps a few other variables.
The ignorance of the exterior observer
about the matter inside a black hole is
deeper. “Black holes have no hair” allows
us only knowledge of M, @ and L for a
stationary hole; neither the microstate,
nor composition (baryons, photons. . .),
nor temperature, nor structure {shape,
size...), nor anything else is—even in
principle—measurable by a distant ob-
server. The function Sy, is the obvious
candidate for quantifying this deeper ig-
norance, 8o it is not surprising that it can
be vastly larger than any reasonable es-
timate of the thermal entropy.

The following reasoning shows this in-
terpretation of Sy is not far fetched.
When an object disappears down a black
hole, we lose information about its mi-
crostate, composition, motion, and so on.
(The information about the motion is
clearly tied with properties of the hole in
whose field the object moves. But clearly

Table 1 The charged Kerr black hole
Parameter mass M charge @ angular momentum L
Characteristic length m= GM/c® g= (GQ3/c%)'z a= L/Mc
roughly size of hole
Quantity equivalent to 1 cm  1.35 X 1028g 3.49 X 10%%esu 3 X 10" em?/s

Constraint
Farmula for horizon area

Potential surface tension ¢
Definition (OMe?/0A), o
Formula

specific angular
momentum

m = q*+ a?

A=Ar|[(m+ (m? — ¢® — a?)2]2 + &2

electric potential P
(IMc210Q), 4

angular velocity {2
(OME2/AL) o0

(m? — g° — a?)"2c72GA Q[4m/A — (Ama/AR| V2 (LUMATIA

c¢"2G = 6.07 X 10%® erg/cm




the minimum of the total lost information
taken over all possible motions depends
only on properties other than the motion
and should be independent of the hole’s
properties.) If the identification of Sth
as information hidden inside the black
hole is correct, the minimum possible
growth in Sy, from injection of a given
body into a hole in any orbit should be
independent of the hole’s properties, the
same for a big hole or a small one, a static
or a rotating one. A priori, no mechanical
reason is evident for why this should be so.
Yst detailed calculations®? showed that
for injection into a stationary hole the
minimum growth in Sy, is 8wnkucry/h
where u is the object’s mass and ry its ef-
fective radius. 'This result is independent
of the hole’s parameters, as required.
Thus the interpretation is consistent.

In statistical physics the entropy di-
vided by k gives the logarithm of the
number of microstates compatible with
the given macrostate. It is thus reason-
able to expect that exp(Syn/k) gives the
number of possible interior configurations
of the black hole compatible with the
given exterior state whose black hole en-
tropy is Spn.  Here “interior configura-
tion” refers to each possible microstate of
composition and structure counted sep-
arately (see figure 3). This seemingly
unverifiable relation has, in fact, very
palpable consequences to which I will
come later. Just now [ want to show how
it leads to an estimate of the constant n.

Consider a hole with entropy Sy, and,
consequently, exp(Spp/k) possible interior
configurations. Inject into it the simplest
of systems, a generic elementary particle,
This has several possible microstates
differing in spin, charge, and other
quantum numbers. So the number of
interior configurations after the injection
will exceed 2 exp(Spn/k) since each old
configuration together with one micro-
state makes a new configuration. Hence
the growth in black hole entropy exceeds
k In 2. But our previously mentioned
result assures us that the minimum
growth in Sy, is 8wk, because rq is fi/uc
for an elementary particle. Comparing
the two values, we infer a lower bound (In
2)/8x, or 0.028, for . This was the best
known estimate for n until Hawking de-
termined it to be Yy, an order of magni-
tude larger.

The generalized second law

Elack-hole entropy is just what is
needed to solve the paradox posed by
Wheeler's demon, for it makes possible a
generalization of the second law: “the
sum of the black-hole entropy and the
ordinary thermal entropy outside black
holes cannot decrease.” By speaking only
about quantities determinable from out-
side the holes, this law avoids the problem
the ordinary second law ran into. It isnot
transcended. It makes a statement
subject to verification: that the decrease
in the outer world’s entropy following the

Cold antinetitrons

Cold neutrons

Hot neutrons and antineutrinos

Gravitational
waves

Electrons and positrons
and photons

Interior configurations of a given black hole are
microstates of all possible structures and
compositions, a very few of which are shown.
These ‘‘configurations' include states of dif-
terent baryon and lepton numbers, so long as
total mass, charge and angular momentum are
preserved. They need not be just arrangements
of matter; they can alse include gravitational
waves, for example, which are regarded as vac-
uum systems in general relativity. Figure 3

infall of the package will be compensated,
or even overcompensated, by an increase
in Syp.

In 1972 when I conjectured this gener-
alized second law, it was not clear that it
would always work. In fact, nearly ev-
erybody I discussed it with objected that
it must often fail because the growth in
black-hole area is caused by the mechan-
ical properties of the infalling body, which
are unrelated to its content. In my dis-
sertation, and in later work when at the
University of Texas at Austin, I countered
this objection by using the result about
the minimum increase in Sy}, and by cal-
culating the entropy content for various
simple systems.>? The calculations
suggested that there is a limit on the en-
tropy that can be packed in a body of
given mass and size. In every case
checked in which a small package of en-
tropy falls into a stationary hole, the
generalized second law was found to work
(see figure 4). It could thus be taken as
the second law of a black-hole thermo-
dynamics.

Of course, a law is not proved by spe-
cific instances; it cannot be proved.
Rather it gains eredibility with each ex-
ample in which it works. If, in addition,
the proposed law passes the test posed by
a novel or unfamiliar situation, one as-
sumes that it deseribes nature correctly.
We shall see that the generalized second
law passed just such a test after it seemed

that there were situations it could not
handle.

Black hole temperature

Consider the expression for Syy of a
charged Kerr hole (see table 1); its total
differential with respect to M, @ and L
can be written as?

T1,.,d5‘bh = d(MCZ) = ‘bdQ — QdL

where T, is defined in terms of the non-
negative quantity @ of table 1 by Ty, =
Lyw?0/nk, and ® and Q turn out to be the
conventionally defined electric potential
and rotational angular frequency of the
hole’s surface (see table 1), so that $dQ is
the work done on the hole by adding to it
charge d@, and QdL is the work done by
addition of angular momentum dL. Of
course, d(Mec?) is the corresponding
change in the hole's energy. Thus the
expression above has exactly the form of
the usual expression for the first law of
thermodynamics (combined with the
definition of entropy) for an ordinary
equilibrium system at temperature T,
The expression invites us to regard Sy, as
a genuine entropy if we are willing to re-
gard Ty, as a quantum temperature for an
equilibrium black hole—quantum be-
cause h appears in it. For the numerical
value of T}y, as function of black hole
mass, see figure 5. Note the curious fact
that the smaller Mc?, the higher T'yp.
Ordinarily the lower the energy content
of a body, the colder it is, other things
being equal.

The physical meaning of T, proved
elusive. One clearly cannot measure a
temperature by sticking a thermometer
into a black hole; already when one brings
it into the neighborhood of the hole, the
instrument would be torn to pieces by
tidal forces. My favorite argument for
bringing out the physics in Ty, revolved
about a heat engine conceived by Robert
Geroch, illustrated in figure 1, that em-
ploys a black hole as a heat sink. A tem-
perature of order Ty}, enters into the ex-
pression for the efficiency of this engine
in the same way the heat sink’s tempera-
ture enters the efficiency of a Carnot en-
gine in a down-to-earth situation.® But
the argument could not nail down the
precise value of the hole's effective tem-
perature. Dennis Sciama of Oxford
University has pointed out that this de-
ficiency and some subtle conceptual
problems in the discussion were a pre-
monition of the existence of Hawking’s
radiation. At that time, though, the
argument was important in invalidating
Geroch’s claim that the process could
violate the Kelvin statement of the second
law. It does not, and it also respects our
statement of the generalized second
law.

Regarding Ty, as a black-hole tem-
perature created a severe problem for
thermodynamics of black holes. Suppose
a black hole is immersed in thermal ra-
diation of temperature T, with 7" less than
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The generalized second law supplants the ordinary second law, which it transcends. The entropy
on the visible parts of the hypersurfaces decreases from 2, to 25 as the horizon engulfs the body

and from 24 to

25 as the entropy package thrown by Wheeler's demon falls in. However, the

black-hole entropy Sy, increases during these intervals and the sum of the two entropies grows

monotonically, as shown in the accompanying graph.

Thh. A simple estimate shows the hole to
absorb more thermal entropy by simply
sucking in radiation than the growth in
black hole entropy can compensate for:
there is an apparent flagrant violation of
the generalized second law. My attempts
to clear up this paradox were forced and
inelegant.? The same problem does not
arise for an ordinary hot body in a colder
radiation bath because the body also ra-
diates and generates thermal entropy.
Classically a black hole cannot radiate, so
this observation would seem irrelevant.
However, the ubiquitous appearance of h
in Ty, Sph and the generalized second law
shows that one is here dealing with a
quantum issue. The possibility that a
black hole could radiate by virtue of its
quantum temperature was thus apparent
very early. Yet the rudimentary under-
standing of quantum processes in a black
hole’s vicinity available in 1973 gave no
evidence for or against such radiation.
Thus I chose to try to resolve the paradox
by more conventional means? and in so
doing lost the chance to make a striking
prediction with black-hole thermody-
namics. Be that as it may, the paradox
was soon to find its resolution.

Black hole mechanics

This was the state of the art in mid-
1973. Black-hole thermodynamics,
summarized in table 1, was received with
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Figure 4

nearly universal skepticism. Most people
inclined towards the viewpoint formu-
lated by James Bardeen, Carter and
Hawking at the Les Houches 1972 sum-
mer school on black holes, and later
summarized in a lucid paper, “The Four
Laws of Black Hole Mechanics.”* They
regarded the analogy between black holes
and thermodynamies as suggestive but
purely formal, reflecting no profound
kinship of the two subjects, and being
unconnected with the quantum. They
recognized {/ as the analog of temperature,
but regarded the thermodynamic tem-
perature of a black hole as zero, because
apparently a black hole cannot be in
equilibrium with thermal radiation at fi-
nite temperature. They regarded the
horizon area A as an analog of entropy,
but thought the thermodynamic entropy
of a black hole to be infinite. The role of
second law they gave to the area theorem,
while rejecting the generalized second law
as invalid, believing (erroneously, as is
clear today) that it is possible to add en-
tropy to a black hole without incre-
menting its area. Table 2 compares the
tenets of this “black-hole mechanics” with
those of black-hole thermodynamics.
There can be no question that black-
hole mechanics was, at the time, the
“common-sense” approach, and seemed
to stand on solid ground. By contrast,
black-hole thermodynamics was frankly

speculative. What induced me to stick
with it was the prospect of employing the
rich arsenal of thermodynamics and sta-
tistical physics to attack the issue of the
quantum aspects of black holes, a pros-
pect nonexistent in black-hole mechanics.
In those days in 1973 when I was often
told that I was headed the wrong way, 1
drew some comfort from Wheeler’s opin-
ion that “black-hole thermodynamics is
crazy, perhaps crazy enough to work.”

Black-hole radiance

Early in 1974 Hawking announced his
discovery of the thermal radiance of black
holes.” He had been studying the theory
of quantum phenomena in the neighbor-
hood of a microscopic black hole; years
earlier he had proposed that such objects
may have been formed in profusion in the
early cosmos. By applying the technique
of second quantization to a boson field
(such as the electromagnetic field)
evolving in the vicinity of a collapsing
spherical object, he found that the col-
lapse creates quanta of the field that es-
cape to infinity. As the collapse winds up
with the formation of a Schwarzschild
black hole, the emission, instead of dying
out as might be naively expected, attains
a form and rate independent of details of
the collapse. Its spectrum is thermal:
the mean number of quanta emitted in
one mode of frequency w is given by

n = I'lexplhw/kT) — 1]

where I'is the hole’s absorptivity (fraction
of incident waves absorbed) for classical
waves in the given mode, and T is a cer-
tain characteristic temperature. (A
similar result holds for fermions.) The
emissivity of a black hole has the same
Planck distribution required by Kirch-
hoff’s laws for the emissivity of any hot
body of absorptivity I" and temperature
T. Hawking thus found that the hole
radiates like a hot, non-black (“gray”)
body. The luminosity is proportional to
M2 and exceeds 1 watt for M < 6 X 109
(corresponding to a size less than 108
centimeter),

Hawking also gave an argument show-
ing that charge and rotation do not alter
the thermal nature of the emission.®
They only affect the form of the charac-
teristic temperature T. In every case it
is given by the same formula as T, with
the choice n = Y.

Hawking’s discovery surprised every-
body; of all 1 was probably the most
pleased for it provided the missing pieces
of black-hole thermodynamics. The re-
sult verified the contention that a nonzero
quantum temperature is associated with
a stationary black hole; it left no doubt
that the Hawking temperature is identical
to Ty, it fixed the value of the elusive 7,
and it revealed the physical meaning of
Tyy: it is the temperature of the quan-
tum radiation from the black hole.

Hawking realized that his discovery
solved the paradox posed by the black



hole in a colder radiation bath. He gave
a simple proof® that after the radiation
emitted by the hole is assimilated into the
ambient bath, the sum of Sy, and exterior
radiation entropy is larger than before.
Thus the generalized second law does in
fact hold because the hole generates suf-
ficient thermal entropy. (The moment-
by-moment applicability of the law has
been established by an explicit statistical
caleulation of the radiation entropy.”)
Haying started as a vocal critic of the
generalized second law, Hawking became
the person who made it fully consistent
with the gedanken experiments.
Actually, an isolated radiating hole il-
lustrates the power of the generalized
second law even more strikingly. The
radiation causes the hole’s surface area to
decrease steadily—a flagrant (quantum)
violation of the second law of black hole
mechanics (a classical theorem). How-
ever, a detailed statistical calculation?
shows that the increase in exterior (ra-
diation) entropy exceeds the decrease in
St so the generalized second law in its
original formulation is obeyed (see figure
6). The Hawking radiation process thus
provided a novel and unexpected test,
which the (classical) area theorem failed,
but which the (quantum) second law
passed successfully. Ironically the area
theorem, one of the motives for the in-
troduction of black-hole entropy, has
fallen vietim of the revolution in our un-
derstanding of black holes. Its replace-
ment is a new law of apparently wide ap-
plicability, one joining together hitherto
distinet aspects of nature—gravitation
and heat, gravitation and the quantum.

Radiance and superradiance

The theoretical necessity for Hawking’s
emission has been verified by many
workers and by varied approaches. All
the explanations of the phenomenon are
technically complicated. In seeking a
physical intuition of the process it pays to
first inquire how it differs from the other
known type of black-hole radiance. In
1971 the versatile physicist and astro-
physicist Yakov B. Zel'dovich of the So-
viet Academy of Sciences conjectured®
that a Kerr hole should emit bosons
spentaneously in those modes whose an-
gular frequency w and “magnetic” quan-
tum number m satisfy the condition

w < mfl

Zel'dovich, and independently Charles
Misner, had pointed out that classically
the hole will amplify radiation scattered
off it in these modes, which ever since
then have been known as superrradiant
modes. It was natural to regard this
classical “superradiance” as a manifes-
tation of quantum stimulated emission,
and Zel'dovich inferred that it must be
accompanied by spontaneous emission as
in ather contexts in physics. His conjec-
ture was verified by William Unruh, then
at the University of California at Berke-
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ley, just before Hawking’s discovery.
Unruh studied a second-quantized scalar
field (a meson field) evolving in the
background gravitational field of an
eternal Kerr black hole. He found? an
outflux of energy in the superradiant
modes for a quantum state containing no
quanta incident on the hole.

In the Zel'dovich-Unruh radiance the
energy comes from the hole’s rotation;
there is no radiance for a Schwarzschild
hole. The area theorem is respected. By
contrast Hawking’s radiance occurs for
Schwarzschild as well as Kerrholes. The
energy must evidently be drawn from the
“irreducible” mass (equal to the mass for
Schwarzschild holes) by virtue of the
quantum violation of the area theorem
mentioned earlier. The Hawking radia-
tion emerges in every mode, and it is dis-
tinguished from the first type by its
thermal nature. And it occurs only if the
hole was formed by collapse while the
Zel'dovich-Unruh emission comes only
from a hole that has existed since the in-
finite past.

The role of the horizon

Hawking’s heuristic picture™!V of the
process he deduced by a complicated
mathematical argument is disarmingly
simple. We know that in the absence of
exterior fields the vacuum state of any

physical field is characterized by a mul-
titude of virtual particle-antiparticle
pairs continually appearing and annihi-
lating each other. The pairs cannot en-
dure; the creation of one out of nothing
entails a violation of the conservation of
energy, so it must disappear before the
time allotted to it by the uncertainty
principle runs out. But if a pair is created
near a black-hole horizon, the story can be
different. Hawking points out that one
of the members of the pair may have time
to tunnel through the horizon into one of
the negative-energy particle orbits or
states that exist inside the hole due to the
colossal binding effects of gravitation. Its
companion is left with positive energy and
may be able to escape from the black
hole’s pull as a free, real particle. In the
final analysis, its energy comes from the
hole, so the process is effectively one of
radiation by the hole. No overall viola-
tion of the conservation of energy occurs;
the ingoing particle carries negative en-
ergy into the hole, whose mass is thereby
decreased. This flux of negative energy
through the horizon is what causes the
breakdown of the area theorem.

The pair ereated near the horizon is in
what one calls a pure quantum state (de-
scribed by a wave function), the farthest
thing in the world from a thermal state,
which is a mixed state (described by a
density matrix) of maximal entropy. But
as Sciama has observed in another con-
text, the disappearance of the particle (or
antiparticle) behind the horizon breaks
the correlations inherent in the pure state,
leaving a mixed state. The loss of infor-
mation into the hole is complete, so the
entropy of the new state is maximal.
Thus one understands the thermal nature
of the radiation. By the same token it is
clear why the Zel'dovich-Unruh radiation
is not thermal. Itsorigin parallels that of
the Hawking radiance. But the relevant
negative energy states are now those in
the ergosphere of a Kerr hole—the region
girding the horizon. (These states are the
ones that make the Penrose energy-ex-
traction processes possible.) Because the
trapped member of the pair does not have
to cross the horizon, no great loss of in-
formation ensues, and we don't get a
thermal state. For this reason also there
is no violation of the area theorem.

The alert reader will have noticed the

Table 2 Black-hole mechanics versus black-hole thermodynamics

Concept Black-hole mechanics
entropy A is like entropy; the physical entropy is
infinite
temperature  # is like temperature; the physical
temperature is zero
first law 0 dA = dMc? — ddQ — QdL
second law For one black hole A cannot decrease;

when black holes coalesce the total
horizon area increases (area theorem)

Black-hole thermodynamics

The black-hole entropy Sy, is 51c kA/Gh
The black-hole temperature Ty, is Ghinck

Tend Spp = dMc? — Pd@ — QdL

The sum of Sy, and the entropy exterior to
black holes cannot decrease (generalized
second law)
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The Hawking thermal radiation begins emerging when most of the collapsing body is inside the
horizon. Thq assoclated flow of negative energy through the horizon causes a steady decrease
of Sy, from Z30n. However, the growing entropy of the radiation is sufficient to make the sum

of the entropies inside and outside the hole increase, as shown in the graph.

crucial role of the horizon. Whichever
way we look at it, by black-hole thermo-
dynamics or from the field-particle point
of view, it is the horizon that, by its in-
formation-hiding properties, places a
thermal stamp on the process. We see
this also in situations far from the realm
of black holes. For example, a detector
tuned to the electromagnetic field and
being accelerated uniformly in empty
spacetime (described by the Minkowski
metric) will measure a quantum noise
characteristic of thermal electromagnetic
radiation at a temperature proportional
to its acceleration! The existence of this
intriguing phenomenon was foreshad-
owed in work done!! in 1975 by Paul C. W.
Davies of King's College, London, and
made theoretically compelling by Unruh'?
a year later. As Sciama has pointed out,
one can again understand what is hap-
pening in terms of Hawking’s pairs.
Every physics student knows that to an
accelerated observer part of the spacetime
is invisible because he outruns all signals
coming from those parts. For such an
observer there is a horizon. Thus the el-
ements are present for producing thermal
radiation by a process analogous to that
for a black hole. But here the energy is
ultimately drawn from the agent which
accelerates the detector.

Another example of thermal radiation
ultimately associated with a horizon is
that which all inertial observers see in the
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Figure 6

de Sitter universe, a cosmological model
describing a classically empty universe
with a high degree of symmetry, and
which is separated into two regions by a
horizon. Hawking and Gary Gibbons,
who discovered this effect,!® note that the
area of that horizon has an entropy in-
terpretation identical to that for a black
hole. These examples show that the
connection between gravitation and
thermodynamics is likely to be a general
feature of nature, relevant beyond the
realm of black holes.

Stimulated emission

Hawking's analysis of black-hole radi-
ance was an application of quantum-field
theory in curved spacetime, a subject in
which research has boomed since his pi-
oneering work. These investigations have
led to increasing understanding of the
influence of gravitation on quantum
processes, and of the quantum nature of
gravitation. Yet the methods of this ap-
proach are complex, and the results do not
lend themselves to description in simple
terms. However, if one is only interested
in understanding further the quantum-
thermal properties of black holes, there is
an alternative simpler approach, a direct
outgrowth of black-hole thermodynamics,
which makes use of general statistical
arguments, and which may thus be called
statistical black-hole physics. Its first
accomplishment was the verification that

the generalized second law is respected in
the face of Hawking’s radiance, something
I referred to earlier.

Statistical black hole physics has also
resolved an intriguing paradox connected
with black hole radiance. I mentioned
how Zel'dovich predicted the existence of
spontaneous emission by a Kerr hole in
superradiant modes by interpreting su-
perrradiance as stimulated emission, and
insisting that spontaneous and stimulated
emission go together. Now, according to
Hawking there is also spontaneous emis-
sion in non-superradiant modes, such as,
for example, all modes associated with the
Schwarzschild hole. If stimulated emis-
sion is associated with it, why is there no
superradiance in this case as in the pre-
vious one? Field theory did not clarify
the situation because it did not seem to
require the universal appearance of
stimulated emission in every non-super-
radiant mode.'*

A palatable resolution of the paradox
emerged from a detailed statistical in-
vestigation of stimulated emission by
black holes carried out by Amnon Meisels
and myself at the Ben-Gurion Universi-
ty.!> The central quantity in the analysis
is p(m|n), the probability that if n quanta
in a given mode are incident on a black
hole, m are returned outwards in that
mode by all possible processes. We cal-
culated p(m|n) with the following as-
sumptions:

b The black hole is in a thermal radiation
bath

» The mean number of quanta the black
hole returns under the influence of the
thermal radiation incident on it is the sum
of the spontaneous emission and a frac-
tion 1 — I “reflected” from the incident
mean number

» The probability distribution has a
maximal entropy, for the same reasons I
mentioned in connection with the heu-
ristic explanation of Hawking’s process.
Prakash Panangaden and Robert Wald
have shown'® that this same probability
can be derived from the field theory, al-
beit more lahoriously.

Curiously, the probability p(m|n) is
not just the composite of the probability
distributions for spontaneous emission,
p(m|0), and that for ordinary scattering
of indistinguishable bosons. A third
component distribution is needed to re-
produce it. This was only isolated re-
cently, and its form leaves no doubt that
it describes stimulated emission in every
mode; the mean number of quanta sent
out by the corresponding process is pro-
portional to n, as one would expect for
stimulated emission. The proportional-
ity coefficient is none other than Ein-
stein’s coefficient of stimulated emission,
B;.
As in the case of atomic transitions, B
turns out to equal the mean number of
spontaneously emitted bosons, which is
just the Einstein coefficient of spontane-
ous emission A. One can likewise calcu-



late the coefficient of absorption, Bs; it
obeys the relation

I'=B:—B|

We can now see that the classical ab-
sorption coefficient I" is not just the
quantum absorption coefficient, but is
less than it by the stimulated emission
coefficient (after all, stimulated emission
suppresses scattering). The explicit
forms of B| and B+ make it clear that for
a mode satisfying the superradiance
condition, stimulated emission wins (B
> B1), so that the classical reflection
coefficient, 1 — I, is larger than unity.
This is precisely what superradiance
means! By contrast, if the mode does not
satisfy the superradiance condition, ab-
sorption dominates stimulated emission
(B, < B+),1 — 7 is less than unity, so that
classically the hole absorbs, and there is
no superradiance. Thus a Schwarzschild
hole is capable of stimulated emission, but
not of superradiance.

Counting interior configurations

In quantum physics the ratio of B-
coefficients, B+/B,, equals the ratio of
degeneracy factors of the upper to the
lower energy level of the transition in
question. For an equilibrium black hole,
the ratio can easily be shown'® to equal
the ratio of the quantity we have called
the number of possible interior configu-
rations, exp(Syu/k), evaluated for the
hole’s parameters before emission of a
quantum in the mode in question, to the
same number after emission. Thus if we
regard the hole as a conventional quan-
tum system, each of its states acts as if it
were degenerate, with a multiplicity
exp(Syi/k). A more dramatic illustration
of the interpretation of Sy, in terms of
interior configurations would be hard to
come by. The possible interior configu-
rations act as if they were all present si-
multaneously in determining how the hole
racdiates. Alternatively, if one has confi-
dence in the interpretation of Sy, the
result underlines the basic similarity of
black holes to conventional quantum ra-
diating systems.

Convineing as it is, the interpretation
of Sy, has not yet been supplemented by
a general method for explicitly counting
interior configurations and demonstrating
the connection with Sy,;,. Ulrich H. Ger-
lach has analyzed'” a special model in
which counting can be done schematically
and has obtained rough agreement with
Sie. A different approach, which, though
not formally a counting method, has great
potential, has been advocated by Gibbons
and Hawking!® in the framework of a
program for quantizing gravitation using
Richard Feynman’s “sum over histories”
approach. Here the quantum amplitude
for a system to evolve from an initial to a
final state in time ¢ is given by a certain
phase factor summed over all conceivable
evolutions between the two states.

Gibbons and Hawking computed the

amplitude for evolution of a geometry
(gravitational field) that contains a black
hole region, for complex values of the
coordinates. Curiously, this geometry is
periodic in imaginary time, it, with a pe-
riod 7 that is determined by M, @, and L.
Gibbons and Hawking were then able to
exploit a trick well known to workers in
statistical physics: the formal amplitude
for a system to evolve back to its initial
state in an imaginary time, it, equals its
partition function (or statistical sum over
states) for the (real) temperature hA/kt.
Because of its periodicity the hole's ge-
ometry evolves back to the initial state
after “time” 7, and thus a thermal parti-
tion function is defined forit. The tem-
perature turns out to be none other than
Ty (with n = ), and the entropy derived
from the partition function is none other
than Spi. The agreement with the values
implied by Hawking’s radiance is proof
that the thermal properties of the gravi-
tational field are very real and manifest
themselves in varied contexts.

Space limitations forbid a detailed
survey of the applications and ramifica-
tions of the thermodynamics of black
holes. Yet no description of the subject
could be representative without men-
tioning some highlights. Hawking® has
employed standard thermodynamic rea-
soning to deduce the criterion for a black
hole to condense stably out of thermal
radiation (when can droplets condense
out of vapor?). Likewise, Davies'® has
shown that the charged Kerr holes are
separated by the values of their parame-
ters into two distinet classes connected by
a second order phase transition like the A
point of He?. The role of irreversibility
in black-hole thermodynamics has been
put in a new light by Philip Candelas and
Sciama?’ who have deémonstrated the
close connection between quantum fluc-
tuations of the gravitational field at the
horizon and the dissipation reflected in
the irreversibility, a connection analogous
to that between noise and resistance in an
electrical resistor.

These and other examples underline
the basic similarity of the bizarre black
holes to everyday objects in the quantum
domain, a similarity which surfaces
clearly in the thermodynamic viewpoint.
Because of this the dream of under-
standing the quantum aspects of the
gravitational field is closer to fulfillment
today than a decade ago.
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