Nome:	:	
-------	---	--

Geometria Analítica

Prova 1 - Turma C - São Bernardo - 04/11/2011

- 1. (2,5ptos) O vetor $(-2,-4,2)_B$ (escrito em relação a uma base ortonormal positiva $B=(\vec{i},\vec{j},\vec{k})$) pode ser escrito como (-8,-6,2) numa base $C=(\vec{u},\vec{v},\vec{w})$. Sendo $\vec{u}=(1,1,0)$ e $\vec{v}=(1,-2,1)$,
 - (a) determine \vec{w}
 - (b) escreva $\vec{j} + \vec{k}$ na base C.
- 2. (2,5ptos) O tetraedro regular \overrightarrow{OABC} tem lados de comprimento $\ell=1$. Sendo $\overrightarrow{OA}=\vec{a}, \overrightarrow{OB}=\vec{b}$ e $\overrightarrow{OC}=\vec{c},$
 - (a) determine a projeção ortogonal, \vec{u} , de \vec{a} na direção de $\vec{b} + \vec{c}$
 - (b) calcule o ângulo θ dos vetores \vec{a} e \vec{u} .
- 3. (2,5ptos) Encontre a solução geral da equação $\vec{u} \times \vec{a} = \vec{b}$, sendo $\vec{u} = (x,y,z)$, $\vec{a} = (1,2,1)$ e $\vec{b} = (1,-1,1)$. Ache a solução particular \vec{u} , de módulo $\sqrt{38}$, e com \vec{u} formando um ângulo agudo com o vetor \vec{i} .
- 4. (2,5ptos) Sendo $\overrightarrow{AB} = (2,2,2)$, $\overrightarrow{AC} = (0,2,-1)$ e $\overrightarrow{AP} = (-1,5,3)$, pede-se a distância do ponto P ao plano π determinado pelos pontos A,B e C.