Geometria Analítica - Prof.ª Cecilia Chirenti

Lista 1 - Vetores

- 1. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta:
 - (a) $(A, B) \in \overrightarrow{AB}$
 - (b) $(A, B) \sim (C, D) \Leftrightarrow \overrightarrow{AB} = \overrightarrow{CD}$
 - (c) $AB \parallel CD \Rightarrow \overrightarrow{AB} \parallel \overrightarrow{CD}$
 - (d) $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow A = C$ e B = D
- 2. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta:
 - (a) $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow (A, C) \sim (B, D)$
 - (b) $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow AC \cap BD = \emptyset$
 - (c) $|\overrightarrow{AB}| = |\overrightarrow{CD}| \Rightarrow \overrightarrow{AB} = \overrightarrow{CD}$
 - (d) $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow |\overrightarrow{AB}| = |\overrightarrow{CD}|$
 - (e) Se $\overrightarrow{AB} = \overrightarrow{CD}$, então existe um único plano contendo A,B,C e D.
 - (f) $(A, B) \sim (C, D) \Rightarrow |\overrightarrow{AB}| = |\overrightarrow{CD}|$
- 3. \overrightarrow{ABCD} é um quadrilátero, $\overrightarrow{AD}=3\overrightarrow{v}, \ \overrightarrow{BC}=2\overrightarrow{v}$ e $\overrightarrow{AB}=\overrightarrow{w}$. Que tipo de quadrilátero é \overrightarrow{ABCD} ? Determine o lado \overrightarrow{CD} e as diagonais \overrightarrow{BD} e \overrightarrow{CA} em função de \overrightarrow{v} e \overrightarrow{w} .
- 4. \overrightarrow{ABCD} é um trapézio, $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{DC} = 2\vec{a}$ e $\overrightarrow{DA} = \vec{b}$. O ponto E é tal que $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BC}$. Escreva \overrightarrow{AC} e \overrightarrow{DE} em função de \vec{a} e de \vec{b} .
- 5. Calcule a soma de seis vetores que têm por representantes segmentos orientados com origem em cada um dos vértices, e extremidade no centro de um mesmo hexágono regular.
- 6. São dados $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$, $\overrightarrow{AP} = \frac{1}{3}\vec{c}$ e $\overrightarrow{BQ} = \frac{4}{5}\vec{a}$. Escreva \overrightarrow{PQ} em função de \vec{a} , \vec{b} e \vec{c} .
- 7. Quais são a origem e a extremidade de um representante do vetor $\overrightarrow{BC} + \overrightarrow{GH} \overrightarrow{FA} \overrightarrow{GC} + \overrightarrow{FB}$? (Dica: não é necessário fazer uma figura para encontrar a resposta.)
- 8. Sejam ABCD um quadrilátero, O um ponto qualquer e P o ponto médio do segmento que une os pontos médios das diagonais AC e BD. Prove que $4\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$.

- 9. Em um triângulo ABC, o ponto \overrightarrow{M} é tal que $3\overrightarrow{BM}=5\overrightarrow{MC}$. Escreva o vetor \overrightarrow{AM} em função dos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- 10. É dado o triângulo \overrightarrow{ABC} e o ponto X sobre a reta \overrightarrow{AB} tal que $\overrightarrow{XB} = 4\overrightarrow{XA}$. Sejam $\overrightarrow{AB} = \vec{b}$ e $\overrightarrow{AC} = \vec{c}$.
 - (a) Determine o vetor \overrightarrow{CX} em função de \overrightarrow{b} e \overrightarrow{c} .
 - (b) Seja M o ponto médio de \overrightarrow{CX} . Escreva \overrightarrow{BM} em função de \overrightarrow{b} e \overrightarrow{c} .
- 11. Num triângulo \overrightarrow{ABC} temos $\overrightarrow{3BP} = \overrightarrow{4PC}$ e $\overrightarrow{3PQ} = \overrightarrow{4QA}$.
 - (a) Localize numa figura os pontos P e Q, justificando sua resposta.
 - (b) A seguir, expresse \overrightarrow{AP} e \overrightarrow{BQ} como combinações lineares de $\overrightarrow{u} = \overrightarrow{AB}$ e $\overrightarrow{v} = \overrightarrow{AC}$.
- 12. Dado o triângulo ABC, tome D na reta BC tal que C seja o ponto médio de BD e Y na reta AC tal que as retas AD e BY sejam paralelas. Exprima \overrightarrow{AY} em função de \overrightarrow{BA} , \overrightarrow{BC} e mostre que C é o ponto médio de AY.
- 13. \overrightarrow{ABCD} é um paralelogramo de diagonais \overrightarrow{AC} e \overrightarrow{BD} . O ponto R é tal que $3\overrightarrow{DR} = 2\overrightarrow{CD}$ e S é tal que $2\overrightarrow{BS} = \overrightarrow{SC}$.
 - (a) Marque R e S na figura.
 - (b) Escreva \overrightarrow{RS} em função de \overrightarrow{AB} e \overrightarrow{AD} .
- 14. Seja $A_1A_2A_3A_4A_5A_6$ um hexágono regular de centro O.
 - (a) Expresse $\overrightarrow{A_1A_i},\,i=2,\ldots,6,$ em função de $\vec{a}=\overrightarrow{A_1A_2}$ e $\vec{b}=\overrightarrow{A_1A_6};$
 - (b) mostre que $\sum_{i=2}^{6} \overrightarrow{A_1 A_i} = 6\overrightarrow{A_1 O}$;
 - (c) expresse $\vec{w} = \overrightarrow{A_1 A_5}$ em função de $\vec{u} = \overrightarrow{A_1 A_4}$ e $\vec{b} = \overrightarrow{A_1 A_3}$.
- 15. Dado o tetraedro \overrightarrow{OABC} , tem-se $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$, $\overrightarrow{OP} = \frac{2}{3}\overrightarrow{OB}$, \overrightarrow{OB} é o ponto médio de \overrightarrow{AC} . Pede-se $\vec{s} = \overrightarrow{PM} + \overrightarrow{PQ} + \overrightarrow{PN}$ em função de \vec{a} , \vec{b} e \vec{c} .
- 16. Os pontos \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} e \overrightarrow{D} são vértices consecutivos de um paralelogramo. $\overrightarrow{AB} = \vec{x}$, $\overrightarrow{AD} = y$, $\overrightarrow{AP} = \frac{1}{3}\vec{x}$, $\overrightarrow{AQ} = \frac{3}{4}\vec{y}$ e F é a intersecção de \overrightarrow{PQ} e \overrightarrow{AC} . Escreva \overrightarrow{QF} em função de \vec{x} e \vec{y} .
- 17. No trapézio \overrightarrow{ABCD} , $\overrightarrow{BC} = \overrightarrow{v}$, $\overrightarrow{AD} = 2\overrightarrow{v}$ e E é o ponto de intersecção das diagonais \overrightarrow{AC} e \overrightarrow{BD} . Sendo $\overrightarrow{BE} = \lambda \overrightarrow{BD}$, determine λ .
- 18. Exercícios do Capítulo 1 do livro Vetores e uma Iniciação à Geometria Analítica.
- 19. Exercícios dos Capítulos 1-5 do livro Geometria Analítica um tratamento vetorial.