Álgebra Linear - Prof.^a Cecilia Chirenti

Lista 5 - Bases e Dimensão

- 1. Determine se u e v são linearmente dependentes onde
 - (a) u = (1, 2, 3, 4) e v = (4, 3, 2, 1)
 - (b) u = (-1, 6, -12) e v = (1/2, -3, 6)
 - (c) u = (0,1) e v = (0,-3)
 - (d) u = (1,0,0) e v = (0,0,-3)

(e)
$$u = \begin{pmatrix} 4 & -2 \\ 0 & -1 \end{pmatrix}$$
 e $v = \begin{pmatrix} -2 & 1 \\ 0 & 1/2 \end{pmatrix}$

(f)
$$u = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 e $v = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

- (g) $u = -t^3 + 1/2t^2 16 \text{ e } v = 1/2t^3 1/4t^2 + 8$
- (h) $u = t^3 + 3t + 4$ e $v = t^3 + 4t + 3$
- 2. Determine se os seguintes vetores em \mathbb{R}^4 são linearmente dependentes ou independentes:
 - (a) (1,3,-1,4), (3,8,-5,7), (2,9,4,23)
 - (b) (1, -2, 4, 1), (2, 1, 0, -3), (3, -6, 1, 4)
- 3. Mostre que
 - (a) Os vetores (1-i,i) e (2,-1+i) em \mathbb{C}^2 são linearmente dependentes sobre o corpo complexo $\mathbb C$ mas são linearmente independentes sobre o corpo real \mathbb{R} .
 - (b) Os vetores $(3+\sqrt{2},1+\sqrt{2})$ e $(7,1+2\sqrt{2})$ em \mathbb{R}^2 são linearmente dependentes sobre o corpo real $\mathbb R$ mas são linearmente independentes sobre o corpo racional \mathbb{Q} .
- 4. Suponha que u, v e w são vetores linearmente independentes. Mostre que
 - (a) u+v-2w, u-v-w, u+w são linearmente independentes
 - (b) u+v-3w, u+3v-w, v+w são linearmente dependentes
- 5. Determine se cada um dos seguintes forma uma base de \mathbb{R}^3
 - (a) (1,2,-1), (0,3,1)
- (c) (1,5,-6), (2,1,8), (3,-1,4), (2,1,1)
- (b) (2,4,-3), (0,1,1), (0,1,-1) (d) (1,3,-4), (1,4,-3), (2,3,-11)

6. Encontre uma base e a dimensão do subespaco W de \mathbb{R}^4 gerado por

(a)
$$(1,4,-1,3)$$
, $(2,1,-3,-1)$, $(0,2,1,-5)$

(b)
$$(1, -4, -2, 1), (1, -3, -1, 2), (3, -8, -2, 7)$$

- 7. Seja V o espaço das matrizes 2×2 sobre \mathbb{R} e seja W o subespaço gerado por $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$, $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$, $\begin{pmatrix} 1 & -7 \\ -5 & 1 \end{pmatrix}$. Encontre uma base e a dimensão de W.
- 8. Seja W o espaço gerado pelos polinômios $u=t^3+2t^2-2t+1,\ v=t^3+3t^2-t+4$ e $w=2t^3+t^2-7t-7$. Encontre uma base e a dimensão de W.
- 9. Encontre uma base e a dimensão do espaço de soluções W de cada sistema homogêneo:

(a)
$$\begin{cases} x + 3y + 2z = 0 \\ x + 5y + z = 0 \\ 3x + 5y + 8z = 0 \end{cases}$$
 (b)
$$\begin{cases} x - 2y + 7z = 0 \\ 2x + 3y - 2z = 0 \\ 2x - y + z = 0 \end{cases}$$
 (c)
$$\begin{cases} x + 4y + 2z = 0 \\ 2x + y + 5z = 0 \end{cases}$$

- 10. Sejam U e W subespaços do \mathbb{R}^3 para os quais dim U=1, dim W=2 e $U \not\subset W$. Mostre que $\mathbb{R}^3=U\oplus W$.
- 11. Seja U o subespaço do \mathbb{R}^5 gerado por

$$\{(1,3,-3,-1,-4), (1,4,-1,-2,-2), (2,9,0,-5,-2)\}$$

e seja W o subespaço gerado por

$$\{(1,6,2,-2,3), (2,8,-1,-6,-5), (1,3,-1,-5,-6)\}.$$

Encontre dim (U+W) e dim $(U\cap W)$.

12. No espaço vetorial V dos polinômios em t de grau $n \leq 3$, considere a seguinte base: $\{1, 1-t, (1-t^2), (1-t)^3\}$. Encontre o vetor coordenadas de $v \in V$ em relação à base dada se

(a)
$$v = 2 - 3t + t^2 + 2t^3$$

(c)
$$v = a + bt + ct^2 + dt^3$$

(b)
$$v = 3 - 2t - t^2$$

13. No espaço vetorial W das matrizes simétricas 2×2 sobre \mathbb{R} , considere a seguinte base: $\left\{ \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} \right\}$. Encontre o vetor coordenada da matriz $A \in W$ em relação à base acima se

(a)
$$\begin{pmatrix} 1 & -5 \\ -5 & 5 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

14. Considere as duas bases do \mathbb{R}^3 { $e_1 = (1, 1, 1), e_2 = (0, 2, 3), e_3 = (0, 2, -1)$ } e { $f_1 = (1, 1, 0), e_2 = (1, -1, 0), e_3 = (0, 0, 1)$ }.

- (a) Encontre o vetor coordenadas de v=(3,5,-2) em relação a cada base $[v]_e$ e $[v]_f$.
- (b) Encontre a matriz P cujas linhas são respectivamente os vetores coordenadas dos e_i em relação à base $\{f_1, f_2, f_3\}$.
- (c) Verifique que $[v]_e P = [v]_f$.
- 15. Encontre o posto de cada matriz

(a)
$$\begin{pmatrix} 1 & 3 & -2 & 5 & 4 \\ 1 & 4 & 1 & 3 & 5 \\ 1 & 4 & 2 & 4 & 3 \\ 2 & 7 & -3 & 6 & 13 \end{pmatrix}$$
(b)
$$\begin{pmatrix} 1 & 2 & -3 & -2 & -3 \\ 1 & 3 & -2 & 0 & -4 \\ 3 & 8 & -7 & -2 & -11 \\ 2 & 1 & -9 & -10 & -3 \end{pmatrix}$$
(d)
$$\begin{pmatrix} 2 & 1 \\ 3 & -7 \\ -6 & 1 \\ 5 & -8 \end{pmatrix}$$