Nome:

Funções de Várias Variáveis - Prova 1 - Turma A1 - 16/03/2017

ATENÇAO: Marque as respostas nesta folha, e justifique as alternativas escolhidas na folha de respostas. Alternativas corretas sem justificativa ou com justificativas incorretas não serão consideradas.

- 1. (1,0) ponto) A superfície de nível de $f(x,y,z)=x^2+y^2-z^2$ correspondente a f(x,y,z)=1 intercepta o plano xy formando uma
 - (a) parábola
 - (b) circunferência
 - (c) hipérbole
 - (d) reta
 - (e) elipse
- 2. (1,0 ponto) A superfície definida por $y^2 x^2 = z$ é um
 - (a) parabolóide elíptico
 - (b) cone elíptico
 - (c) elipsóide
 - (d) hiperbolóide
 - (e) parabolóide hiperbólico
- 3. (1,0 ponto) Considere a função:

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 - y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Escolha a resposta correta:

- (a) f_x e f_y são contínuas em (0,0), mas f_{xy} e f_{yx} não existem;
- (b) f é contínua e diferenciável na origem;
- (c) $f_x(0,0)$ e $f_y(0,0)$ existem, e $f_x(0,0) = f_y(0,0)$;
- (d) f não é contínua na origem;
- (e) nenhuma das anteriores.
- 4. (1,0 ponto) Seja

$$L = \lim_{(x,y,z)\to(0,0,0)} \frac{x+2y-3z}{\sqrt{x^2+y^2+z^2}}$$

. Então

- (a) o limite não existe
- (b) L = -3
- (c) L = 0
- (d) L = 1
- (e) L = 2
- 5. (1,0 ponto) Considere a função:

$$f(x,y) = \begin{cases} xy \operatorname{tg} \frac{y}{x}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Escolha a resposta correta:

- (a) $xf_x + yf_y = 2f$
- (b) $xf_{y} + yf_{x} = 2f$
- (c) $xf_x yf_y = 2f$
- (d) $xf_x + yf_y + xy = 2f$
- (e) nenhuma das anteriores
- 6. (1,0 ponto) Seja $f(x,y) = \ln(x^2 + 2y^2)$, então a derivada parcial f_{xy} é igual a :
 - (a) $\frac{-4y}{(x^2+2y^2)^2}$;
 - (b) $\frac{4(x^2-y^2)}{(x^2+2y^2)^2}$;
 - (c) $\frac{-8xy}{(x^2+2y^2)^2}$;
 - (d) $\frac{4xy}{(x^2+2y^2)^2}$;
 - (e) $\frac{-2x}{(x^2+2y^2)^2}$;
- 7. (1,0 ponto) A derivada direcional de $f(x,y,z)=x^2yz+4xz^2 \text{ no ponto } (1,2,-1)$ na direção de $2\vec{i}-\vec{j}-2\vec{k}$ é
 - (a) $\frac{13}{3}$
 - (b) $\frac{1}{3}$
 - (c) $-\frac{13}{3}$
 - (d) 0

- (e) nenhuma das anteriores
- 8. (1,0 ponto) Seja w=f(x,y) uma função de duas variáveis e

$$\left\{ \begin{array}{l} x=x(s,t)\,,\\ y=y(t,\theta)\,,\\ t=t(\theta)\,. \end{array} \right.$$

Portanto, w é uma função de s e θ . Qual das fórmulas abaixo representa $\frac{\partial w}{\partial \theta}$?

(a)
$$\frac{\partial f}{\partial x} \frac{\partial x}{\partial t} \frac{\partial t}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \frac{\partial t}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}$$

(b)
$$\frac{\partial f}{\partial x} \frac{\partial x}{\partial t} \frac{\partial t}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \frac{\partial t}{\partial \theta}$$

- (c) $\frac{\partial f}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial t}$
- (d) $\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$
- (e) nenhuma das anteriores
- 9. (1,0 ponto) Encontre um vetor normal à curva $x^2 + \ln y 2x = 0$ no ponto (2,1):

(a)
$$-\frac{2}{5}\vec{i} + \vec{j}$$

- (b) $2\vec{i} + 5\vec{j}$
- (c) $2\vec{i} + \vec{j}$
- (d) $5\vec{i} 2\vec{j}$
- (e) nenhuma das anteriores
- 10. (1,0 ponto) Um vetor unitário normal à superfície $z=x^2+y^2$ no ponto (-1,-2,5) é

(a)
$$\frac{2\vec{i}+4\vec{j}-\vec{k}}{\sqrt{21}}$$

(b)
$$-2\frac{2\vec{i}-4\vec{j}+\vec{k}}{\sqrt{21}}$$

(c)
$$\frac{2\vec{i}+4\vec{j}+\vec{k}}{\sqrt{21}}$$

(d)
$$\frac{2\vec{i}-4\vec{j}+\vec{k}}{\sqrt{21}}$$

(e) nenhuma das anteriores