Geometria Diferencial I

Prova
$$2 - 07/05/2018$$

1. (2,5 pts) Considere a curva

$$\beta(s) = (a(\cos(as) + \sin(as)), a(\sin(as) - \cos(as)), as), \quad \text{com} \quad a = \frac{1}{\sqrt{2}}.$$

- (a) Mostre que $\beta(s)$ é uma hélice, encontrando a sua curvatura e a sua torsão.
- (b) Encontre uma isometria F de \mathbb{R}^3 tal que $F(\alpha) = \beta$, onde α é a hélice $\alpha(s) = (\cos(as), \sin(as), as)$, e descreva a ação da parte ortogonal de F.

Dado: Em s=0, o referencial de Frenet de α é dado por:

$$T_{\alpha}(0) = (0, a, a), \ N_{\alpha}(0) = (-1, 0, 0), \ B_{\alpha}(0) = (0, -a, a).$$

- 2. (2,5pts) Seja F uma isometria de \mathbb{R}^3 . Para cada campo vetorial V seja \overline{V} o campo vetorial tal que $F_*(V(\mathbf{p})) = \overline{V}(F(\mathbf{p}))$ para todo \mathbf{p} . Prove que as isometrias preservam as derivadas covariantes; ou seja, mostre que $\overline{\nabla}_V \overline{W} = \overline{\nabla}_{\overline{V}} \overline{W}$.
- 3. Usando a definição de superfície, faça o que é pedido:
 - (a) Prove que $M: (x^2+y^2)^2+3z^2=1$ é uma superfície
 - (b) Determine os valores de c para os quais M: z(z-2) + xy = c é uma superfície.
- 4. (2,5pts) Seja $\mathbf{x}:R\to M$ um 2-segmento definido no retângulo $0\le u\le \pi/2,\, 0\le v\le \pi.$ Se ϕ é a 1-forma em M tal que

$$\phi(\mathbf{x}_u) = u \cos v \quad e \quad \phi(\mathbf{x}_v) = v \sin u$$

calcule $\iint_{\mathbf{x}} d\phi$ e $\int_{\partial x} \phi$ separadamente e verifique o teorema de Stokes.

EXTRA

5. (1,0pt) Se Σ é a esfera $||\mathbf{p}|| = r$, a aplicação $A : \Sigma \to \Sigma$ tal que $A(\mathbf{p}) = -\mathbf{p}$ é chamada a aplicação antipodal de Σ . Prove que A é um difeomorfismo e que $A_*(\mathbf{v}_p) = (-\mathbf{v})_{-p}$.