
Neutron Star Asteroseismology

Problem Set 1

20/05/2019

1. Plot the Regge-Wheeler potential together with the Zerilli potential for a given value of M
and ` = 2, 3, 4, first as a function of r and then as a function of r⇤. What can you conclude

from these plots?

2. It can be shown that general relativity implies the existence of maximum mass for a compact

star. A simple form of this argument gives that M0  1
2

⇣
3

8⇡⇢0

⌘1/2
, where M0 is the mass of

the core restricted to densities ⇢ > ⇢0. Put the factors of c and G back in this equation and

scale ⇢0 by the nuclear density to find that M0 . 8.0MJ
⇣

2.9⇥1014g/cm3

⇢0

⌘1/2
.

3. Most of the binary pulsars have white dwarf stars as companions, and the binary systems are

practically circular. Find out a method based on pulsar timing to measure the masses for such

systems.

4. Solve the relativistic equations of stellar structure for a static, spherically symmetric star of

uniform density. Show that the mass and radius of the star satisfy R/2M > 9/8.

5. Computer exercise: Write a simple code to integrate the TOV equation in the case of a

polytropic equation of state p = K⇢�, for given central pressure pc and polytropic index �.
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Neutron Star Asteroseismology

Problem Set 2

21/05/2019

1. Verify that !2 = 0 and ⇠ = const. ⇥ r is a solution of the radial perturbation equation for

�1 = 4
3 . What can you conclude from this result?

2. Work through the changes in stability of the modes that occur at the extrema of the mass

vs. radius relation for the family of stars in Fig. 24.7. Assume that the curves of squared

frequency vs. central density never cross. Show that the changes in stability are as illustrated

in Fig. 24.11 and that there are only two ranges of equilibrium stars, as shown.

3. Stable equilibria beyond neutron stars? A theorist proposes a new equation of state for matter

above nuclear densities and wonders whether it might lead to a new kind of ultra-high-density

endstates to stellar evolution beyond neutron and white dwarf stars. You use the equation

of state and the relativistic equations of stellar structure to calculate the mass-radius relati-

onship of stars with central density greater than nuclear density that is shown below. The

curve represents stable neutron stars at the lowest densities but then spirals around at higher

densities. Assuming the lowest-density, largest-radius stars shown are stable, will there be a

new family of stable equilibria?

4. Polytropic stars are unstable in Newtonian theory if � < 4
3 . Consider the influence of small

relativistic effects on this stability criterion. Show that the effect is to increase the unstable

range of � to � < 4
3 + ", where " may depend on the mass, radius and structure of the star.

5. Computer exercise: Find the lowest few stable pulsation frequencies of a polytrope of your

favorite value of index n for �1 = 5
3 . Hint:

(a) Nondimensionalize the eigenvalue equations

(b) Determine the solution to the hydrostatic equilibrium equation simultaneously

(c) Investigate analytically the behavior of the solution near r = 0 and r = R

(d) A possible numerical method is to integrate out from r = 0 and in from r = R to some

convenient r inside the star with a guessed value of !2
, imposing the boundary conditions

determined in the previous step. Since you do not know the relative magnitude of these

1



two solutions, start them both with unit magnitude. If you had guessed the correct value

for !2
, the Wronskian of the two solutions at the “matching radius” r would vanish.

(Why?) In general, it will be nonzero. Choose another value of !2
, integrate in from the

boundaries to r, and compute the Wronskian again. Now interpolate (or extrapolate) to

that value of !2
that zeros the Wronskian. Continue to iterate until !2

converges to the

required number of significant digits.
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Neutron Star Asteroseismology

Problem Set 3

22/05/2019

1. Show that the axial perturbation equation for a star reduces to the Regge-Wheeler equation
outside of the star.

2. Neutron stars quasinormal modes can resonantly excited in stars that are in a binary system
when the orbital frequency of the binary is equal or close to the oscillation frequency of the
mode (remember that the orbital period of the binary changes because of the emission of
gravitational waves). Using typical values for the neutron stars’ masses and radii, estimate the
maximum orbital frequency of the binary and conclude which modes can be resonantly excited
through this mechanism.

3. Suppose that a future gravitational wave observation with a very sensitive detector was able to
detect an f-mode with a frequency f = 1.60± 0.08 kHz and a damping time ⌧ = 0.30± 0.09 s.
Plot the universal relations obtained for a sample of different EOSs and use the observations
to determine the mass and radius of the star, with their corresponding uncertainties.

4. What happens if we try to calculate the f-modes for a neutron star in the unstable branch of the
mass radius relation? Stars in the unstable branch are unstable against radial oscillations, but
the f-mode is a non-radial mode of oscillation. Try to use the universal relations to estimate
where (or if) the f-mode should become unstable. How does that compare with the mass-radius
relation?

5. Consider a magnetized neutron star. The magnetic energy can be estimated as EB ⇠ B2R3

and the gravitational energy can be estimated as Eg ⇠ GM2/R. If the magnetic field is too
strong, it will start distorting the spherical symmetry of the star. Calculate the ratio EB/Eg

to estimate how strong the magnetic field must be to be able to distort the star.

6. Computer project: This is a longer project to be developed over the next 2 weeks, with
the main goal to implement numerically the full equations derived by Lindblom & Detweiler
to calculate the f-mode frequencies and damping times of a star. Follow steps given in the
appendices of Lindblom & Detweiler (1983) and use the final form of the equations given by
Detweiler & Lindblom (1985).
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1. We can use the period of rotation of the fastest known pulsar (1.56 ms) to estimate the

radius of a millisecond pulsar. For the star to hold together at its equator under the opposing

gravitational and centrifugal forces we must have

⇣2
GmM

R2
> m⌦2R . (1)

The factor ⇣ is unity in Newtonian physics and is found empirically to be about 0.65 in General

Relativity. Use this information and a reliable estimate for the maximum mass of a neutron

star and find how large its radius can be for the star to avoid mass shedding.

2. Use an equality in eq. (1) to find an estimate for ⌦K . Show that a rotating neutron star will

have

Erot

Egrav
⇡ 0.13

✓
⌦

⌦K

◆2

. (2)

3. Look up the rotational correction to the f-mode frequency given by Ferrari, Gualtieri and

Marassi (2007) (see eq. (59) and Fig. 1 (b)). Find how fast a neutron star must be spinning

for the f-mode to be resonantly excited in a circular neutron star binary system.

4. Find the velocity of a particle in a circular stable orbit at the equator of a rotating star. Note

that it is different according to whether the particle is co-rotating or counter-rotating.

5. Computer problem: Use the estimates given for ⌧GW , ⌧BV and ⌧SV collected by Haskell,

Degenaar and Ho (2012) (see eqs. (3), (5) and (6)) to plot the r-mode instability window by

solving

1

⌧GW
+

1

⌧BV
+

1

⌧SV
= 0 , (3)

as in their Fig. 1. Add to your plot the stars listed on their table 1. Which stars are inside

the window?
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