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• Teukolsky equation (1972) 
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• Using the Pöschl-Teller formula:

Kerr Black Hole
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creases until it becomes almost zero at some moderately
large overtone number n (for ℓ = 2, n = 9, for ℓ = 3,
n = 41). The corresponding purely damped mode is ap-
proximately equal to the so-called “algebraically special
mode”, which is given by83

ωM = −i(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)/12. (4.3)

For modes which are higher than the algebraically spe-
cial one, the real part starts growing and approaches
its asymptotic value, which can be found exactly (see
Sec. IV.F). Since the damping rate of the algebraically
special mode (4.3) grows quickly with ℓ, the asymptotic
regime is achieved at high overtones. For instance, for
ℓ = 6 the asymptotic regime of high damping is achieved
at n ∼ 10565.
Real astrophysical black holes are rotating. In addi-

tion, one can neglect their electric charge so that the
Kerr metric is the most astrophysically motivated exact
solution of the Einstein equations. Thus, gravitational
quasinormal modes of Kerr black holes are of primary in-
terest for observations of gravitational waves. Accurate
calculations of quasinormal modes for Kerr black holes
were performed by Leaver64. The basic properties of the
spectrum for small rotation were found from the eikonal
limit within the slow-rotation approximation. Using the
Pöschl-Teller formula (3.12), one can find that84
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ℓ≫ |m| ≫ 1, a ≪ M, (4.4)

where m is the azimuthal number and a is the rotation
parameter of the black hole.
Rotation gives us the following new properties of the

quasinormal spectrum:

• The real part of the quasinormal mode grows with
am.

• The quasinormal modes explicitly depend on the
azimuthal number m and there is a symmetry
ω(m) → −ω∗(−m). This allows us to consider only
modes with the positive real part.

Table I summarized the publications in which the
quasinormal ringing of four-dimensional black holes was
studied with the help of various numerical methods. The
reader is referred to the original works (see Table I) for
more details and numerical data. In Sec. IV.H we dis-
cussed dependence of the quasinormal modes on the black
hole parameters.
Lower modes of the Dirac field were found by the

WKB approach for Schwarzschild102 and Schwarzschild-
de Sitter backgrounds103 and by using the approximation
with the Pöschl-Teller potential (see Sec. III.B) for Kerr-
Newman-de Sitter black holes104. Later the spectrum of
the Dirac field was calculated using the accurate Frobe-
nius method for Schwarzschild105, Reissner-Nordström-
de Sitter106, Kerr-Newman107 and Kerr-Newman-de Sit-
ter black holes108. The quasinormal spectrum of the

TABLE I Publications where the lower modes of various four-
dimensional black holes were calculated by different methods:
integration of the equations of motion, the WKB formula, and
the method of continued fraction.

QNMs Integration WKB Cont. f.

Schwarzschild 77 85 64

Reissner-Nordström 79 86 87

Reissner-Nordström (extreme) 88

Kerr 78,89 90 64

Kerr-Newman 91 55

Reissner-Nordström+dilaton 92,93

Topological black holes 94

Stringy black holes 95

Schwarzschild-de Sitter 96 97 98

Reissner-Nordström-de Sitter 99 99

Kerr-de Sitter 100

Garfinkle-Horowitz-Strominger 101

scalar and Dirac fields around the Born-Infeld black hole
was studied in109. Dominant gravitational frequencies of
black holes in the scalar-tensor gravity were calculated
in110.
Real astrophysical black holes are not isolated, but

surrounded by some matter. Theoreticians frequently
call such black holes with an “environment” as “dirty”
black holes. These were studied using a perturbative
method in111. Higher modes of the spherically symmetric
dirty black holes were studied in112. Quasinormal modes
of black holes surrounded by quintessence were studied
in113–116, and modes of the phantom scalar field in117.
Recently, perturbations of more exotic objects such

as wormholes, white holes, or naked singularities have
been investigated. It was found that the quasinor-
mal spectrum of Schwarzschild black holes differs from
wormholes118 and white holes119. Therefore, these ob-
jects, if they exist, might be detected through observa-
tions of their quasinormal ringing.

D. Quasinormal modes of mini black holes

Quasinormal spectra of black holes attracted consider-
able interest in the following extra dimensional models:

1. The large extra dimensions scenario allows for
the size of extra dimensions to be of a macroscopic
order80. When the size of the black hole is much
smaller than the size of the extra dimensions, the
black hole can be considered as effectively living in
a D-dimensional world and, thereby, approximated
by a solution of higher-dimensional Einstein equa-
tions. The simplest example of such a solution is
the Tangherlini metric26, which is a generalization
of the Schwarzschild metric for D > 4.

2. Randall-Sundrum models81 assumed that our
world is a brane in higher-dimensional anti-de Sit-



Neutron Stars
•  Frequencies and damping times for the 

fundamental mode (EOS-dependent!)
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Figura 3.6 – A frequência de oscilação do modo-f em função da massa estelar total.
Vemos que cada estrela apresenta uma única frequência de oscilação associada ao modo-f, sendo que para
as massas menores a frequência apresenta um comportamento linear, sendo que conforme aproxima-se da
massa máxima há uma acumulação da frequência no valor daquela correspondente ao da massa máxima.

que implica que a função de Zerilli possui comportamento assintótico:

Z lm(r) ! e�i!r⇤ (r ! 1), (3.39)

onde ! é a frequência complexa dada por (3.21).

Finamente expomos nossos resultados para a frequência real f na figura (3.6),

onde apresentamos a frequência de oscilação em função da massa estelar para as oito

equações de estado.

Podemos ver que as equações de estado possuem comportamento bem distinto

entre si, com exceção das equaçõesMS1 e SHT que produziram resultados na mesma faixa.

Agora analisando a figura (3.7) vemos o tempo de decaimento em função da massa estelar.
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Figura 3.7 – O tempo de decaimento do modo-f em função da massa estelar total.
Vemos que de modo semelhante ao caso da frequência do modo-f, cada estrela apresenta um tempo de
decaimento único cujo perfil de comportamento também é único para cada equação de estado.

Da mesma forma que no caso anterior, cada equação de estado possui uma configuração

única de tempo de decaimento em função da massa estelar, por isso o interesse nos últimos

anos sobre o estudo do modo-f pois ele fornece uma relação única entre a frequência de

oscilação, o tempo de decaimento e a massa estelar, assim sendo a detecção de ondas

gravitacionais vindas de estrelas de nêutrons pode nos fornecer informações preciosas

sobre a massa da estrela que gerou seu sinal além de sua equação de estado.



What can we do with QNMs?

• Linear stability analysis 

• Study the frequency spectrum 

• AdS/CFT correspondence 

• If detected, QNMs can be used to distinguish 
between different sources…



Gravitational waves detected!
Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1σ. The source lies at a luminosity distance of 410þ160

−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03
−0.04 .

In the source frame, the initial black hole masses are 36þ5
−4M⊙ and 29þ4

−4M⊙, and the final black hole mass is
62þ4

−4M⊙, with 3.0þ0.5
−0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

I. INTRODUCTION

In 1916, the year after the final formulation of the field
equations of general relativity, Albert Einstein predicted
the existence of gravitational waves. He found that
the linearized weak-field equations had wave solutions:
transverse waves of spatial strain that travel at the speed of
light, generated by time variations of the mass quadrupole
moment of the source [1,2]. Einstein understood that
gravitational-wave amplitudes would be remarkably
small; moreover, until the Chapel Hill conference in
1957 there was significant debate about the physical
reality of gravitational waves [3].
Also in 1916, Schwarzschild published a solution for the

field equations [4] that was later understood to describe a
black hole [5,6], and in 1963 Kerr generalized the solution
to rotating black holes [7]. Starting in the 1970s theoretical
work led to the understanding of black hole quasinormal
modes [8–10], and in the 1990s higher-order post-
Newtonian calculations [11] preceded extensive analytical
studies of relativistic two-body dynamics [12,13]. These
advances, together with numerical relativity breakthroughs
in the past decade [14–16], have enabled modeling of
binary black hole mergers and accurate predictions of
their gravitational waveforms. While numerous black hole
candidates have now been identified through electromag-
netic observations [17–19], black hole mergers have not
previously been observed.

The discovery of the binary pulsar systemPSR B1913þ16
by Hulse and Taylor [20] and subsequent observations of
its energy loss by Taylor and Weisberg [21] demonstrated
the existence of gravitational waves. This discovery,
along with emerging astrophysical understanding [22],
led to the recognition that direct observations of the
amplitude and phase of gravitational waves would enable
studies of additional relativistic systems and provide new
tests of general relativity, especially in the dynamic
strong-field regime.
Experiments to detect gravitational waves began with

Weber and his resonant mass detectors in the 1960s [23],
followed by an international network of cryogenic reso-
nant detectors [24]. Interferometric detectors were first
suggested in the early 1960s [25] and the 1970s [26]. A
study of the noise and performance of such detectors [27],
and further concepts to improve them [28], led to
proposals for long-baseline broadband laser interferome-
ters with the potential for significantly increased sensi-
tivity [29–32]. By the early 2000s, a set of initial detectors
was completed, including TAMA 300 in Japan, GEO 600
in Germany, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) in the United States, and Virgo in
Italy. Combinations of these detectors made joint obser-
vations from 2002 through 2011, setting upper limits on a
variety of gravitational-wave sources while evolving into
a global network. In 2015, Advanced LIGO became the
first of a significantly more sensitive network of advanced
detectors to begin observations [33–36].
A century after the fundamental predictions of Einstein

and Schwarzschild, we report the first direct detection of
gravitational waves and the first direct observation of a
binary black hole system merging to form a single black
hole. Our observations provide unique access to the

*Full author list given at the end of the article.
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Binary black holes



GW150914



Lowest damped QNM 



Final Black Hole



Tests of GR with QNMs

• Needs detection of the fundamental mode and first 
overtone 

• Independent determination of mass and spin from 
both modes 

• Allows a test of the no-hair theorem!



Black Hole alternatives

• why do we need BH alternatives? 

• what is a BH alternative?



Black Hole alternatives
• What is a BH alternative? 

• Why do we need BH alternatives? What should we do with 
them? 

• possibilities: 

• wormholes 

• boson stars 

• gravastars 

• superspinars, etc



Example of a black hole alternative:  
the gravastar model

•  Alternative to the end state of  
stellar evolution 

• “gravitational vacuum condensate 
 star” 

• almost as compact as a black hole 

• no central singularity or event  
horizon 

• Formation in the collapse of a massive star

µ = M/r2

� = r2 � r1



Test: could GW150914 have created a gravastar?


