Universidade Federal do ABC

Álgebra Linear - 2022.3

Lista 7 - Matriz mudança de base - Transfromações Lineares e Matrizes

- 1) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por T(x,y,z) = (x+z,y+z,x+y+2z).
 - Encontre as matrizes de T com relação à base canônica, C, e em relação à base B formada pelos vetores: u = (1,1,2), v = (-1,1,0) e w = (-1,-1,1).
- 2) Seja $T \in L(P_2(\mathbb{R}), \mathbb{R})$ dada por $T(p) = \int_0^1 p(x) dx$. Encontre as matrizes de T em relação às bases canônicas de $P_2(\mathbb{R})$ e \mathbb{R}
- 3) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador lienar tal que $T(e_1) = (2,3,1), T(e_1+e_2) = (5,2,7)$ e $T(e_1+e_2+e_3) = (-2,0,7).$
 - (a) Encontre T(x, y, z) para $(x, y, z) \in \mathbb{R}^3$.
 - (b) T é sobrejetora? Justifique sua resposta.
 - (c) T é injetora? Justifique sua resposta.
 - (d) T é bijetora? Justifique sua resposta.
- 4) Seja $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ um operador linear tal que $(T(p_0))(t) = 1 + t, (T(p_1(t))(t) = t + t^2 e \ (T(p_2))(t) = 1 + t t^2,$ onde $p_i(t) = t^i, i = 0, 1, 2.$
 - (a) Encontre T(p) para $p \in P_2(\mathbb{R})$.
 - (b) T é sobrejetora? Justifique a resposta.
 - (c) T é injetora? Justifique sua resposta.
 - (d) T é bijetora? Justifique sua resposta.

- 5) Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear cuja matriz na base $B = \{(1,0),(1,4)\}$ é
 - $[T]_B = \begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix}$. Determinar a matriz de T em relação à base canônica de \mathbb{R}^2 .
- 6) Seja $B = \{e_1, e_2, e_3\}$ uma base do espaço vetorial V. Se $T, S: V \to V$ são operadores lineares em V tais que

$$T(e_1) = 2e_1 - 3e_2 + e_3, \ T(e_2) = e_1 + e_2, \ T(e_3) = e_2 + e_3$$
 e

$$S(e_1) = 3e_1 + 2e_2, \ S(e_2) = e_1 - e_2 - e_3, \ S(e_3) = e_1 + e_2 - 2e_3.$$

Determinar as seguintes matrizes: $[T]_B$, $[S]_B$, $[S \circ T]_B$,

$$[S^2 + I]_B$$
 e $[T^3 - S^2]_B$.

- 7) Considere a transformação linear $D: P_3(\mathbb{R}) \to P_3(\mathbb{R})$, onde D(p) = p'.
 - (a) Escreva D na forma matricial em relação à base canônica $\{t^3, t^2, t, 1\}$.
 - (b) Determine Ker(D) e Im(D) e encontre uma base para cada um destes subespaços. Verifique o teorma do núcleo e da imagem.
 - (c) Mostre que $D\circ D\circ D\circ D=\mathbf{0}.$ Primeiro usando a definição de derivada. Depois usando a representação matricial.