Espaços Vetoriais Bases 1

Álgebra Linear

Mariana Silveira - Cristian Coletti

Sejam (V,+,.) um espaço vetorial real finitamente gerado. Uma **base** para V é um conjunto finito $B\subset V$ tal que:

$$b_1$$
. $[B] = V$.

*b*₂. *B* é L.I..

Exemplos

- 1. $V = \mathbb{R}^2$
 - \triangleright $B = \{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 chamada base canônica.
 - \triangleright $B_1 = \{(1,1),(0,1)\}$ é uma base para \mathbb{R}^2 .
 - b_1 . $[B_1] = \mathbb{R}^2$, pois para todo $(x, y) \in \mathbb{R}^2$ temos que (x, y) = x(1, 1) + (y x)(0, 1).
 - b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro

Sejam (V,+,.) um espaço vetorial real finitamente gerado. Uma **base** para V é um conjunto finito $B\subset V$ tal que:

$$b_1$$
. $[B] = V$.

*b*₂. *B* é L.I..

Exemplos

- 1. $V = \mathbb{R}^2$
 - ▶ $B = \{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 chamada base canônica.
 - $ightharpoonup B_1 = \{(1,1),(0,1)\}$ é uma base para \mathbb{R}^2 .
 - b_1 . $[B_1] = \mathbb{R}^2$, pois para todo $(x, y) \in \mathbb{R}^2$ temos que (x, y) = x(1, 1) + (y x)(0, 1).
 - b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro

Sejam (V,+,.) um espaço vetorial real finitamente gerado. Uma **base** para V é um conjunto finito $B\subset V$ tal que:

$$b_1$$
. $[B] = V$.

*b*₂. *B* é L.I..

Exemplos

- 1. $V = \mathbb{R}^2$
 - ▶ $B = \{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 chamada base canônica.
 - ► $B_1 = \{(1,1),(0,1)\}$ é uma base para \mathbb{R}^2 .
 - b_1 . $[B_1] = \mathbb{R}^2$, pois para todo $(x, y) \in \mathbb{R}^2$ temos que (x, y) = x(1, 1) + (y x)(0, 1).

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro

Sejam (V,+,.) um espaço vetorial real finitamente gerado. Uma **base** para V é um conjunto finito $B\subset V$ tal que:

$$b_1$$
. $[B] = V$.

*b*₂. *B* é L.I..

Exemplos

- 1. $V = \mathbb{R}^2$
 - ▶ $B = \{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 chamada base canônica.
 - ► $B_1 = \{(1,1), (0,1)\}$ é uma base para \mathbb{R}^2 .
 - b_1 . $[B_1] = \mathbb{R}^2$, pois para todo $(x, y) \in \mathbb{R}^2$ temos que (x, y) = x(1, 1) + (y x)(0, 1).
 - b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

Sejam (V,+,.) um espaço vetorial real finitamente gerado. Uma **base** para V é um conjunto finito $B \subset V$ tal que:

$$b_1$$
. $[B] = V$.

*b*₂. *B* é L.I..

Exemplos

- 1. $V=\mathbb{R}^2$
 - ▶ $B = \{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 chamada base canônica.
 - ► $B_1 = \{(1,1),(0,1)\}$ é uma base para \mathbb{R}^2 .
 - b_1 . $[B_1] = \mathbb{R}^2$, pois para todo $(x, y) \in \mathbb{R}^2$ temos que (x, y) = x(1, 1) + (y x)(0, 1).
 - b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

UFABC

Mariana Silveira - C. Coletti

Base

Sejam (V,+,.) um espaço vetorial real finitamente gerado. Uma **base** para V é um conjunto finito $B\subset V$ tal que:

$$b_1$$
. $[B] = V$.

*b*₂. *B* é L.I..

Exemplos

- 1. $V = \mathbb{R}^2$
 - ▶ $B = \{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 chamada base canônica.
 - ► $B_1 = \{(1,1), (0,1)\}$ é uma base para \mathbb{R}^2 .
 - b_1 . $[B_1] = \mathbb{R}^2$, pois para todo $(x, y) \in \mathbb{R}^2$ temos que (x, y) = x(1, 1) + (y x)(0, 1).
 - b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

2. $V = \mathbb{R}^2$

$$B_2 = \{(1,0),(3,0)\}$$

 b_1 . $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro

Portanto B_2 não é uma base para \mathbb{R}^2 .

3. $V = \mathbb{R}^3$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

 b_1 . $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outrco

Portanto B_1 não é uma base para \mathbb{R}^3 .

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é a base canônica do \mathbb{R}^3

Álgebra Linear

Exemplos

2.
$$V = \mathbb{R}^2$$

$$B_2 = \{(1,0),(3,0)\}$$

 b_1 . $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3.
$$V = \mathbb{R}^3$$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

 b_1 . $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

Portanto B_1 não é uma base para \mathbb{R}^3

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é a base canônica do \mathbb{R}^3 .

2. $V = \mathbb{R}^2$

$$\textit{B}_2 = \{(1,0),(3,0)\}$$

 b_1 . $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3. $V = \mathbb{R}^3$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

 b_1 . $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro

Portanto B_1 não é uma base para \mathbb{R}^3 .

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é a base canônica do \mathbb{R}^3 .

2.
$$V = \mathbb{R}^2$$

$$B_2 = \{(1,0),(3,0)\}$$

$$b_1$$
. $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3.
$$V = \mathbb{R}^3$$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

$$b_1$$
. $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro

Portanto B_1 não é uma base para \mathbb{R}^3 .

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}\$ é a base canônica do \mathbb{R}^3 .

2.
$$V = \mathbb{R}^2$$

$$B_2 = \{(1,0),(3,0)\}$$

$$b_1$$
. $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3.
$$V = \mathbb{R}^3$$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

$$b_1$$
. $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$.

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro

Portanto B_1 não é uma base para \mathbb{R}^3 .

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$
 é a base canônica do \mathbb{R}^3

2.
$$V = \mathbb{R}^2$$

$$B_2 = \{(1,0),(3,0)\}$$

 b_1 . $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3.
$$V = \mathbb{R}^3$$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

 b_1 . $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$.

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

Portanto B_1 não é uma base para \mathbb{R}^3 .

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é a base canônica do \mathbb{R}^3

2. $V = \mathbb{R}^2$

$$B_2 = \{(1,0),(3,0)\}$$

 b_1 . $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3. $V = \mathbb{R}^3$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

 b_1 . $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$.

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

Portanto B_1 não é uma base para \mathbb{R}^3 .

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é a base canônica do \mathbb{R}^3

$$V = \mathbb{R}^2$$

$$B_2 = \{(1,0),(3,0)\}$$

$$b_1$$
. $[B_2] \neq \mathbb{R}^2$. Por exemplo, $(0,1) \notin [B_2]$.

Portanto B_2 não é uma base para \mathbb{R}^2 .

3.
$$V = \mathbb{R}^3$$

$$B_1 = \{(1,0,0),(0,1,0)\}$$

$$b_1$$
. $[B_1] \neq \mathbb{R}^3$. Por exemplo, $(0,0,1) \notin [B_1]$.

 b_2 . B_1 é L.I., pois os vetores de B_1 não são multiplos um do outro.

 b_2 . B_2 é L.D., pois os vetores de B_2 são multiplos um do outro.

Portanto B_1 não é uma base para \mathbb{R}^3 .

$$B = \{(1,0,0),(0,1,0),(0,0,1)\}$$
 é a base canônica do \mathbb{R}^3 .

4. $V = \mathbb{R}^{n}$.

$$B = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)\}$$
 é a base canônica do \mathbb{R}^n .

5. $V = M_{m \times n}(\mathbb{R})$

$$B = \left\{ \left(egin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ dash & dash & & dash \\ 0 & 0 & \cdots & 0 \end{array}
ight), \left(egin{array}{cccc} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ dash & & dash \\ 0 & 0 & \cdots & 0 \end{array}
ight), \ldots, \left(egin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ dash & & dash \\ 0 & 0 & \cdots & 1 \end{array}
ight)
ight\}$$

é uma base para $M_{m \times n}(\mathbb{R})$. ← Base Canônica

Em particular,

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right.$$

é a base canônica de $V = M_2(\mathbb{R})$.

UFABC

4.
$$V = \mathbb{R}^{n}$$
.

$$B = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)\}$$
 é a base canônica do \mathbb{R}^n .

5. $V = M_{m \times n}(\mathbb{R})$.

$$B = \left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right\}$$

é uma base para $M_{m \times n}(\mathbb{R})$. ← Base Canônica

Em particular

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é a base canônica de $V = M_2(\mathbb{R})$.

4. $V = \mathbb{R}^{n}$.

$$B = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)\}$$
 é a base canônica do \mathbb{R}^n .

5. $V = M_{m \times n}(\mathbb{R})$.

$$B = \left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right\}$$

é uma base para $M_{m \times n}(\mathbb{R})$. ← Base Canônica

Em particular

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é a base canônica de $V = M_2(\mathbb{R})$.

4.
$$V = \mathbb{R}^n$$
.

$$B = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)\}$$
 é a base canônica do \mathbb{R}^n .

5.
$$V = M_{m \times n}(\mathbb{R})$$
.

$$B = \left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right\}$$

é uma base para $M_{m \times n}(\mathbb{R})$. ← Base Canônica

Em particular,

$$\textit{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}$$

é a base canônica de $V = M_2(\mathbb{R})$.

6. $V = P_n(\mathbb{R})$. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7.
$$V = \{0\}, B = \emptyset$$

$$b_1$$
. $[B] = \{0\}$.

b₂. B é L.I., por convenção.

Portanto Ø é base para {0`

6. $V = P_n(\mathbb{R})$. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7.
$$V = \{0\}, B = \emptyset.$$

$$b_1$$
. $[B] = \{0\}$.

 b_2 . B é L.I., por convenção.

Portanto ∅ é base para {0}

6. $V = P_n(\mathbb{R})$. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7.
$$V = \{0\}, B = \emptyset.$$

$$b_1$$
. $[B] = \{0\}$.

b₂. B é L.I., por convenção.

Portanto ∅ é base para {0}.

6.
$$V = P_n(\mathbb{R})$$
. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7.
$$V = \{0\}, B = \emptyset.$$

$$b_1$$
. $[B] = \{0\}$.

b₂. B é L.I., por convenção.

Portanto ∅ é base para {0}.

6. $V = P_n(\mathbb{R})$. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7. $V = \{0\}, B = \emptyset.$

 $b_1.\ [B]=\{0\}.$

b₂. B é L.I., por convenção.

Portanto \emptyset é base para $\{0\}$.

6.
$$V = P_n(\mathbb{R})$$
. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7.
$$V = \{0\}, B = \emptyset.$$

$$b_1.\ [B]=\{0\}.$$

b₂. B é L.I., por convenção.

Portanto \emptyset é base para $\{0\}$.

6. $V = P_n(\mathbb{R})$. $B = \{1, x, x^2, \dots, x^n\}$ é a base canônica de $P_n(\mathbb{R})$.

7.
$$V = \{0\}, B = \emptyset.$$

$$b_1$$
. $[B] = \{0\}$.

b₂. B é L.I., por convenção.

Portanto \emptyset é base para $\{0\}$.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem $v_1, \ldots, v_n \in V$ tais que $V = [v_1, \ldots, v_n]$.

Se $v_1 = \cdots = v_n = 0$, então $V = \{0\}$ e $B = \emptyset$ é uma base para V.

Suponhamos agora que v_1,\ldots,v_n não sejam todos nulos.

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V

• T.Car.: $S \subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem

 $v_1, \ldots, v_n \in V$ tais que $V = [v_1, \ldots, v_n]$

Se $v_1 = \cdots = v_n = 0$, então $V = \{0\}$ e $B = \emptyset$ é uma base para V.

Suponhamos agora que v_1, \ldots, v_n não sejam todos nulos

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V

• T.Car.: $S \subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem $v_1, \ldots, v_n \in V$ tais que $V = [v_1, \ldots, v_n]$.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem

$$v_1, \ldots, v_n \in V$$
 tais que $V = [v_1, \ldots, v_n]$.

Se
$$v_1 = \cdots = v_n = 0$$
, então $V = \{0\}$ e $B = \emptyset$ é uma base para V .

Suponhamos agora que v_1, \ldots, v_n não sejam todos nulos.

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V.

• T.Car.: $S \subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem

 $v_1, \ldots, v_n \in V$ tais que $V = [v_1, \ldots, v_n]$.

Se $v_1 = \cdots = v_n = 0$, então $V = \{0\}$ e $B = \emptyset$ é uma base para V.

Suponhamos agora que v_1, \ldots, v_n não sejam todos nulos.

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V.

• **T.Car.:** $S \subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem

 $v_1, \ldots, v_n \in V$ tais que $V = [v_1, \ldots, v_n]$.

Se $v_1 = \cdots = v_n = 0$, então $V = \{0\}$ e $B = \emptyset$ é uma base para V.

Suponhamos agora que v_1, \ldots, v_n não sejam todos nulos.

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V.

• T.Car.: $S \subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem

 $v_1, \ldots, v_n \in V$ tais que $V = [v_1, \ldots, v_n]$.

Se $v_1 = \cdots = v_n = 0$, então $V = \{0\}$ e $B = \emptyset$ é uma base para V.

Suponhamos agora que v_1, \ldots, v_n não sejam todos nulos.

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V.

• T.Car.: $S \subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Teorema: Todo espaço vetorial real finitamente gerado admite uma base.

Prova: Seja V um espaço vetorial real finitamente gerado. Então existem $v_1,\ldots,v_n\in V$ tais que $V=[v_1,\ldots,v_n]$.

Se $v_1 = \cdots = v_n = 0$, então $V = \{0\}$ e $B = \emptyset$ é uma base para V.

Suponhamos agora que v_1, \ldots, v_n não sejam todos nulos.

Passo 1: Se $\{v_1, \ldots, v_n\}$ é L.I., satisfaz b_1 e b_2 e portanto é uma base para V.

 \bullet T.Car.: $S\subset V$ é L.D. se, e somente se, pelo menos um dos vetores de S é combinação linear dos demais.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \ldots, v_n] = [v_1, \ldots, v_{n-1}]$. Portanto $\{v_1, \ldots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, \dots, v_n\} \subset V$$
, se $v_j \in [S - \{v_j\}]$, então $[S] = [S - \{v_j\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Sem perda de generalidade, suponha que seja v_n . Então $v_n \in [v_1, \dots, v_{n-1}]$.

• **P.5:** Dado
$$S = \{v_1, ..., v_n\} \subset V$$
, se $v_i \in [S - \{v_i\}]$, então $[S] = [S - \{v_i\}]$.

Pela **P.5** temos que $V = [v_1, \dots, v_n] = [v_1, \dots, v_{n-1}]$. Portanto $\{v_1, \dots, v_{n-1}\}$ é um conjunto de geradores para V.

Após um número finito de passos, chegamos a um subconjunto de vetores $\{v_1,\ldots,v_r\},\,r\leq n$ que é L.I. e gera V. Portanto $B=\{v_1,\ldots,v_r\}$, é uma base para V.

Corolário: Para todo conjunto S de geradores de V podemos extrair de S uma base para V.

Após um número finito de passos, chegamos a um subconjunto de vetores $\{v_1,\ldots,v_r\},\,r\leq n$ que é L.I. e gera V. Portanto $B=\{v_1,\ldots,v_r\}$, é uma base para V.

Corolário: Para todo conjunto S de geradores de V podemos extrair de S uma base para V.