Espaços Vetoriais Bases 2

Álgebra Linear

Mariana Silveira - Cristian Coletti

Aula passada

V espaço vetorial, $B \subset V$ finita, B é base se [B] = V e B é LI

- ► Todo esp. vetorial finitamente gerado admite base
- ▶ Se $S = \{v_1, ..., v_n\}$ é um conjunto de geradores de V, então podemos extrair de S uma base para V.
- ▶ Base não é única, mas vamos mostrar que o número de elementos das bases possíveis para V é único.
- ▶ Base não é única, mas vamos mostrar que o número de elementos das bases possíveis para V é único.

Mariana Silveira - C. Coletti	-	Álgebra Linear	-	UFABC	

Lema

Seja V um espaço vetorial finitamente gerado. Se $\{u_1, ..., u_n\}$ é um conjunto de geradores para V, então qualquer conjunto LI de V tem no máximo n vetores. Equivalentemente, todo subconjuntode V com mais do que n vetores é LD.

Demonstração

Suponhamos que $V = [u_1, ..., u_n]$. Então podemos extrair de $\{u_1, ..., u_n\}$ uma base para V. Seja $B = \{u_1, ..., u_r\}$ esta base $(r \le n)$. Consideremos um subconjunto de V com m vetores para m > n $\{w_1, ..., w_m\}$. Queremos mostrar que tal conjunto é LD. (Existe uma combinação linear de $\{w_1, ..., w_m\}$ com coeficientes não todos nulos dando o vetor nulo)

Como $\{u_1, ..., u_r\}$ é base para V então

$$w_1 = \alpha_{11}u_1 + ... + \alpha_{1r}u_r$$
 (1)
 \vdots
 $w_m = \alpha_{m1}u_1 + ... + \alpha_{mr}u_r$

 $\operatorname{\mathsf{com}}\ \alpha_{\mathit{ij}} \in \mathbb{R}.$

Assim temos $\{w_1,...,w_m\}$ é LD se e só se existem $\beta_1,...,\beta_m$ não todos nulos tais que

$$\beta_1 w_1 + ... + \beta_m w_m = 0$$
 (2)

Substituindo (1) em (2)

$$\beta_1(\alpha_{11}u_1 + ... + \alpha_{1r}u_r) + ... + \beta_m(\alpha_{m1}u_1 + ... + \alpha_{mr}u_r) = 0$$

Rearranjando

$$(\beta_1\alpha_{11} + ... + \beta_m\alpha_{m1})u_1 + ... + (\beta_1\alpha_{1r} + ... + \beta_m\alpha_{mr})u_r = 0$$

Como B é LI

$$\beta_{1}\alpha_{11} + \dots + \beta_{m}\alpha_{m1} = 0$$

$$\vdots$$

$$\beta_{1}\alpha_{1r} + \dots + \beta_{m}\alpha_{mr} = 0$$
(3)

Temos que (3) é um sistema linear homogêneo com m incógnitas $\beta_1, ..., \beta_m$ e r equações. Como $r \le n < m$, (3) é compatível indeterminado e por tanto tem solução não trivial. Assim, existem $\beta_1, ..., \beta_m$ não todas nulas satisfazendo (2), ou seja $\{w_1, ..., w_m\}$ é LD.

	Mariana Silveira - C. Coletti	-	Álgebra Linear	-	UFABC
--	-------------------------------	---	----------------	---	-------

Teorema

Seja V um espaço vetorial finitamente gerado. Então toda base de V possui o mesmo número de vetores.

Demonstração

Sejam $B_1 = \{u_1, ..., u_n\}, B_2 = \{v_1, ..., v_m\}$ bases para V.

Se B_1 é LI, B_2 gera V então pelo Lema $n \leq m$,

 B_2 é LI, B_1 gera V então pelo Lema $m \le n$).

Portanto m = n.

Mariaria Silveria - C. Coletti - Algebra Elifear - OFABC	Mariana Silveira - C. Coletti	-	Álgebra Linear	-	UFABC
--	-------------------------------	---	----------------	---	-------

Dimensão

Definição

Seja V um espaço vetorial finitamente gerado. O número de elementos de uma base de V é chamado **dimensão** de V.

Os espaços vetoriais finitamente gerados são também chamados de espaços vetoriais de dimensão finita.

Exemplos

- ▶ dim $(\mathbb{R}) = 1$, dim $(\mathbb{R}^2) = 2$, ..., dim $(\mathbb{R}^n) = n$.
- ▶ dim $(M_{m \times n}(\mathbb{R})) = m \times n$.
- ightharpoonup dim $(P_n(\mathbb{R})(=n+1)$.
- ▶ dim $\{0\} = 0$.

Observação

Seja V um espaço vetorial de dimensão n. Então

- Todo conjunto em V com mais que n elementos é LD.
- Todo conjunto em V com menos que n elementos n\u00e3o gera V.

Teorema do completamento

Teorema

Seja V um espaço vetorial de dimensão finita $n \ge 1$. Se $\{u_1, ..., u_r\} \subset V$ é um subconjunto LI de V com r elementos, então existem n-r vetores $u_{r+1}, ..., u_n \in V$ tais que $B = \{u_1, ...u_r, u_{r+1}, ..., u_n\}$ é uma base para V.

Observação

Todo conjunto LI em um espaço vetorial de dimensão finita pode ser completado de modo a formar uma base.

Demonstração

Pelo Lema temos que $r \le n$.

Passo 1: Se r < n então $\{u_1, ..., u_r\}$ não é base de V. Logo existe $u_{r+1} \in V$ tal que $u_{r+1} \notin [u_1, ..., u_r]$. Pela propriedade (4), $\{u_1, ..., u_r, u_{r+1}\}$ LI.

Passo 2: Se r+1 < n, repita o passo 1 para $\{u_1, ..., u_{r+1}\}$. Após um número finito de passos obtemos $\{u_1, ..., u_r, u_{r+1}, ... u_n\}$.

Pelo Lema todo conjunto com mais que n vetores é LD. Segue da propriedade (5) que todo elemento de V é combinação linear de $\{u_1,...,u_n\}$. Por sua construção, $\{u_1,...,u_n\}$ é LI, portanto é base.

Corolário

Se V é um espaço vetorial de dimensão finita n, todo conjunto LI com n vetores é uma base para V.

Demonstração Seja $B \subset V$ tal que V é LI e tem n elementos. Se B não é base

para V, segue do teorema do completamento que podemos acrescentar vetores em B para obter uma base. Fazendo isso obteriamos uma base com mais do que n vetores, o que contradiz o fato que n = dimV.

Exemplo

- ▶ Toda tripla de vetores LI em \mathbb{R}^3 é base para \mathbb{R}^3 .
- ▶ Todo conjunto LI com n+1 vetores em $P_n(\mathbb{R})$ é base para $P_n(\mathbb{R})$.

Exercício

- ► Toda subespaço de um espaço vetorial de dimensão finita tem dimensão finita.
- Sejam V um espaço vetorial de dimensão finita e W um subespaço vetorial de V:
 - a) dimW < dimV
 - b) Se dimW = dimV então V = W.

Teorema

Sejam V um espaço vetorial de dimensão finita e U e W subespaços de V. Então $dim(U+V)=dimU+dimV-dim(U\cap W)$.

Demonstração (Ideia)

 $B = \{u_1, ..., u_r\}$ base para $U \cap W$.

- ▶ B é LI em U pelo TC existe $\{v_1, ..., v_s\}$ tal que $\{u_1, ..., u_r, v_1, ..., v_s\}$ é base para U.
- ▶ B é LI em W pelo TC existe $\{w_1, ..., w_t\}$ tal que $\{u_1, ..., u_r, w_1, ..., w_t\}$ é base para W.

Então $\{u_1, ..., u_r, v_1, ..., v_s, w_1, ..., w_t\}$ é base para U + W.

Então

$$ightharpoonup dim(U \cap W) = r$$

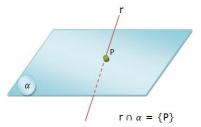
$$ightharpoonup dim(U) = r + s$$

$$ightharpoonup dim(W) = r + t$$

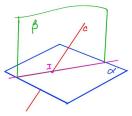
$$\blacktriangleright \ dim(U+W) = r+s+t$$

UFABC

Exemplos



- $V = \mathbb{R}^3$, dimV = 3
 - ▶ $U \cap W = \{0\}$
 - $ightharpoonup dim(U \cap W) = 0$
 - ▶ dimU = 2
 - ightharpoonup dimW=1
 - $ightharpoonup dim(U+W)=dim\mathbb{R}^3$ (subespaço de \mathbb{R}^3 com mesma dimensão que \mathbb{R}^3)
 - ▶ Portanto $U + W = \mathbb{R}^3$
 - ► Como $U \cap W = \{0\}$, a soma é direta $\mathbb{R}^3 = W \oplus U$



$$V = \mathbb{R}^3$$

- ▶ $W_1 \cap W_2 = reta$
- $ightharpoonup dim(W_1 \cap W_2) = 1$
- ▶ $dim(W_1) = 2$
- ▶ $dim(W_2) = 2$
- $dim(W_1 + W_2) = 2 + 2 1 = 3 = dim\mathbb{R}^3$
- ▶ Portanto $W_1 + W_2 = \mathbb{R}^3$ (a soma não é direta)
- ▶ Se $V = W \oplus U$ então dimV = dimU + dimW

►
$$U = \{(x, y, z), x + y - z = 0\}$$

Mariana Silveira - C. Coletti

►
$$W = \{(x, y, z), x = y\}$$

- ▶ Determine U + W e $U \cap W$.
- ▶ De *U*,

$$x + y - z = 0 \longleftrightarrow z = x + y$$

$$U = \{(x, y, x + y), x, y \in \mathbb{R}\}$$

$$= \{(x, 0, x) + (0, y, y), x, y \in \mathbb{R}\}$$

$$= \{x(1, 0, 1) + y(0, 1, 1), x, y \in \mathbb{R}\}$$

$$= [(1, 0, 1) + (0, 1, 1)], LI$$

Portanto $BU = \{(1,0,1) + (0,1,1)\}$ é base para U, dimU = 2

De W,

$$x = y$$

$$W = \{(x, x, z), x, z \in \mathbb{R}\}$$

$$= \{(x, x, 0) + (0, 0, z), x, z \in \mathbb{R}\}$$

$$= \{x(1, 1, 0) + z(0, 0, 1), x, z \in \mathbb{R}\}$$

$$= [(1, 1, 0) + (0, 0, 1)], LI$$

Portanto $BW = \{(1, 1, 0) + (0, 0, 1)\}$ é base para W, dimW = 2

De $U \cap W$,

$$x = y e z = x + y$$
 $U \cap W = \{(x, x, 2x), x \in \mathbb{R}\}$
 $= \{x(1, 1, 2), x \in \mathbb{R}\}$
 $= [(1, 1, 2)], LI$

Portanto $dim(U \cap W) = 1$ Logo

$$dim(U+W) = dimU + dimW - dim(U \cap W)$$
$$= 2 + 2 - 1 = 3 = dim(\mathbb{R}^3)$$