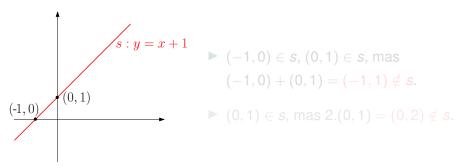
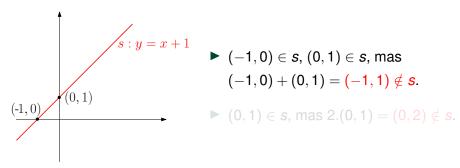
Espaços Vetoriais Subespaços Vetoriais

Álgebra Linear

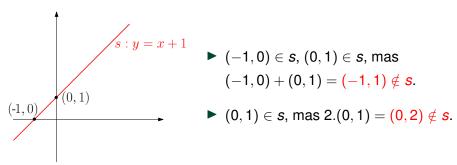
Mariana Silveira - Cristian Coletti



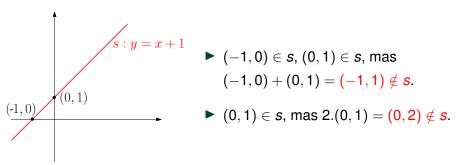
- ► As operações + e . não são operações em s. Nesse caso, dizemos que s não é fechado para a adição usual de R² e também não é fechado para a multiplicação por escalar usual de R².
- \triangleright (s, +, ...) não é um espaço vetorial.



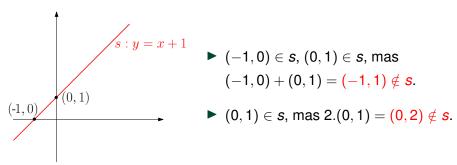
- As operações + e . não são operações em s. Nesse caso, dizemos que s não é fechado para a adição usual de \mathbb{R}^2 e também não é fechado para a multiplicação por escalar usual de \mathbb{R}^2 .
- ► (s, +, .) não é um espaço vetorial.



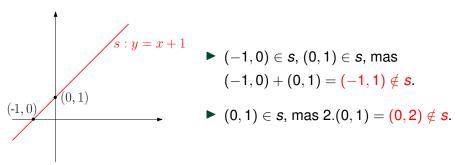
- As operações + e . não são operações em s. Nesse caso, dizemos que s não é fechado para a adição usual de \mathbb{R}^2 e também não é fechado para a multiplicação por escalar usual de \mathbb{R}^2 .
- ightharpoonup (s,+,.) não é um espaço vetorial.



- ► As operações + e . não são operações em s. Nesse caso, dizemos que s não é fechado para a adição usual de R² e também não é fechado para a multiplicação por escalar usual de R².
- ightharpoonup (s, +, .) não é um espaço vetorial.

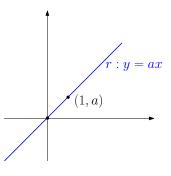


- As operações + e . não são operações em s. Nesse caso, dizemos que s não é **fechado para a adição** usual de \mathbb{R}^2 e também não é **fechado para a multiplicação por escalar** usual de \mathbb{R}^2 .
- ightharpoonup (s,+,.) não é um espaço vetorial.



- As operações + e . não são operações em s. Nesse caso, dizemos que s não é **fechado para a adição** usual de \mathbb{R}^2 e também não é **fechado para a multiplicação por escalar** usual de \mathbb{R}^2 .
- \blacktriangleright (s, +, .) não é um espaço vetorial.

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



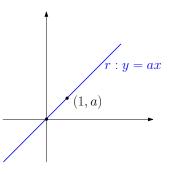
$$(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r?$$

$$Como(x_1, y_1) \in r, y_1 = ax_1.$$

$$Como(x_2, y_2) \in r, y_2 = ax_2. Logo$$

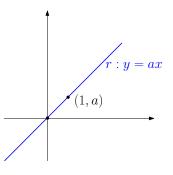
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\mathsf{Como}(x_1, y_1) \in r, y_1 = ax_1. \mathsf{Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \mathsf{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



- $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r?$ $Como(x_1, y_1) \in r, y_1 = ax_1.$ $Como(x_2, y_2) \in r, y_2 = ax_2. Logo$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\mathsf{Gomo}(x_1, y_1) \in r, y_1 = ax_1. \mathsf{Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \mathsf{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



 $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r?$ Como $(x_1, y_1) \in r, y_1 = ax_1.$

Como
$$(x_2, y_2) \in r$$
, $y_2 = ax_2$. Logo
 $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow \text{sim}^1$

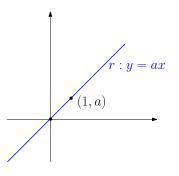
$$\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$$

$$\text{Gomo } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$$

$$a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$$

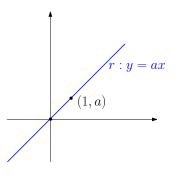
- As operações + e . usuais de R² são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de R².
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



- ► $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$. Como $(x_2, y_2) \in r, y_2 = ax_2$. Logo
 - $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow \text{sim!}$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .

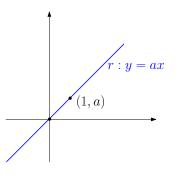


► $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$. Como $(x_2, y_2) \in r, y_2 = ax_2$. Logo

 $a(x_1 + x_2) = ax_1 + ax_2 = v_1 + v_2 \leftarrow sim!$

- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = v_1 \leftarrow \text{sim}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .

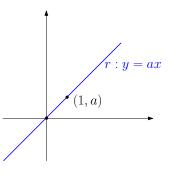


- $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r?$ $Como (x_1, y_1) \in r, y_1 = ax_1.$
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow sim!$

Como
$$(x_1, y_1) \in r$$
, $y_1 = ax_1$. Logo $a(x_1) = o(ax_1) = y_1 \leftarrow sim!$

- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .

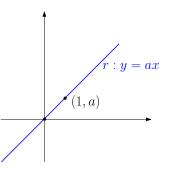


► $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$. Como $(x_2, y_2) \in r, y_2 = ax_2$. Logo

$$a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow \text{sim!}$$

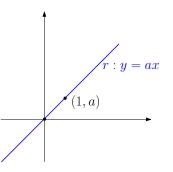
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



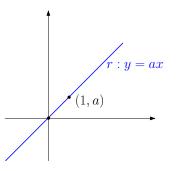
- ► $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$.
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow sim!$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



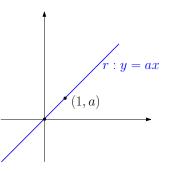
- ► $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$.
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow sim!$
- $\begin{array}{l} \bullet \quad \alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r? \\ \text{Como } (x_1, y_1) \in r, \, y_1 = ax_1. \text{ Logo} \\ a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!} \end{array}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



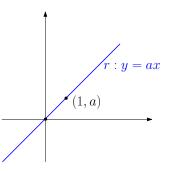
- $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r?$ Como $(x_1, y_1) \in r, y_1 = ax_1.$
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow \text{sim!}$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4 .

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



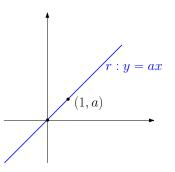
- ► $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$.
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow \text{sim!}$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4 .

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



- $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$.
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow sim!$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4 .

Consideremos (r, +, .) com as operações usuais do \mathbb{R}^2 .



- $(x_1, y_1), (x_2, y_2) \in r \Rightarrow (x_1 + x_2, y_1 + y_2) \in r$? Como $(x_1, y_1) \in r, y_1 = ax_1$.
 - Como $(x_2, y_2) \in r$, $y_2 = ax_2$. Logo $a(x_1 + x_2) = ax_1 + ax_2 = y_1 + y_2 \leftarrow sim!$
- $\alpha \in \mathbb{R}, (x_1, y_1) \in r \Rightarrow (\alpha x_1, \alpha y_1) \in r?$ $\text{Como } (x_1, y_1) \in r, y_1 = ax_1. \text{ Logo}$ $a(\alpha x_1) = \alpha(ax_1) = y_1 \leftarrow \text{sim!}$
- As operações + e . usuais de \mathbb{R}^2 são operações em r, ou seja, r é fechado para a adição e para a multiplicação por escalar usuais de \mathbb{R}^2 .
- ▶ Note que valem A_1 , A_2 , M_1 , M_2 , M_3 , M_4 . Valem também A_3 , A_4 .

Sejam (V,+,.) um espaço vetorial e $W \subset V$. Dizemos que W é um **subespaço vetorial de** V se W, com as operações + e . de V, é um espaço vetorial. Mais especificamente, as restrições das operações de V a W

$$+|_{W\times W}: W\times W\to W, \quad .|_{\mathbb{R}\times W}: \mathbb{R}\times W\to W$$

são operações em W e satisfazem as propriedades A_1 , A_2 , A_3 , A_4 e M_1 , M_2 , M_3 , M_4 .

Exemplos:

- 1. r é um subespaço vetorial de \mathbb{R}^2 .
- 2. s não é um subespaço vetorial de \mathbb{R}^2 .

Sejam (V, +, .) um espaço vetorial e $W \subset V$. Dizemos que W é um **subespaço vetorial de** V se W, com as operações + e . de V, é um espaço vetorial. Mais especificamente, as restrições das operações de V a W

$$+|_{W\times W}: W\times W\to W, \quad .|_{\mathbb{R}\times W}: \mathbb{R}\times W\to W$$

são operações em W e satisfazem as propriedades A_1 , A_2 , A_3 , A_4 e M_1 , M_2 , M_3 , M_4 .

Exemplos:

- 1. r é um subespaço vetorial de \mathbb{R}^2 .
- 2. s não é um subespaço vetorial de \mathbb{R}^2 .

Proposição: Sejam (V, +, .) um espaço vetorial e $W \subset V$. W é um subespaço vetorial de V se, e somente se, valem as seguintes propriedades:

$$sv_1$$
. $W \neq \emptyset$;

 sv_2 . (W é fechado para +) se $u, v \in W$ então $u + v \in W$;

 sv_3 . (W é fechado para .) se $\alpha \in \mathbb{R}$ e $u \in W$ então $\alpha.u \in W$.

Prova:(⇒) É obvia

(\Leftarrow) Por sv_2 e sv_3 temos que as operações de V, quando restritas a W, são operações bem definidas em W. As propriedades A_1 , A_2 e M_1 , M_2 , M_3 , M_4 valem, pois valem para quaisquer elementos de V.

 $A_3-0\in W$. Por sv_3 tomando $\alpha=0$ temos que $0.u\in W$, ou seja, $0\in W$

 A_4 – Dado $u \in W$, temos que $-u \in W$. De fato, tome $\alpha = -1$. Por sv_3 temos que

Proposição: Sejam (V,+,.) um espaço vetorial e $W\subset V$. W é um subespaço vetorial de V se, e somente se, valem as seguintes propriedades:

$$sv_1$$
. $W \neq \emptyset$;

 sv_2 . (W é fechado para +) se $u, v \in W$ então $u + v \in W$;

 sv_3 . (W é fechado para .) se $\alpha \in \mathbb{R}$ e $u \in W$ então $\alpha.u \in W$.

Prova:(⇒) É obvia.

(\Leftarrow) Por sv_2 e sv_3 temos que as operações de V, quando restritas a W, são operações bem definidas em W. As propriedades A_1 , A_2 e M_1 , M_2 , M_3 , M_4 valem, pois valem para quaisquer elementos de V.

 $A_3-0\in W$. Por sv_3 tomando $\alpha=0$ temos que $0.u\in W$, ou seja, $0\in W$.

 A_4 – Dado $u \in W$, temos que $-u \in W$. De fato, tome $\alpha = -1$. Por sv_3 temos que

Proposição: Sejam (V, +, .) um espaço vetorial e $W \subset V$. W é um subespaço vetorial de V se, e somente se, valem as seguintes propriedades:

 sv_1 . $W \neq \emptyset$;

 sv_2 . (W é fechado para +) se $u, v \in W$ então $u + v \in W$;

 sv_3 . (W é fechado para .) se $\alpha \in \mathbb{R}$ e $u \in W$ então $\alpha.u \in W$.

Prova:(⇒) É obvia.

(\Leftarrow) Por sv_2 e sv_3 temos que as operações de V, quando restritas a W, são operações bem definidas em W. As propriedades A_1 , A_2 e M_1 , M_2 , M_3 , M_4 valem, pois valem para quaisquer elementos de V.

 $A_3-0 \in W$. Por sv_3 tomando $\alpha=0$ temos que $0.u \in W$, ou seja, $0 \in W$.

 A_4 – Dado $u \in W$, temos que $-u \in W$. De fato, tome $\alpha = -1$. Por sv_3 temos que $-1.u \in W$, ou seia, $-u \in W$.

Proposição: Sejam (V, +, .) um espaço vetorial e $W \subset V$. W é um subespaço vetorial de V se, e somente se, valem as seguintes propriedades:

 sv_1 . $W \neq \emptyset$;

 sv_2 . (W é fechado para +) se $u, v \in W$ então $u + v \in W$;

 sv_3 . (W é fechado para .) se $\alpha \in \mathbb{R}$ e $u \in W$ então $\alpha.u \in W$.

Prova:(⇒) É obvia.

(\Leftarrow) Por sv_2 e sv_3 temos que as operações de V, quando restritas a W, são operações bem definidas em W. As propriedades A_1 , A_2 e M_1 , M_2 , M_3 , M_4 valem, pois valem para quaisquer elementos de V.

 $A_3-0 \in W$. Por sv_3 tomando $\alpha=0$ temos que $0.u \in W$, ou seja, $0 \in W$.

 A_4 – Dado $u \in W$, temos que $-u \in W$. De fato, tome $\alpha = -1$. Por sv_3 temos que $-1.u \in W$, ou seja, $-u \in W$.

Proposição: Sejam (V,+,.) um espaço vetorial e $W\subset V$. W é um subespaço vetorial de V se, e somente se, valem as seguintes propriedades:

$$sv_1$$
. $W \neq \emptyset$;

 sv_2 . (W é fechado para +) se $u, v \in W$ então $u + v \in W$;

 sv_3 . (W é fechado para .) se $\alpha \in \mathbb{R}$ e $u \in W$ então $\alpha.u \in W$.

Prova:(⇒) É obvia.

(\Leftarrow) Por sv_2 e sv_3 temos que as operações de V, quando restritas a W, são operações bem definidas em W. As propriedades A_1 , A_2 e M_1 , M_2 , M_3 , M_4 valem, pois valem para quaisquer elementos de V.

 A_3 – $0 \in W$. Por sv_3 tomando $\alpha = 0$ temos que $0.u \in W$, ou seja, $0 \in W$.

 A_4 – Dado $u \in W$, temos que $-u \in W$. De fato, tome $\alpha = -1$. Por sv_3 temos que $-1.u \in W$, ou seja, $-u \in W$.

Proposição: Sejam (V, +, .) um espaço vetorial e $W \subset V$. W é um subespaço vetorial de V se, e somente se, valem as seguintes propriedades:

$$sv_1$$
. $W \neq \emptyset$;

$$sv_2$$
. (W é fechado para $+$) se $u, v \in W$ então $u + v \in W$;

$$sv_3$$
. (W é fechado para .) se $\alpha \in \mathbb{R}$ e $u \in W$ então $\alpha.u \in W$.

Prova:(⇒) É obvia.

(\Leftarrow) Por sv_2 e sv_3 temos que as operações de V, quando restritas a W, são operações bem definidas em W. As propriedades A_1 , A_2 e M_1 , M_2 , M_3 , M_4 valem, pois valem para quaisquer elementos de V.

 $A_3 - 0 \in W$. Por sv_3 tomando $\alpha = 0$ temos que $0.u \in W$, ou seja, $0 \in W$.

 A_4 – Dado $u \in W$, temos que $-u \in W$. De fato, tome $\alpha = -1$. Por sv_3 temos que $-1.u \in W$, ou seja, $-u \in W$.

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(0, a_2, \dots, a_n), \ a_i \in \mathbb{R}, i = 2, \dots, n\}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$

 sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W$. Então

$$u+v=(0,a_2,\ldots,a_n)+(0,b_2,\ldots,b_n)=(0,a_2+b_2,\ldots,a_n+b_n)\in W$$

s v_3 . W é fechado para .: Sejam $lpha\in\mathbb{R}$ e $u=(0,a_2,\ldots,a_n)\in W$. Então

$$\alpha.u = \alpha.(0, \mathbf{a}_2, \dots, \mathbf{a}_n) = (0, \alpha.\mathbf{a}_2, \dots, \alpha.\mathbf{a}_n) \in \mathcal{W}$$

Obs 1: Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespacos vetoriais de \mathbb{R}^3 .

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$\textit{W} = \{(0,\textit{a}_2,\ldots,\textit{a}_n), \textit{ } \textit{a}_i \in \mathbb{R}, i = 2,\ldots,n\}$$

$$sv_1$$
. $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.

 sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W.$ Então

$$u+v=(0,a_2,\ldots,a_n)+(0,b_2,\ldots,b_n)=(0,a_2+b_2,\ldots,a_n+b_n)\in W$$
sv₃. W é fechado para \ldots Sejam $\alpha\in\mathbb{R}$ e $u=(0,a_2,\ldots,a_n)\in W$. Então

$$\alpha.u = \alpha.(0, a_2, \ldots, a_n) = (0, \alpha.a_2, \ldots, \alpha.a_n) \in W$$

Obs 1: Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespacos vetoriais de \mathbb{R}^3 .

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(0, a_2, \dots, a_n), \ a_i \in \mathbb{R}, i = 2, \dots, n\}$$

$$sv_1$$
. $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.

 sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W$. Então

$$u + v = (0, a_2, \dots, a_n) + (0, b_2, \dots, b_n) = (0, a_2 + b_2, \dots, a_n + b_n) \in W$$

sv₃. W é fechado para $::$ Sejam $\alpha \in \mathbb{R}$ e $u = (0, a_2, \dots, a_n) \in W$. Então $\alpha.u = \alpha.(0, a_2, \dots, a_n) = (0, \alpha.a_2, \dots, \alpha.a_n) \in W$

Obs 1: Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespaços vetoriais de \mathbb{R}^3 .

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(0, a_2, \dots, a_n), \ a_i \in \mathbb{R}, i = 2, \dots, n\}$$

- sv_1 . $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.
- sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W$. Então

$$u+v=(0,a_2,\ldots,a_n)+(0,b_2,\ldots,b_n)=(0,a_2+b_2,\ldots,a_n+b_n)\in W$$
 sv₃. W é fechado para $.:$ Sejam $\alpha\in\mathbb{R}$ e $u=(0,a_2,\ldots,a_n)\in W$. Então $\alpha.u=\alpha.(0,a_2,\ldots,a_n)=(0,\alpha.a_2,\ldots,\alpha.a_n)\in W$

- **Obs 1:** Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.
- **Obs 2:** Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespaços vetoriais de \mathbb{R}^3 .

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(0, a_2, \dots, a_n), \ a_i \in \mathbb{R}, i = 2, \dots, n\}$$

- sv_1 . $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.
- sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W$. Então

$$u + v = (0, a_2, \dots, a_n) + (0, b_2, \dots, b_n) = (0, a_2 + b_2, \dots, a_n + b_n) \in W$$

 sv_3 . W é fechado para .: Sejam $\alpha \in \mathbb{R}$ e $u = (0, a_2, \dots, a_n) \in W$. Então

$$\alpha.u = \alpha.(0, a_2, \ldots, a_n) = (0, \alpha.a_2, \ldots, \alpha.a_n) \in W$$

- **Obs 1:** Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.
- **Obs 2:** Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespaços vetoriais de \mathbb{R}^3 .

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(0, a_2, \dots, a_n), \ a_i \in \mathbb{R}, i = 2, \dots, n\}$$

$$sv_1$$
. $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.

 sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W$. Então

$$u + v = (0, a_2, \dots, a_n) + (0, b_2, \dots, b_n) = (0, a_2 + b_2, \dots, a_n + b_n) \in W$$

 sv_3 . W é fechado para .: Sejam $\alpha \in \mathbb{R}$ e $u = (0, a_2, \dots, a_n) \in W$. Então

$$\alpha.u = \alpha.(0, \mathbf{a}_2, \ldots, \mathbf{a}_n) = (0, \alpha.\mathbf{a}_2, \ldots, \alpha.\mathbf{a}_n) \in \mathbf{W}$$

Obs 1: Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespaços vetoriais de \mathbb{R}^3 .

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(0, a_2, \dots, a_n), \ a_i \in \mathbb{R}, i = 2, \dots, n\}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.

 sv_2 . W é fechado para +: Sejam $u=(0,a_2,\ldots,a_n), v=(0,b_2,\ldots,b_n)\in W$. Então

$$u+v=(0,a_2,\dots,a_n)+(0,b_2,\dots,b_n)=(0,a_2+b_2,\dots,a_n+b_n)\in W$$
 $sv_3.\ \ W$ é fechado para $:$ Sejam $\alpha\in\mathbb{R}$ e $u=(0,a_2,\dots,a_n)\in W.$ Então $\alpha.u=\alpha.(0,a_2,\dots,a_n)=(0,\alpha.a_2,\dots,\alpha.a_n)\in W$

- **Obs 1:** Poderiamos colocar 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.
- **Obs 2:** Quando $V = \mathbb{R}^3$, W é o plano yz. Os eixos coordenados, os planos coordenados são subespaços vetoriais de \mathbb{R}^3 .

2. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(a_1, \ldots, a_n), a_i \in \mathbb{R}, i = 1, \ldots, n, a_1 \ge 0\}$$

W não é subespaço vetorial de V, pois apesar de sv_1 e sv_2 estarem satisfeitas, sv_3 não está. De fato, tomando $\alpha < 0$

$$sv_3. \underbrace{\alpha}_{<0}. \underbrace{(a_1,\ldots,a_n)}_{\geq 0} = \underbrace{(\alpha a_1,\ldots,\alpha a_n)}_{\leq 0} \notin W.$$

Obs 1: Poderiamos trocar por \geq 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Semi-planos, semi-retas, semi-espaços não são subespaços vetoriais de \mathbb{R}^2 e \mathbb{R}^3 .

2. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(a_1, \ldots, a_n), \ a_i \in \mathbb{R}, i = 1, \ldots, n, a_1 \ge 0\}$$

W não é subespaço vetorial de V, pois apesar de sv_1 e sv_2 estarem satisfeitas, sv_3 não está. De fato, tomando $\alpha < 0$

$$sv_3. \underbrace{\alpha}_{\leq 0}.(\underbrace{a_1}_{\geq 0},\ldots,a_n) = (\underbrace{\alpha a_1}_{\leq 0},\ldots,\alpha a_n) \notin W.$$

Obs 1: Poderiamos trocar por \geq 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Semi-planos, semi-retas, semi-espaços não são subespaços vetoriais de \mathbb{R}^2 e \mathbb{R}^3 .

2. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(a_1, \ldots, a_n), \ a_i \in \mathbb{R}, i = 1, \ldots, n, a_1 \ge 0\}$$

W não é subespaço vetorial de V, pois apesar de sv_1 e sv_2 estarem satisfeitas, sv_3 não está. De fato, tomando $\alpha < 0$

$$sv_3. \underbrace{\alpha}_{\leq 0}. \underbrace{(a_1, \ldots, a_n)}_{\geq 0} = \underbrace{(\alpha a_1, \ldots, \alpha a_n)}_{\leq 0} \notin W.$$

Obs 1: Poderiamos trocar por ≥ 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Semi-planos, semi-retas, semi-espaços não são subespaços vetoriais de \mathbb{R}^2 e \mathbb{R}^3 .

Álgebra Linear

Exemplos

2. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

$$W = \{(a_1, \ldots, a_n), \ a_i \in \mathbb{R}, i = 1, \ldots, n, a_1 \ge 0\}$$

W não é subespaço vetorial de V, pois apesar de sv_1 e sv_2 estarem satisfeitas, sv_3 não está. De fato, tomando $\alpha < 0$

$$sv_3. \underbrace{\alpha}_{\leq 0}.(\underbrace{a_1}_{\geq 0},\ldots,a_n) = (\underbrace{\alpha a_1}_{\leq 0},\ldots,\alpha a_n) \notin W.$$

Obs 1: Poderiamos trocar por ≥ 0 em qualquer coordenada. Poderiamos também colocar em duas, três ou mais coordenadas.

Obs 2: Semi-planos, semi-retas, semi-espaços não são subespaços vetoriais de \mathbb{R}^2 e \mathbb{R}^3 .

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \text{Parábola}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0) \in W$.

s v_2 . W não é fechado para +. De fato, tomando $u=(1,1), v=(2,4)\in W$

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuals. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares
- W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \mathsf{Par\'abola}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u=(1,1), v=(2,4)\in W$,

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \text{Parábola}$$

$$sv_1$$
. $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u=(1,1), v=(2,4)\in W$

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \mathsf{Par\'abola}$$

$$sv_1$$
. $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u=(1,1), v=(2,4) \in W$,

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$
.

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \text{Parábola}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u=(1,1), v=(2,4) \in W$,

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$
.

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \text{Parábola}$$

$$sv_1$$
. $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u=(1,1), v=(2,4) \in W$,

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$
.

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- ▶ W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \text{Parábola}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u = (1,1), v = (2,4) \in W$,

$$u + v = (1,1) + (2,4) = (3,5) \notin W$$
.

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais. $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- ▶ W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

3. $V = \mathbb{R}^2$ com adição e multiplicação por escalar usuais.

$$W = \{(x, x^2), x \in \mathbb{R}\} \leftarrow \text{Parábola}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0) \in W$.

 sv_2 . W não é fechado para +. De fato, tomando $u = (1,1), v = (2,4) \in W$,

$$u + v = (1, 1) + (2, 4) = (3, 5) \notin W$$
.

- 4. $V = M_n(\mathbb{R})$ com adição e multiplicação por escalar usuais.
 - $W = \{[a_{ij}], \ a_{ij} \in \mathbb{R}, a_{ij} = 0 \text{ se } i > j\}$ conjunto das matrizes triangulares superiores.
- ▶ W é um subespaço vetorial.
- Analogamente, o conjunto das matrizes triangulares inferiores e o conjunto das matrizes diagonais também são subespaços vetoriais de $M_n(\mathbb{R})$.

Propriedades

- 1. Todo subespaço vetorial W de um espaço V contém o elemento neutro de V. De fato, tomando $\alpha = 0$ em sv_3 obtemos que $0 \in W$.
- 2. $\{0\}$ e V são sempre subespaços vetoriais de V. Esses dois subespaços são chamados subespaços triviais de V.

Exercício: Seja V um espaço vetorial e $u \in V$. Mostre que $W = \{\alpha.u, \alpha \in \mathbb{R}\}$ é um subespaço vetorial de V.

Propriedades

- 1. Todo subespaço vetorial W de um espaço V contém o elemento neutro de V. De fato, tomando $\alpha = 0$ em sv_3 obtemos que $0 \in W$.
- 2. $\{0\}$ e V são sempre subespaços vetoriais de V. Esses dois subespaços são chamados subespaços triviais de V.

Exercício: Seja V um espaço vetorial e $u \in V$. Mostre que $W = \{\alpha.u, \alpha \in \mathbb{R}\}$ é um subespaço vetorial de V.

Propriedades

- 1. Todo subespaço vetorial W de um espaço V contém o elemento neutro de V. De fato, tomando $\alpha = 0$ em sv_3 obtemos que $0 \in W$.
- 2. $\{0\}$ e V são sempre subespaços vetoriais de V. Esses dois subespaços são chamados subespaços triviais de V.

Exercício: Seja V um espaço vetorial e $u \in V$. Mostre que $W = \{\alpha.u, \alpha \in \mathbb{R}\}$ é um subespaço vetorial de V.

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais. Seja $W \subset \mathbb{R}^n$ o conjunto das soluções do sistema linear homogêneo S.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

 $sv_1. \ W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$

 sv_2 . W é fechado para +: Sejam $u=(x_1,\ldots,x_n), v=(y_1,\ldots,y_n)\in W$. Quero mostrar que $u+v=(x_1+y_1,\ldots,x_n+y_n)\in W$. Para cada $i=1,\ldots,m$ $a_{i1}(x_1+y_1)+\cdots+a_{in}(x_n+y_n)=$

 $\underbrace{a_{i1}x_1 + \dots + a_{in}x_n}_{=0, \text{ pois } w \in W} + \underbrace{a_{i1}y_1 + \dots + a_{in}y_n}_{=0, \text{ pois } v \in W} = 0 + 0 = 0.$

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais. Seja $W \subset \mathbb{R}^n$ o conjunto das soluções do sistema linear homogêneo S.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

 sv_1 . $W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais. Seja $W \subset \mathbb{R}^n$ o conjunto das soluções do sistema linear homogêneo S.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

 $sv_1. W \neq \emptyset$, pois $(0,0,...,0) \in W$.

 sv_2 . W é fechado para +: Sejam $u = (x_1, ..., x_n), v = (y_1, ..., y_n) \in W$. Quero mostrar que $u + v = (x_1 + y_1, ..., x_n + y_n) \in W$. Para cada i = 1, ..., m $a_{i1}(x_1 + y_1) + ... + a_{in}(x_n + y_n) = \underbrace{a_{i1}x_1 + ... + a_{in}x_n}_{=0 \text{ pois } v \in W} + \underbrace{a_{i1}y_1 + ... + a_{in}y_n}_{=0 \text{ pois } v \in W} = 0 + 0 = 0.$

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais. Seja $W \subset \mathbb{R}^n$ o conjunto das soluções do sistema linear homogêneo S.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

 $sv_1. W \neq \emptyset$, pois $(0,0,...,0) \in W$.

$$sv_2$$
. W é fechado para $+$: Sejam $u=(x_1,\ldots,x_n), v=(y_1,\ldots,y_n)\in W$. Quero mostrar que $u+v=(x_1+y_1,\ldots,x_n+y_n)\in W$. Para cada $i=1,\ldots,m$ $a_{i1}(x_1+y_1)+\cdots+a_{in}(x_n+y_n)=$ $\underbrace{a_{i1}x_1+\cdots+a_{in}x_n}_{=0,\text{ pois } v\in W}+\underbrace{a_{i1}y_1+\cdots+a_{in}y_n}_{=0,\text{ pois } v\in W}=0+0=0.$

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais. Seja $W \subset \mathbb{R}^n$ o conjunto das soluções do sistema linear homogêneo S.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

- $sv_1. \ W \neq \emptyset$, pois $(0,0,\ldots,0) \in W$.
- sv_2 . W é fechado para +: Sejam $u=(x_1,\ldots,x_n), v=(y_1,\ldots,y_n)\in W$. Quero mostrar que $u+v=(x_1+y_1,\ldots,x_n+y_n)\in W$. Para cada $i=1,\ldots,m$ $a_{i1}(x_1+y_1)+\cdots+a_{in}(x_n+y_n)=$ $\underbrace{a_{i1}x_1+\cdots+a_{in}x_n}_{=0 \text{ pois } v\in W}+\underbrace{a_{i1}y_1+\cdots+a_{in}y_n}_{=0 \text{ pois } v\in W}=0+0=0.$

1. $V = \mathbb{R}^n$ com adição e multiplicação por escalar usuais.

Seja $W \subset \mathbb{R}^n$ o conjunto das soluções do sistema linear homogêneo S.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

$$sv_1. \ W \neq \emptyset$$
, pois $(0,0,\ldots,0) \in W$.

sv₂.
$$W$$
 é fechado para $+$: Sejam $u=(x_1,\ldots,x_n), v=(y_1,\ldots,y_n)\in W$. Quero mostrar que $u+v=(x_1+y_1,\ldots,x_n+y_n)\in W$. Para cada $i=1,\ldots,m$
$$a_{i1}(x_1+y_1)+\cdots+a_{in}(x_n+y_n)=\underbrace{a_{i1}x_1+\cdots+a_{in}x_n}_{=0,\text{ pois }u\in W}+\underbrace{a_{i1}y_1+\cdots+a_{in}y_n}_{=0,\text{ pois }v\in W}=0+0=0.$$

 sv_3 . W é fechado para .: Sejam $\alpha \in \mathbb{R}$ e $u = (x_1, \dots, x_n) \in W$. Quero mostrar que $\alpha.u = (\alpha.x_1, \dots, \alpha.x_n) \in W$. Para cada $i = 1, \dots, m$

$$a_{i1}(\alpha.x_1) + \dots + a_{in}(\alpha.x_n) = \alpha.\underbrace{(a_{i1}x_1 + \dots + a_{in}x_n)}_{=0, \text{ pois } u \in W} = \alpha.0 = 0$$

Portanto W é um subespaço vetorial de \mathbb{R}^n .

O conjunto das soluções de um sistema linear homogêneo é um espaço vetorial

$$3: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

 sv_3 . W é fechado para .: Sejam $\alpha \in \mathbb{R}$ e $u = (x_1, \dots, x_n) \in W$. Quero mostrar que $\alpha.u = (\alpha.x_1, \dots, \alpha.x_n) \in W$. Para cada $i = 1, \dots, m$

$$a_{i1}(\alpha.x_1) + \dots + a_{in}(\alpha.x_n) = \alpha.\underbrace{(a_{i1}x_1 + \dots + a_{in}x_n)}_{=0, \text{ pois } u \in W} = \alpha.0 = 0$$

Portanto W é um subespaço vetorial de \mathbb{R}^n .

O conjunto das soluções de um sistema linear homogêneo é um espaço vetorial

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

 sv_3 . W é fechado para : Sejam $\alpha \in \mathbb{R}$ e $u = (x_1, \dots, x_n) \in W$. Quero mostrar que $\alpha.u = (\alpha.x_1, \dots, \alpha.x_n) \in W$. Para cada $i = 1, \dots, m$

$$a_{i1}(\alpha.x_1) + \cdots + a_{in}(\alpha.x_n) = \alpha.(\underbrace{a_{i1}x_1 + \cdots + a_{in}x_n}_{=0, \text{ pois } u \in W}) = \alpha.0 = 0.$$

Portanto W é um subespaço vetorial de \mathbb{R}^n .

O conjunto das soluções de um sistema linear homogêneo é um espaço vetorial.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases}$$

$$sv_3$$
. W é fechado para $.:$ Sejam $\alpha \in \mathbb{R}$ e $u = (x_1, \dots, x_n) \in W$. Quero mostrar que $\alpha.u = (\alpha.x_1, \dots, \alpha.x_n) \in W$. Para cada $i = 1, \dots, m$
$$a_{i1}(\alpha.x_1) + \dots + a_{in}(\alpha.x_n) = \alpha.(\underbrace{a_{i1}x_1 + \dots + a_{in}x_n}) = \alpha.0 = 0.$$

Álgebra Linear

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

 sv_3 . W é fechado para .: Sejam $\alpha \in \mathbb{R}$ e $u=(x_1,\ldots,x_n) \in W$. Quero mostrar que $\alpha.u=(\alpha.x_1,\ldots,\alpha.x_n) \in W$. Para cada $i=1,\ldots,m$ $a_{i1}(\alpha.x_1)+\cdots+a_{in}(\alpha.x_n)=\alpha.\underbrace{(a_{i1}x_1+\cdots+a_{in}x_n)}_{=0, \text{ pois } u\in W}=\alpha.0=0.$

Portanto W é um subespaço vetorial de \mathbb{R}^n .

O conjunto das soluções de um sistema linear homogêneo é um espaço vetorial.

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases}$$

$$sv_3$$
. W é fechado para $.:$ Sejam $\alpha \in \mathbb{R}$ e $u = (x_1, \dots, x_n) \in W$. Quero mostrar que $\alpha.u = (\alpha.x_1, \dots, \alpha.x_n) \in W$. Para cada $i = 1, \dots, m$
$$a_{i1}(\alpha.x_1) + \dots + a_{in}(\alpha.x_n) = \alpha.(\underbrace{a_{i1}x_1 + \dots + a_{in}x_n}) = \alpha.0 = 0.$$

Portanto W é um subespaço vetorial de \mathbb{R}^n .

O conjunto das soluções de um sistema linear homogêneo é um espaço vetorial.

$$S: \begin{cases} a_{11}x_1 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n = b_m \end{cases}$$

Uma função $p:\mathbb{R} \to \mathbb{R}$ em $F(\mathbb{R})$ que pode ser escrita na forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

onde $a_i \in \mathbb{R}$ para i = 0, ..., n e $a_n \neq 0$ é chamada **polinômio de grau** n com coeficientes em \mathbb{R} .

Notação: O conjunto de todos os polinômios com coeficientes em \mathbb{R} é denotado por $P(\mathbb{R})$. Denotamos por $P_n(\mathbb{R})$ conjunto de todos os polinômios com coeficientes em \mathbb{R} de grau $\leq n$.

Exemplo: $p(x) = x^4 + 4x + 2$ é um polinômio de grau 4.

Uma função $p:\mathbb{R} \to \mathbb{R}$ em $F(\mathbb{R})$ que pode ser escrita na forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

onde $a_i \in \mathbb{R}$ para i = 0, ..., n e $a_n \neq 0$ é chamada **polinômio de grau** n com coeficientes em \mathbb{R} .

Notação: O conjunto de todos os polinômios com coeficientes em \mathbb{R} é denotado por $P(\mathbb{R})$. Denotamos por $P_n(\mathbb{R})$ conjunto de todos os polinômios com coeficientes em \mathbb{R} de grau $\leq n$.

Exemplo: $p(x) = x^4 + 4x + 2$ é um polinômio de grau 4.

Uma função $p:\mathbb{R} \to \mathbb{R}$ em $F(\mathbb{R})$ que pode ser escrita na forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

onde $a_i \in \mathbb{R}$ para i = 0, ..., n e $a_n \neq 0$ é chamada **polinômio de grau** n com coeficientes em \mathbb{R} .

Notação: O conjunto de todos os polinômios com coeficientes em \mathbb{R} é denotado por $P(\mathbb{R})$. Denotamos por $P_n(\mathbb{R})$ conjunto de todos os polinômios com coeficientes em \mathbb{R} de grau $\leq n$.

Exemplo: $p(x) = x^4 + 4x + 2$ é um polinômio de grau 4.

$P_n(\mathbb{R})$ é um espaço vetorial.

Vamos mostrar que $P_n(\mathbb{R})$ é um subespaço vetorial de $F(\mathbb{R})$

 sv_1 . $P_n(\mathbb{R}) \neq \emptyset$, pois a função nula é um polinômio de grau 0.

$$p(x) = a_r x^r + \dots + a_m x^m + \dots + a_1 x + a_0$$

$$q(x) = 0x^r + \dots + b_m x^m + \dots + b_1 x + b_0$$

$$(p+q)(x) = p(x) + q(x) =$$

$$= a_r x^r + \cdots + (a_m + b_m) x^m + \cdots + (a_1 + b_1) x + (a_0 + b_0)$$

Logo
$$p + q \in P_n(\mathbb{R})$$
.

 $P_n(\mathbb{R})$ é um espaço vetorial.

Vamos mostrar que $P_n(\mathbb{R})$ é um subespaço vetorial de $F(\mathbb{R})$.

 $sv_1.$ $P_n(\mathbb{R}) \neq \emptyset$, pois a função nula é um polinômio de grau 0.

$$p(x) = a_r x^r + \dots + a_m x^m + \dots + a_1 x + a_0$$

$$q(x) = 0x^r + \cdots + b_m x^m + \cdots + b_1 x + b_0$$

$$(p+q)(x) = p(x) + q(x) =$$

$$= a_r x^r + \cdots + (a_m + b_m) x^m + \cdots + (a_1 + b_1) x + (a_0 + b_0)$$

Logo
$$p + q \in P_n(\mathbb{R})$$
.

 $P_n(\mathbb{R})$ é um espaço vetorial.

Vamos mostrar que $P_n(\mathbb{R})$ é um subespaço vetorial de $F(\mathbb{R})$.

 sv_1 . $P_n(\mathbb{R}) \neq \emptyset$, pois a função nula é um polinômio de grau 0.

$$p(x) = a_r x + \dots + a_m x^m + \dots + a_1 x + a_0$$

$$q(x) = 0x^r + \dots + b_m x^m + \dots + b_1 x + b_0$$

$$(p+q)(x) = p(x) + q(x) =$$

$$= a_r x^r + \dots + (a_m + b_m) x^m + \dots + (a_1 + b_1) x + (a_0 + b_0)$$

 $P_n(\mathbb{R})$ é um espaço vetorial.

Vamos mostrar que $P_n(\mathbb{R})$ é um subespaço vetorial de $F(\mathbb{R})$.

- sv_1 . $P_n(\mathbb{R}) \neq \emptyset$, pois a função nula é um polinômio de grau 0.
- sv_2 . $P_n(\mathbb{R})$ é fechado para +: Sejam p(x) um polinômio de grau r e q(x) um polinômio de grau m. Se $m \le r$

$$p(x) = a_r x^r + \dots + a_m x^m + \dots + a_1 x + a_0$$

$$q(x) = 0 x^r + \dots + b_m x^m + \dots + b_1 x + b_0$$

$$(p+q)(x) = p(x) + q(x) =$$

$$= a_r x^r + \dots + (a_m + b_m) x^m + \dots + (a_1 + b_1) x + (a_0 + b_0)$$

$$\text{Logo } p + q \in P_n(\mathbb{R}).$$

 $P_n(\mathbb{R})$ é um espaço vetorial.

Vamos mostrar que $P_n(\mathbb{R})$ é um subespaço vetorial de $F(\mathbb{R})$.

 sv_1 . $P_n(\mathbb{R}) \neq \emptyset$, pois a função nula é um polinômio de grau 0.

$$p(x) = a_r x^r + \cdots + a_m x^m + \cdots + a_1 x + a_0$$

$$q(x) = 0x^r + \cdots + b_m x^m + \cdots + b_1 x + b_0$$

$$(p+q)(x) = p(x) + q(x) =$$

= $a_r x^r + \dots + (a_m + b_m) x^m + \dots + (a_1 + b_1) x + (a_0 + b_0)$

Logo
$$p + q \in P_n(\mathbb{R})$$
.

 $P_n(\mathbb{R})$ é um espaço vetorial.

Vamos mostrar que $P_n(\mathbb{R})$ é um subespaço vetorial de $F(\mathbb{R})$.

 sv_1 . $P_n(\mathbb{R}) \neq \emptyset$, pois a função nula é um polinômio de grau 0.

$$p(x) = a_r x^r + \dots + a_m x^m + \dots + a_1 x + a_0$$

$$q(x) = 0x^r + \cdots + b_m x^m + \cdots + b_1 x + b_0$$

$$(p+q)(x) = p(x) + q(x) =$$

$$= a_r x^r + \dots + (a_m + b_m) x^m + \dots + (a_1 + b_1) x + (a_0 + b_0)$$

Logo
$$p + q \in P_n(\mathbb{R})$$
.

sv_3 . $P_n(\mathbb{R})$ é fechado para .:

Sejam p(x) um polinômio de grau r e $\alpha \in \mathbb{R}$

$$\rho(x) = a_r x^r + \dots + a_1 x + a_0$$

$$(\alpha p)(x) = \alpha p(x) = (\alpha a_r) x^r + \dots + (\alpha a_1) x + (\alpha a_2) x^r + \dots + (\alpha a_n) x + (\alpha a_n) x$$

Logo $\alpha.p \in P_n(\mathbb{R})$.

Obs: É claro que a soma de dois polinômios é um polinômio e a multiplicação por escalar de um polinômio é um polinômio. Logo $P(\mathbb{R})$ é um subespaco de $F(\mathbb{R})$.

 $P(\mathbb{R})$ é um espaço vetoria

 sv_3 . $P_n(\mathbb{R})$ é fechado para .:

Sejam p(x) um polinômio de grau r e $\alpha \in \mathbb{R}$.

$$p(x) = a_r x^r + \cdots + a_1 x + a_0$$

$$(\alpha.p)(x) = \alpha.p(x) = (\alpha.a_r)x^r + \dots + (\alpha.a_1)x + (\alpha.a_0)$$

Logo $\alpha.p \in P_n(\mathbb{R})$.

Obs: É claro que a soma de dois polinômios é um polinômio e a multiplicação por escalar de um polinômio é um polinômio. Logo $P(\mathbb{R})$ é um subespaço de $F(\mathbb{R})$.

 sv_3 . $P_n(\mathbb{R})$ é fechado para .:

Sejam p(x) um polinômio de grau r e $\alpha \in \mathbb{R}$.

$$p(x) = a_r x^r + \cdots + a_1 x + a_0$$

$$(\alpha.p)(x) = \alpha.p(x) = (\alpha.a_r)x^r + \cdots + (\alpha.a_1)x + (\alpha.a_0)$$

Logo $\alpha.p \in P_n(\mathbb{R})$.

Obs: É claro que a soma de dois polinômios é um polinômio e a multiplicação por escalar de um polinômio é um polinômio. Logo $P(\mathbb{R})$ é um subespaço de $F(\mathbb{R})$.

Mariana Silveira - C. Coletti

 sv_3 . $P_n(\mathbb{R})$ é fechado para ::

Sejam p(x) um polinômio de grau r e $\alpha \in \mathbb{R}$.

$$p(x) = a_r x^r + \cdots + a_1 x + a_0$$

$$(\alpha.p)(x) = \alpha.p(x) = (\alpha.a_r)x^r + \cdots + (\alpha.a_1)x + (\alpha.a_0)$$

Logo $\alpha.p \in P_n(\mathbb{R})$.

Obs: É claro que a soma de dois polinômios é um polinômio e a multiplicação por escalar de um polinômio é um polinômio. Logo $P(\mathbb{R})$ é um subespaço de $F(\mathbb{R})$.

 sv_3 . $P_n(\mathbb{R})$ é fechado para .:

Sejam p(x) um polinômio de grau r e $\alpha \in \mathbb{R}$.

$$p(x) = a_r x^r + \cdots + a_1 x + a_0$$

$$(\alpha.p)(x) = \alpha.p(x) = (\alpha.a_r)x^r + \cdots + (\alpha.a_1)x + (\alpha.a_0)$$

Logo $\alpha.p \in P_n(\mathbb{R})$.

Obs: É claro que a soma de dois polinômios é um polinômio e a multiplicação por escalar de um polinômio é um polinômio. Logo $P(\mathbb{R})$ é um subespaço de $F(\mathbb{R})$.

 sv_3 . $P_n(\mathbb{R})$ é fechado para .:

Sejam p(x) um polinômio de grau r e $\alpha \in \mathbb{R}$.

$$p(x) = a_r x^r + \cdots + a_1 x + a_0$$

$$(\alpha.p)(x) = \alpha.p(x) = (\alpha.a_r)x^r + \cdots + (\alpha.a_1)x + (\alpha.a_0)$$

Logo $\alpha.p \in P_n(\mathbb{R})$.

Obs: É claro que a soma de dois polinômios é um polinômio e a multiplicação por escalar de um polinômio é um polinômio. Logo $P(\mathbb{R})$ é um subespaço de $F(\mathbb{R})$.

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V

Prova:

 $sv_1.$ $W_1\cap W_2\neq\emptyset.$ De fato, como $0\in W_1$ e $0\in W_2$, então $0\in W_1\cap W_2$

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$

 $sv_3.$ $W_1\cap W_2$ é fechado para .. Sejam $lpha\in\mathbb{R}$ e $u\in W_1\cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$

Como $u,v\in W_1$, e W_1 é subespaço vetorial, então $u+v\in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$

 $sv_3.$ $W_1\cap W_2$ é fechado para .. Sejam $lpha\in\mathbb{R}$ e $u\in W_1\cap W_2$

Como $\alpha \in \mathbb{R}, \, u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$

 $sv_3.$ $W_1\cap W_2$ é fechado para .. Sejam $lpha\in\mathbb{R}$ e $u\in W_1\cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$

 $sv_3.~~W_1\cap W_2$ é fechado para .. Sejam $lpha\in\mathbb{R}$ e $u\in W_1\cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Como $\alpha \in \mathbb{R}$, $u \in W_2$, e W_2 é subespaço vetorial, então $\alpha.u \in W_2$

UFABC

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1\cap W_2$ é fechado para .. Sejam $lpha\in\mathbb{R}$ e $u\in W_1\cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1.$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$.

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$.

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$.

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$.

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$.

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$.

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{u \in V \mid u \in W_1 \text{ e } u \in W_2\}$$

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

 sv_1 . $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$.

Portanto $u + v \in W_1 \cap W_2$.

 sv_3 . $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$.

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$.

Sejam V um espaço vetorial e W_1 , W_2 dois subespaços de V.

$$W_1 \cap W_2 = \{ u \in V \mid u \in W_1 \text{ e } u \in W_2 \}$$

Álgebra Linear

UFABC

Teorema: $W_1 \cap W_2$ é um subespaço de V.

Prova:

$$sv_1$$
. $W_1 \cap W_2 \neq \emptyset$. De fato, como $0 \in W_1$ e $0 \in W_2$, então $0 \in W_1 \cap W_2$.

 sv_2 . $W_1 \cap W_2$ é fechado para +. Sejam $u, v \in W_1 \cap W_2$.

Como $u, v \in W_1$, e W_1 é subespaço vetorial, então $u + v \in W_1$.

Como $u, v \in W_2$, e W_2 é subespaço vetorial, então $u + v \in W_2$. Portanto $u + v \in W_1 \cap W_2$.

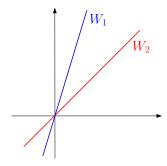
$$sv_3$$
. $W_1 \cap W_2$ é fechado para .. Sejam $\alpha \in \mathbb{R}$ e $u \in W_1 \cap W_2$.

Como $\alpha \in \mathbb{R}$, $u \in W_1$, e W_1 é subespaço vetorial, então $\alpha.u \in W_1$. Como $\alpha \in \mathbb{R}$, $u \in W_2$, e W_2 é subespaço vetorial, então $\alpha.u \in W_2$.

Exemplo

1. Sejam $V = \mathbb{R}^2$, W_1 , W_2 duas retas passando pela origem.

- Se $W_1 = W_2$, então $W_1 \cap W_2 = W_1$.
- ► Se $W_1 \neq W_2$, então $W_1 \cap W_2 = \{(0,0)\}.$



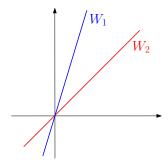
2. Sejam $V = M_n(\mathbb{R})$,

 W_1 o conjunto das matrizes triangulates superiores W_2 o conjunto das matrizes triangulates inferiores.

Exemplo

1. Sejam $V = \mathbb{R}^2$, W_1 , W_2 duas retas passando pela origem.

- Se $W_1 = W_2$, então $W_1 \cap W_2 = W_1$.
- ► Se $W_1 \neq W_2$, então $W_1 \cap W_2 = \{(0,0)\}.$



2. Sejam $V = M_n(\mathbb{R})$,

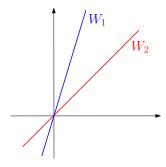
 W_1 o conjunto das matrizes triangulates superiores e W_2 o conjunto das matrizes triangulates inferiores.

Então $W_1 \cap W_2$ é o conjunto das matrizes diagonais.

Exemplo

1. Sejam $V = \mathbb{R}^2$, W_1 , W_2 duas retas passando pela origem.

- Se $W_1 = W_2$, então $W_1 \cap W_2 = W_1$.
- ► Se $W_1 \neq W_2$, então $W_1 \cap W_2 = \{(0,0)\}.$



2. Sejam $V = M_n(\mathbb{R})$,

 W_1 o conjunto das matrizes triangulates superiores e W_2 o conjunto das matrizes triangulates inferiores.

Então $W_1 \cap W_2$ é o conjunto das matrizes diagonais.