Espaços Vetoriais – AlgeLin

Professor responsável: Cristian Favio Coletti

Monitor: Rafael Polli Carneiro

3quad - 2022

Sumário

$\mathbf{E}\mathbf{s}$	paços Vetoriais sobre o corpo dos $\mathbb R$	1
	Exemplo 1	2
	Exemplo 2	4
	Exemplo 3, reanalisando o Exemplo 2	7

Espaços Vetoriais sobre o corpo dos $\mathbb R$

Antes de apresentarmos alguns exemplos de espaços vetoriais relembremos sua definição.

Definição 1 (Espaço Vetorial). Um conjunto não vazio V é um espaço vetorial sobre os reais se existir uma operação de soma e uma operação de multiplicação por escalar, denotadas respectivamente por

$$\oplus: V \times V \to V \quad e \quad \odot: \mathbb{R} \times V \to V.$$

tal que as seguintes propriedades sejam satisfeitas:

- (P1) Para todos elementos $u, v, w \in V$, vale $u \oplus v = v \oplus u$. (comutatividade);
- (P2) Para todos elementos $u, v, w \in V$ vale $(u \oplus v) \oplus w = u \oplus (v \oplus w)$. (associatividade);
- (P3) Existe um elemento em V, denotado por 0, tal que $\forall v \in V$ vale $0 \oplus v = v$. (existência do elemento nulo);
- (P4) Para todo $v \in V$ existe um elemento, denotado por $-v \in V$, tal que $v \oplus (-v) = 0$. (existência do inverso aditivo);
- (P5) Para todo número real α, β , e para todo $v \in V$, vale $(\alpha\beta) \odot v = \alpha \odot (\beta \odot v)$. (associatividade);

- (P6) Para todo elemento $v \in V$ existe um número real, denotado por 1, tal que $1 \odot v = v$. (1 é a identidade multiplicativa);
- (P7) Para todo número real α, β , e para todo $v \in V$, vale $(\alpha + \beta) \odot v = \alpha \odot v \oplus \beta \odot v$.
- (P8) Para todo número real α , e para todo $v, w \in V$, vale $\alpha \odot (v \oplus w) = \alpha \odot v \oplus \alpha \odot w$.

Agora iremos apresentar alguns exemplos de espaços vetoriais sobre os reais.

Exemplo 1

Mostremos que o conjunto das funções reais com primeira derivada contínua, denotado por

$$\mathcal{F}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R}; \ f' : \mathbb{R} \to \mathbb{R} \text{ existe e \'e contínua} \},$$

quando munido das operações de soma e multiplicação por escalar, definidas respectivamente por

$$\bigoplus : \mathcal{F}(\mathbb{R}) \times \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R}) \qquad \qquad \odot : \mathbb{R} \times \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R})
(f,g) \mapsto f \oplus g : \mathbb{R} \to \mathbb{R} \qquad \qquad (\alpha, f) \mapsto \alpha \odot f : \mathbb{R} \to \mathbb{R}
x \mapsto f(x) + g(x) \qquad x \mapsto \alpha f(x),$$

é um espaço vetorial.

Para provarmos que $\mathcal{F}(\mathbb{R})$ é um espaço vetorial precisamos checar a validade das 8 propriedades expostas no início desta Seção. Porém, antes de mais nada, precisamos checar se a soma e multiplicação por escalar estão bem definidas.

Sejam $f, g \in \mathcal{F}$ funções quaisquer, e $\alpha \in \mathbb{R}$ um real. Precisamos mostrar, inicialmente, que $f \oplus g$ é uma função que admite primeira derivada contínua. Porém, sabemos que o operador soma, denotado por \oplus , nada mais é que a soma usual de funções, já estudadas em Cálculo 1. Recordemos, também do Cálculo 1, a seguinte propriedade

$$(f \oplus g)' = (f+g)' = f' + g'$$

Dela, junto ao fato de que a soma de funções contínuas permanece sendo uma função contínua, nos garante afirmar que $f \oplus g$ admite primeira derivada contínua. Consequentemente, temos garantido que o operador soma está bem definido.

De forma equivalente, mostramos que o produto por escalar está bem definido. Relembre, novamente do Cálculo, que

$$(\alpha \odot f)' = \alpha \odot f',$$

e, portantom $\alpha\odot f$ admite primeira derivada contínua. Com isso, temos garantido que o operador \odot também está bem definido.

Finalmente, para provarmos que $\mathcal{F}(\mathbb{R})$ é um espaço vetorial, devemos checar as 8 propriedades explicitadas na Definição 1:

(P1) Sejam $f, g \in \mathcal{F}(\mathbb{R})$ funções com primeira derivada contínua. Então, para todo $x \in \mathbb{R}$, vale que

$$(f \oplus g)(x) = f(x) + g(x)$$

= $g(x) + f(x)$ (comutatividade dos reais)
= $(g \oplus f)(x)$.

Logo, $f \oplus g = g \oplus f$.

(P2) Sejam $f, g, h \in \mathcal{F}(\mathbb{R})$ funções quaisquer. Então, para todo $x \in \mathbb{R}$, vale que

$$((f \oplus g) + h)(x) = (f \oplus g)(x) + h(x)$$
$$= f(x) + g(x) + h(x)$$
$$= f(x) + (g(x) + h(x))$$
$$= f(x) + (g \oplus h)(x)$$
$$= (f \oplus (g \oplus h))(x).$$

Logo, temos garantida a associatividade.

(P3) Provemos a existência do elemento neutro. Mostremos que a função constante

$$0: \mathbb{R} \to \mathbb{R}, x \mapsto 0$$

será o elemento neutro do espaço em estudo. Sabemos que tal função admite primeira derivada contínua (constante e igual a zero, em todo ponto). Basta mostramos que $0 \oplus f = f, \forall f \in \mathcal{F}(\mathbb{R})$. Façamos a inspeção, para todo ponto $x \in \mathbb{R}$:

$$(0 \oplus f)(x) = 0(x) + f(x) = 0 + f(x) = f(x),$$

o que garante que a função $0: \mathbb{R} \to \mathbb{R}$ é o operdor nulo.

(P4) Seja $f \in \mathcal{F}(\mathbb{R})$ uma função qualquer e

$$-f: \mathbb{R} \to \mathbb{R}, x \mapsto -f(x)$$

uma outra função. Afirmamos que $f \oplus (-f) = 0$. De fato, tomando $x \in \mathbb{R}$ um real qualquer, vale que

$$(f \oplus (-f))(x) = f(x) + (-f(x)) = f(x) - f(x) = 0.$$

Logo, toda função em $\mathcal{F}(\mathbb{R})$ admite inversa com relação a operação de soma.

(P5) Consideremos agora os escalares $\alpha, \beta \in \mathbb{R}$. Temos que para toda função $f \in \mathcal{F}(\mathbb{R})$ vale

$$((\alpha\beta) \odot f)(x) = (\alpha\beta)f(x)$$

$$= \alpha\beta f(x)$$

$$= \alpha(\beta f(x))$$

$$= \alpha[(\beta \odot f)(x)]$$

$$= (\alpha \odot (\beta \odot f))(x).$$

Logo, $(\alpha\beta) \odot f = \alpha \odot (\beta \odot f)$.

(P6) Mostremos que $1 \odot f = f, \forall f \in \mathcal{F}(\mathbb{R})$. Condideremos $x \in \mathbb{R}$ um real qualquer, portanto

$$(1 \odot f)(x) = 1f(x) = f(x),$$

para toda função $f \in \{(\mathbb{R}).$

(P7) Sejam os escalares α, β e $f \in \mathcal{F}(\mathbb{R})$ uma função qualquer. Então, para todo $x \in \mathbb{R}$, vale que

$$((\alpha + \beta) \odot f)(x) = (\alpha + \beta)f(x)$$

$$= \alpha f(x) + \beta f(x)$$

$$= (\alpha \odot f)(x) + (\beta \odot f)(x)$$

$$= [(\alpha \odot f) \oplus (\beta \odot f)](x).$$

Ou seja, $((\alpha + \beta) \odot f) = (\alpha \odot f) \oplus (\beta \odot f)$.

(P8) Finalmente, mostremos a última propriedade. Sejam $\alpha \in \mathbb{R}$ um escalar e $f, g \in \mathcal{F}(\mathbb{R})$ funções quaisquer. Portanto, para todo real $x \in \mathbb{R}$, temos

$$(\alpha \odot (f \oplus g))(x) = \alpha(f \oplus g)(x)$$

$$= \alpha(f(x) + g(x))$$

$$= \alpha f(x) + \alpha g(x)$$

$$= (\alpha \odot f)(x) + (\alpha \odot g)(x)$$

$$= ((\alpha \odot f) \oplus (\alpha \odot g))(x).$$

Concluímos, assim, que $\mathcal{F}(\mathbb{R})$ é um espaço vetorial sobre o corpo dos reais.

Exemplo 2

Consideremos agora o seguinte conjunto

$$V = (0, \infty) \subset \mathbb{R}$$

munido das operações

Mostremos que (V, \oplus, \odot) é um espaço vetorial.

Neste exemplo é mais fácil observar que os operadores \oplus e \odot estão bem definidos. De fato, para todo escalar $\alpha \in \mathbb{R}$ e para todo $x, y \in V$, temos sempre que

$$x, y > 0 \implies xy > 0 \implies x \oplus y \in V$$

е

$$\forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R} (x > 0 \implies x^{\alpha} > 0 \implies \alpha \odot x \in V).$$

Nos resta então checar as propriedades da Definição 1:

(P1) Para todo $x, y \in V$ temos

$$x \oplus y = xy$$

= yx (pela comutatividade dos reais)
= $y \oplus x$.

(P2) Para todo $x, y, z \in V$ temos que

$$(x \oplus y) \oplus z = (xy)z$$

= $x(yz)$ (pela associatividade dos reais)
= $x \oplus (yz)$
= $x \oplus (y \oplus z)$,

ou seja, a associatividade está garantida.

(P3) Mostremos que o operador \oplus admite um elemento nulo. Para isto devemos mostrar que existe um elemento $\theta \in V$ tal que

$$\theta \oplus x = x, \forall x \in V.$$

Neste momento devemos tomar cuidado com a notação para não nos confundirmos. Notemos que, tomando $\theta=1\in V,$ teremos que

$$1 \oplus x = 1 \cdot x$$

$$= x \qquad (\ 1 \ \text{\'e a identidade na multiplicaç\~ao de reais}\).$$

Com isto concluímos que 1 é o elemento neutro do operador \oplus

(P4) Dado $x \in V$ um elemento qualquer, devemos mostrar que existe um elemento $-x \in V$ tal que $x \oplus (-x)$ seja igual ao elemento neutro. Novamente, cuidado deve ser tomado aqui. Lembremos que ao definirmos espaços vetoriais, todo vetor x terá em relação ao operador soma, denotado neste exemplo por \oplus (vide a nota de rodapé abaixo 1), um elemento inverso. Tal elemento inverso será denotado, por nós, como -x. Porém, como o espaço vetorial é um subconjunto dos reais, isto pode induzir uma confusão no estudante, o qual pode confundir o vetor -x com o número real $-1 \cdot x$. Cuidado, pois como mostraremos neste item, este não é o caso.

Para calcularmos o inverso devemos ter que

$$x \oplus (-x) = 1$$
,

logo

$$1 = x \oplus (-x) \implies 1 = x(-x) \implies -x = 1/x.$$

Portanto, o inverso de todo elemento $x \in V$ será $-x = x^{-1}$.

(P5) Consideremos os escalares $\alpha, \beta \in \mathbb{R}$ e $x \in V$ um vetor qualquer. Então

$$(\alpha\beta) \odot x = x^{\alpha\beta}$$
$$= (x^{\alpha})^{\beta}$$
$$= (\alpha \odot x)^{\beta}$$
$$= \beta \odot (\alpha \odot x)$$

(P6) Mostremos que existe um escalar, por hora denotado simplesmente por θ , que satisfaz a condição

$$\theta \odot x = x$$

Tal escalar será o esperado, ou seja, $\theta = 1$, pois

$$\theta \odot x = 1 \odot x = x^1 = x$$

(P7) Agora chegamos para as propriedades de distributiva. Sejam $\alpha, \beta \in \mathbb{R}$ escalares e $x \in V$ um vetor qualquer. Então:

$$(\alpha + \beta) \odot x = x^{\alpha + \beta}$$

$$= x^{\alpha} x^{\beta}$$

$$= x^{\alpha} \oplus x^{\beta}$$

$$= (\alpha \odot x) \oplus (\beta \odot x)$$

¹Vale lembrar que o operador soma pode ser denotado como você bem quiser, por exemplo, poderíamos denotá-lo pelo símbolo usual de soma +. Da mesma maneira, podemos denotar os elementos inversos, com relação a soma, como bem quisermos. Tudo depende da situação, e sempre deixar claro suas convenções. Todavia, em alguns casos é bom usar símbolos diferentes dos usuais, evitando o risco de confusão.

(P8) Finalmente, sejam $\alpha \in \mathbb{R}$ e $x, y \in V$. Então:

$$\alpha \odot (x \oplus y) = (x \oplus y)^{\alpha}$$

$$= (xy)^{\alpha}$$

$$= x^{\alpha}y^{\beta}$$

$$= x^{\alpha} \oplus y^{\beta}$$

$$(\alpha \odot x) \oplus (\beta \odot y).$$

Consequentemente, concluímos que V munido do operador de soma \oplus e da multiplicação por escalar \odot é um espaço vetorial.

Exemplo 3, reanalisando o Exemplo 2

Voltemos ao Exemplo anterior e analisemos o que ocorre se, ao invés de consideramos \oplus como operador soma, considerarmos a soma usual de números reais. Isto é, será que

$$(V, +, \odot)$$

é um espaço vetorial. A resposta é não, pois como é fácil notar, este espaço não terá elemento neutro com relação a +. Além do mais, não teremos a existência de inversos na adição. Portanto, uma simples mudança dos operadores que compoem o conjunto V podem impactar significamente em sua estrutura algébrica. Neste caso, trocar \oplus por + retira de V sua estrutura de espaço vetorial.