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Introduction

▶ In the first part of the talk, we consider the so called elephant
random walk introduced by Schutz and Trimper and a related
model, the D.E.R.W.

▶ In the ERW the walker remember the whole past. Thus, the
next step always depends on the whole past.

▶ Martingale theory allows to prove many limit theorem for this
model and its generalization.
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The Elephant Random Walk

▶ It was introduced by Schütz and Trimper in 2004.

▶ The elephant departs from the origin. Denoting by Xn its
position by time n we have X0 = 0. The first step is given as
follows: P(X1 = 1) = q = 1− P(X1 = −1).

▶ For n ≥ 1 let
Xn+1 = Xn + ηn+1

where ηn+1 = ±1 is a r.v. defined as follows.

▶ At time n + 1 a number n′ ∈ {1, 2, . . . , n} is chosen at
random with probability 1/n.

▶

ηn+1 = ηn′ w.p. p and ηn+1 = −ηn′ w.p. 1− p.
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First and second moments

▶ Schütz and Trimper (2004) showed that

E[Xn] = (2q − 1)
Γ(n + (2p − 1))

Γ(2p)Γ(n)
∼ 2q − 1

Γ(2p)
n2p−1.

▶

E[X 2
n ] ∼


n

3−4p , if p < 3/4

n log n, if p = 3/4
n4p−2

(4p−3)(Γ(4p−2)) if p > 3/4
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Law of large numbers and central limit theorem (C, Gava
and Schutz)

▶ Thm: Let (Xn)n≥1 be the ERW. Then for any value of q and
p ∈ [0, 1)

lim
n→∞

Xn

n
= 0 a.s.

▶ Thm: Let (Xn)n≥1 be the ERW.
(a) If p < 3/4, then

Xn√
n

d−→ N(0,
1

3− 4p
).

(b) If p = 3/4, then

Xn√
n log n

d−→ N(0, 1).
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Almost sure convergence (C.G.S.)

▶ Thm: Let (Xn)n≥1 be the ERW. If 3/4 < p ≤ 1, then

Xn

n2p−1
→ M a.s. ,

where M is a non-degenerate mean zero random variable, but
not a normal r.v..



Recurrence – Transience for the ERW

Theorem (I. Papageorgiou, C)

Let (Xn)n≥0 be the ERW with full memory. Then, if p ≤ 3/4 the
ERW is recurrent.

Remark Indeed, if p < 1/6 the ERW is positive recurrent.
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Recurrence – Transience for the ERW

Theorem (I. Papageorgiou, C)

Let (Xn)n≥0 be the ERW with full memory. Then, if p > 3/4 the
ERW is transient.



Strong approximations: Motivation

• The CLT says that if X1, . . . ,Xn, . . . are i.i.d. rv‘s with mean
µ and variance σ2 then

lim
n→+∞

P
(
Sn − nµ√

nσ
≤ x

)
= Φ(x), (1)

where Φ(x) = 1√
2π

∫ x
−∞ e−s2/2ds.

• How good is this approximation? Under the same hypothesis
we have

lim
n→+∞

sup
x∈R

∣∣∣∣P(
Sn − nµ√

nσ
≤ x

)
− Φ(x)

∣∣∣∣ = 0. (2)
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Strong approximations: Motivation

• Then we may approximate P
(
Sn−nµ√

nσ
≤ xn

)
by Φ(xn). If

ρ := E (|X1 − µ|) < +∞, the error is bounded by

sup
x∈R

∣∣∣∣P(
Sn − nµ√

nσ
≤ x

)
− Φ(x)

∣∣∣∣ ≤ ρ

2σ3
√
n

(3)

• Is it possible to improve this?

• Yes, Strong Invariance Principles!!
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What is a strong invariance principle?

• It’s a limit theorem concerning strong approximation for
partial sums process of some random sequence or field by a
(multiparameter) Wiener process.

• In 1964, Strassen proved that if (Xj)j≥1 are i.i.d. r.v.’s with

zero mean and variance σ2 then it is possible to construct a
sequence (Zj)j≥1 of centred Gaussian r.v.’s with variance σ2

such that

sup
1≤k≤n

∣∣∣∣∣
n∑

k=1

(Zj − Xj)

∣∣∣∣∣ = o (bn) a.s., when n → +∞. (4)

where bn =
√

n log (log (n)).

• What can be said in the case of correlated r.v.’s?
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Invariance principle. C, Gava and Schütz

▶ Thm: Let (Xn)n≥1 be the ERW with p ≤ 3/4 and let
{Wt}t≥0 be B.M. Then, there exists a common probability
space to Xn and Wt s.t.

a) If p < 3/4, then∣∣∣∣√3− 4p
Xn

n2p−1
−W

(
n3−4p

)∣∣∣∣ = o(
√
n3−4p log log n) a.s.

b) If p = 3/4, then∣∣∣∣ Xn√
n
−W (log n)

∣∣∣∣ = o(
√

log n × log log log n) a.s.



Law of iterated logarithm (C, Gava and Schütz)

▶ Corollary: Let (Xn)n≥1 be the ERW and let p ≤ 3/4.

a) If p < 3/4, then

lim sup
n→∞

|Xn|√
n log log n

=

√
2

3− 4p
a.s.

b) If p = 3/4, then

lim sup
n→∞

|Xn|√
n log n ×

√
log log log n

=
√
2 a.s..



Martingales

▶ A filtered space is a probability space together with a filtration
{Fn} i.e. an increasing family of sub-σ-algebra of F .

▶ An stochastic process (Xn) is a martingale relative to
(Ω,F , {Fn},P) if

▶ (Xn) is adapted to {Fn}, i.e. for each n,Xn is Fn- measurable.

▶ E (|Xn|) < +∞ for each n.

▶ E (Xn+1|Fn) = Xn a.s. for each n.
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Martingale: Intuition through gambling

▶ Conditional expectation encodes the intuitive idea of taking
the expected value of X given the information we have at our
disposal i.e. the σ–algebra Fn.

▶ A σ-algebra is a mathematical object which encode the notion
of information.

▶ The increasing sub-σ-algebra {Fn} describe the play up to the
n–th trial.

▶ The variables X0,X1, . . . ,Xn, . . . record your capital which are
summable and successively measurable over the F ′s.

▶ The game is fair if

E[Xn+1 | Fn] = Xn.
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A Martingale

▶ Put

a1 = 1 and an =
n−1∏
j=1

(
1 +

(2p − 1)

j

)
for n ≥ 2

▶ Define the filtration Fn = σ (η1, . . . , ηn) and Mn = Xn−E[Xn]
an

for n ≥ 1. We claim that {Mn}n≥1 is a martingale with
respect to {Fn}n≥1.
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A Martingale

E [Mn+1 | Fn] =
(Xn − E [Xn])

an+1
+

E [ηn+1 | Fn]− E [ηn+1]

an+1

=
(Xn − E [Xn])

an+1
+

(2p − 1)Xn
n − (2p − 1)E[Xn]

n

an+1

=
(Xn − E [Xn])

an+1
+

(2p−1)
n (Xn − E [Xn])

an+1
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Dynamic elephant random walk

• (Pure) Dynamic random walk.

▶ Let (E ,Σ, µ) be a complete probability space.

▶ Let T : E → E be a one-to-one onto map such that T and
T−1 are both measurable. Assume also that T is measure
preserving, i.e.,

µ(T−1(A)) = µ(A), ∀ A ∈ Σ.

▶ We call (E ,Σ, µ,T ) a dynamical system.
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DRW

▶ Let x ∈ E . The orbit of x is given by (x ,Tx ,T 2x ,T 3x , . . . )
where T n+1x = T (T nx).

▶ Let f : E → R be a measurable map.

▶ f (x), f (T (x)), f (T 2(x)), . . . may represent some measurement
made on the system.
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DRW

▶ Let (E ,Σ, µ,T ) be a dynamical system and let f : E → [0, 1]
be a measurable map.

▶ Let (Xi )i be Z-valued random variables with law given by

P[Xn = 1] = f (T nx)

and
P[Xn = −1] = 1− f (T nx), for n ≥ 1.

▶ The sequence (Sn)n≥0 given by S0 = 0 and Sn = X1+ . . .+Xn

for any n ≥ 1 is called a dynamic Z- random walk.
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Strong law for the DRW

▶ Using Kolmogorov criteria and Birkhoff ergodic theorem
Guillotin-Plantar and Schott (2006) proved the following
strong law of large number for DRW:

▶ For µ-almost every x ∈ E

Sn
n

→ 2E[f |I]− 1 P− q.c .,

where I denotes the σ-algebra of T -invariant sets, i.e.
µ(T−1(A)∆A) = 0.
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Dynamic Random Elephant

About the ERW and the DRW. Remember that PE is the
increments law for the ERW and PD is the increments law for the
DRW.

▶ PE [Xn = η|X1, . . . ,Xn−1] =
1
2n

∑n
k=1[1 + (2p − 1)Xkη] for

n ≥ 1;

▶ PE [X1 = η] = 1
2 [1 + (2q − 1)η];

▶ PD [Xn = η] = 1
2 [1 + (2f (T nx)− 1)η].

Here, η ∈ {−1, 1}.



Dynamic Random Elephant

Modelo DRE
Let g : R× N → [0, 1].
We say that the random walk Sn = X1 + · · ·+ Xn is a DRE if

▶ P[X1 = η] = g(α, 1)PE [X1 = η] + (1− g(α, 1))PD [X1 = η];

▶ P[Xn = η] = g(α, n)PE [Xn = η|X1, . . . ,Xn]
+ (1− g(α, n))PD [Xn = η]



Results

First results
▶ E[Xn+1|X1, . . . ,Xn] =

αn+1(2p−1)
n Sn + (1− αn+1)(2f (T

n+1x)− 1);

Set an =
∏n−1

k=1

(
1 + g(α,k+1)(2p−1)

k

)
.

▶ E[Sn] = an
(
g(α, 1)(2q − 1) +

∑n
k=1

(1−g(α,k))(2E[f (T kx)]−1)
ak

)



Results

Definition
We say that the DRE satisfies the strong property if any of the
following statements hold

▶ p = 1 e limn→∞ g(α, n) = δ ∈ [0, 1);

▶ p ̸= 1 e limn→∞ g(α, n) = δ ∈ [0, 1].

Strong law of large numbers

If the DRE satisfies the strong property, then

lim
n→∞

∣∣∣∣Snn − E[Sn]
n

∣∣∣∣ = 0 a.s. (5)



Results

Lema
If the DRE satisfies the strong property, then

lim
n→∞

Sn
n

=
(1− ℓ(α))

1− (2p − 1)ℓ(α)
(2E[f |I]− 1), (6)

where ℓ(α) = limn→∞ g(α, n) and L = limn→∞ f (T nx).



Results

Set A2
n =

∑n
k=1

1
a2n
.

Central Limit Theorem
Assume that the strong property holds, that p ≥ 1/2 or, if
p < 1/2, limn→∞ g(α, n) ≤ 1

2−4p . Then

Sn − E[Sn]
anAn

D−→ N (0, λ), (7)

where λ = limn→∞ 1−
(
Sn
n

)2
.



Results

Almost Sure Convergence Theorem

Assume that the strong property holds, that p < 1/2 and that
limn→∞ g(α, n) > 1

2−4p . Then,

Sn − E[Sn]
an

a.s.−−→ M (8)

where M is a non–degenerate random variable with zero mean,



Two repelling rw. Stochastic approximation: An
introduction

▶ Consider a coffee machine which can be working or not. Let
yn be the number of days the machine has been working and
let xn = yn/n

▶ Assume that the conditional probability that in the n + 1 day
the coffee machine will be working given the past up to the
day n is just a function of xn, f (xn). Then,

▶ yn+1 = yn + zn+1 where

zn+1 = 1{ coffee machine is working by day n + 1}.

Then,
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Stochastic approximation

▶ xn+1 = xn +
1

n+1 (zn+1 − xn) with x0 = 0.

Thus,

xn+1 = xn +
1

n + 1
(f (xn)− xn) +

1

n + 1
(zn+1 − f (xn)) .

▶ If Dn := zn − f (xn−1), then its mean is 0, its conditional
expectation given zn is zero and {Dn} is a martingale
difference sequence (A noise = uncorrelated with the past).
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Stochastic approximation

▶ This equation may be thought as a noisy discretization for the
ODE

ẋ(t) = f (x(t))− x(t)

for t > 0.
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▶ Consider two interacting random walks on Z.

▶ The transition probability of one walk in one direction
decreases exponentially with the number of transitions of the
other walk in that direction.
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Two repelling random walks

▶ The joint process may thus be seen as two random walks
reinforced to repel each other.

▶ The strength of the repulsion is further modulated in our
model by a parameter β ≥ 0.

▶ We study the recurrence and transience of this random walk
in terms of this parameter.
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The model

▶ Consider two repelling random walks {S i
n; i = 1, 2, n ≥ 0}

taking values on Z.

▶ The repulsion is determined by the full previous history of the
joint process.

▶ Let Fn = σ({S1
k ,S

2
k : 0 ≤ k ≤ n}).
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The model

▶ The transition probability for each process is defined as

P
(
S i
n+1 = S i

n+1
∣∣Fn

)
= ψ

(
(S j

n−S j
0)/n

)
= 1−P

(
S i
n+1 = S i

n−1
∣∣Fn

)
,

(9)
with i = 1, 2, j = 3− i , n ≥ n0.

▶ ψ : [−1, 1] → [0, 1], defined by

ψ(y) =
1

1 + exp(βy)
, β ≥ 0. (10)

▶ When β = 0, then ψ(y) = 1
2 for all y ∈ [−1, 1] and both S1

n

and S2
n form two independent simple random walks on Z.
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Main results

We regard a walk S i
n as recurrent (transient) if every vertex of Z is

visited by S i
n infinitely (finitely) many times almost surely.

Theorem
If β > 2, both random walks S1

n and S2
n are transient and

lim
n→∞

S1
n = − lim

n→∞
S2
n = ±∞ a.s.

Theorem
If β ∈ [0, 1], then both S1

n and S2
n are recurrent.
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A dynamical system approach

For n ≥ 0, i = 1, 2, set

ξ(n) =
(
ξ1l (n), ξ

1
r (n), ξ

2
l (n), ξ

2
r (n)

)
, ξil (n) = 1{S i

n+1−S i
n=−1}, (11)

and
ξir (n) = 1{S i

n+1−S i
n=1}.

Also, let

X i
l (n) =

1

n

n−1∑
k=0

ξil (k), X i
r (n) =

1

n

n−1∑
k=0

ξir (k),

Denote by X = {X (n)}n≥0 the process determined by

X (n) = (X 1
l (n),X

1
r (n),X

2
l (n),X

2
r (n))
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A dynamical system approach

The process X takes values on the set

D = △×△

where
△ = {x ∈ R2 | xv ≥ 0,

∑
v

xv = 1}.

Some notation. Now, let π : D → D be the map

x 7→ π(x) =
(
π1l (x), π

1
r (x), π

2
l (x), π

2
r (x)

)
(12)

where for i = 1, 2 and v = l , r ,

πiv (x) = ψ(2x jv − 1), j = 3− i . (13)
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A dynamical system approach

Lemma
The process X = {X (n)}n≥0 satisfies the following recursion

X (n + 1)− X (n) = γn(F (X (n)) + Un) (14)

where

γn =
1

n + 1
(15)

and F : D → TD is the vector field F = (F 1
l ,F

1
r ,F

2
l ,F

2
r ) defined

by
F (X (n)) = −X (n) + π(X (n)). (16)



A dynamical system approach

▶ A discrete-time process whose increments are recursively
computed according to (14) is known as a stochastic
approximation.

▶ Provided the random term Un can be damped by γn, (14)
may be thought as a Cauchy-Euler approximation scheme,

x(n + 1)− x(n) = γnF (x(n)),

for the numerical solution of the autonomous ODE

ẋ = F (x).
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A dynamical system approach

▶ A natural approach to determine the limit behaviour of the
process X consists in studying the asymptotic properties of
the related ODE.

▶ This heuristic, known as the ODE method, has been rather
effective while studying various reinforced stochastic processes.
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Equilibria

▶ A point x ∈ D is an equilibrium of F if F (x) = 0.

▶ For any point x ∈ D, let JF (x) be the Jacobian matrix of the
vector field F at x and let σ(JF (x)) be the set of its
eigenvalues.
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Equilibria

▶ The equilibrium x is hyperbolic if all the eigenvalues of
σ(JF (x)) have non-zero real parts.

▶ The hyperbolic equilibrium x is linearly stable if σ(JF (x))
contains only eigenvalues with negative real parts; otherwise x
is said to be linearly unstable.
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Convergence to equilibria

Theorem
Assume that X = (X (n))n be a process satisfying our recursion
equation. Then, for any β ≥ 0, β ̸= 2, the process X converges a.s.
to an equilibrium point of our vector field.



Convergence to equilibria

Lemma
For β ∈ [0, 2], the point

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
is the only equilibrium for the

vector field F . For any β > 2, the field has three equilibria,

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
, (w , 1− w , 1− w ,w) and (1− w ,w ,w , 1− w),

(17)
where w ∈ (0, 12) is uniquely determined by β. The equilibrium

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
is linearly stable for β ∈ [0, 2) and linearly unstable for

β > 2. The equilibria (w , 1− w , 1− w ,w) and
(1− w ,w ,w , 1− w) are linearly stable for β > 2.
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Non-convergence to the unstable equilibrium

Lemma
Let X = {X (n)}n≥0 be a process satisfying an stochastic
approximation recursion. Then, if β > 2,

P
(

lim
n→∞

X (n) =
(
1
2 ,

1
2 ,

1
2 ,

1
2

))
= 0.



Almost sure convergence of the proportions

Lemma
There is a unique point x ∈ [0, 1], depending on β, such that,

lim
n→∞

1

n

(
S1
n − S1

n0 , S
2
n − S2

n0

)
∈

{
(x ,−x), (−x , x)

}
a.s.

In addition, if 0 ≤ β ≤ 2, then x = 0, and if β > 2, then
0 < x < 1.



Proof of transience

▶ It follows from the previous lemma that
(
S1
n/n, S

2
n/n

)
converges a.s. to (x ,−x) or to (−x , x) where x > 0.

▶ Since S i
n = S i

n/n × n, the proof is complete after making
n → +∞.
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Figura: UFABC – Campus S.A.

Thanks.
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