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Introduction

» In the first part of the talk, we consider the so called elephant
random walk introduced by Schutz and Trimper and a related
model, the D.E.R.W.

» In the ERW the walker remember the whole past. Thus, the
next step always depends on the whole past.

> Martingale theory allows to prove many limit theorem for this
model and its generalization.
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» The elephant departs from the origin. Denoting by X, its
position by time n we have Xy = 0. The first step is given as
follows: P(X; =1) =qg=1—-P(X; = —1).

» Forn>1let
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First and second moments

» Schiitz and Trimper (2004) showed that
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3_n4p7 if p< 3/4
E[Xg] ~ { nlogn, if p=3/4
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Law of large numbers and central limit theorem (C, Gava
and Schutz)

» Thm: Let (X,)n>1 be the ERW. Then for any value of g and
p€[0,1)

» Thm: Let (X,),>1 be the ERW.
(a) If p < 3/4, then

X d 1
N .
s NOs—)
(b) If p=3/4, then
X0 9, no,1)




Almost sure convergence (C.G.S.)

» Thm: Let (X,),>1 be the ERW. If 3/4 < p <11, then

Xn
n2p—1

— M as.

where M is a non-degenerate mean zero random variable, but
not a normal r.v..



Recurrence — Transience for the ERW

Theorem (. Papageorgiou, C)

Let (Xp),>o be the ERW with full memory. Then, if p < 3/4 the
ERW is recurrent.



Recurrence — Transience for the ERW

Theorem (. Papageorgiou, C)

Let (Xp),>o be the ERW with full memory. Then, if p < 3/4 the
ERW is recurrent.

Remark Indeed, if p < 1/6 the ERW is positive recurrent.



Recurrence — Transience for the ERW

Theorem (l. Papageorgiou, C)

Let (X,),~o be the ERW with full memory. Then, if p > 3/4 the
ERW is transient.
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e The CLT says that if X1,...,X,,... are i.i.d. rv's with mean
 and variance o2 then

. Sn—nu
< =
nl;TooP ( N X> d(x), (1)
_ 2
where ®(x) \ﬁ X e~ /?ds.
e How good is this approxmation? Under the same hypothesis
we have
Sn—nu
< - =
s [P (220 <x) 00 <0 )
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Strong approximations: Motivation

e Then we may approximate IP’( :["“ < x,,) by ®(x,). If
E (| X1 — p|) < 400, the error is bounded by

dSTRVACE

e Is it possible to improve this?

(3)

sup
x€R

- 2U3f

e Yes, Strong Invariance Principles!!
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What is a strong invariance principle?

e It's a limit theorem concerning strong approximation for
partial sums process of some random sequence or field by a
(multiparameter) Wiener process.

e In 1964, Strassen proved that if (Xj),., arei.i.d. r.v.'s with
zero mean and variance o then it is possible to construct a

sequence (Zj),- of centred Gaussian r.v.’s with variance o?
such that -
n
sup (Z;j — X;)| = o(bn) as., when n — 4o00. (4)
1<k<n |1

where b, = y/nlog (log (n)).

e What can be said in the case of correlated r.v.’s?



Invariance principle. C, Gava and Schiitz

» Thm: Let (X,)n>1 be the ERW with p < 3/4 and let
{W;}¢>0 be B.M. Then, there exists a common probability
space to X,, and W, s.t.

a) If p<3/4, then

Xn _
’\/ 3- 4Pn2p71 -W (n3 4p)

b) If p=3/4, then

=o(yv/n*loglogn) as.

'Xn

T W (log n)

= o(+/logn x logloglogn) a.s.




Law of iterated logarithm (C, Gava and Schiitz)

» Corollary: Let (X,)n>1 be the ERW and let p < 3/4.
a) If p < 3/4, then

Xl 2

lims = a.s.
I:?Lolip v/ nloglogn 3—4p
b) If p=3/4, then
X
lim sup [ Xl =+V2as..

nsoo y/nlogn x y/logloglogn
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Martingales

> A filtered space is a probability space together with a filtration
{Fn} i.e. an increasing family of sub-o-algebra of F.

» An stochastic process (X,) is a martingale relative to

(Q, F, {Fa},P) if

(Xn) is adapted to {F,}, i.e. for each n, X, is F,- measurable.
E (| Xa]) < +o0 for each n.

E (Xn+1|Fn) = X, a.s. for each n.

vyvyy
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Martingale: Intuition through gambling

» Conditional expectation encodes the intuitive idea of taking
the expected value of X given the information we have at our
disposal i.e. the o—algebra F,.

P> A o-algebra is a mathematical object which encode the notion
of information.

» The increasing sub-o-algebra {F,} describe the play up to the
n—th trial.

» The variables Xp, X1,...,X,, ... record your capital which are
summable and successively measurable over the F's.

» The game is fair if

E[Xnt1 | Fn] = Xn.
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A Martingale

> Put
n—1
2p—1
a; =1 and a,,:H <1+(p,)> forn>2
j=1 J
» Define the filtration 7, = o (11,...,7,) and M, ﬂ

for n > 1. We claim that {M,} ., is a martingale with
respect to {Fpn}, 51
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(Xn — E[Xn]) + E [Nn+1 | Fnl — E [nn11]

E[M Frl =
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A Martingale

(Xn —E [Xn]) + E [7In+1 ‘ ]:n] —E [77n+1]
dn+1 dn+1

(X —E[Xa]) (2P = 1)% — (2p — 1)

n

E[Mpy1 | Fn] =

ant1 ant1
_ (X —EX]) | (2e=1) (x, — B[X,])

n

dn+1 an+1
+ M)

1
= (Xa —E[X4]) ( 3n+1n

= M,.
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Dynamic elephant random walk

e (Pure) Dynamic random walk.
» Let (E, X, 1) be a complete probability space.

» Let T : E — E be a one-to-one onto map such that T and
T—1 are both measurable. Assume also that T is measure

preserving, i.e.,

W(T7HA)) = u(A), ¥ A€ .

» We call (E,X, u, T) a dynamical system.
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DRW

» Let x € E. The orbit of x is given by (x, Tx, T?x, T3x,...)
where T"1x = T(T"x).

» Let f: E — R be a measurable map.

> f(x), f(T(x)), f(T?(x)),... may represent some measurement
made on the system.
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DRW

» Let (E, X, p, T) be a dynamical system and let f : E — [0, 1]
be a measurable map.

» Let (X;); be Z-valued random variables with law given by
P[X, =1] = f(T"x)
and

P[X,=-1]=1-f(T"x), for n > 1.

» The sequence (Sp)n>0 given by So =0and S, = X1 +...+ X,
for any n > 1 is called a dynamic Z- random walk.
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Strong law for the DRW

» Using Kolmogorov criteria and Birkhoff ergodic theorem
Guillotin-Plantar and Schott (2006) proved the following
strong law of large number for DRW:

» For p-almost every x € E

% — 2E[f|Z] -1 P-—gq.c.,

where Z denotes the o-algebra of T-invariant sets, i.e.
w(T HA)AA) = 0.



Dynamic Random Elephant

About the ERW and the DRW. Remember that Pg is the

increments law for the ERW and Pp is the increments law for the
DRW.

> Pe[Xn =n[X1,..., Xoo1] = & S0 _4[1+ (2p — 1)Xkn] for
n>1;

> Pe[X1 =n] = 3[1+ (29 — 1)n);

> Pp[Xn=n] = 3[1+ (2F(T"x) — 1)n].
Here, n € {—1,1}.



Dynamic Random Elephant

Modelo DRE
Let g: R x N — [0,1].
We say that the random walk S, = X; +--- 4+ X,, is a DRE if
> P[Xi =] = g(a,1)Pe[X1 = n] + (1 — g(a, 1)) Pp[X1 = n];
> P[Xn - 77] = g(a7n)PE[Xn - 77|X17’ . '7Xn]
+ (1 — g(a, n))Pp[Xy = 1]



Results

First results
> IE[Xn-i—1|X1, e Xn] =
=D G, 4 (1 — apey)(2F(T"x) — 1)
Set ap = [[_1 (1 + %>

> ElSa] = an (g (a,1)(29 = 1) + 324, “‘g(“’“)(mfﬂ*x)l—ﬂ)

ak




Results

Definition

We say that the DRE satisfies the strong property if any of the

following statements hold
» p=1elimpog(a,n)=3d€[0,1);
> p#1lelimpog(a,n)=4d¢€[0,1].

Strong law of large numbers
If the DRE satisfies the strong property, then

S, E[S)]

n n

lim =0

n—oo

a.s.



Results

Lema
If the DRE satisfies the strong property, then
S5, (1-t(a))

nsoo n 1—(2p—1)¢(a)

(2E[f|Z] - 1),

where {(a) = limy00 g(a, n) and L = limp_oo F(T"x).



Results

2 _xn 1
Set An—Zk:L?g-

Central Limit Theorem
Assume that the strong property holds, that p > 1/2 or, if
p <1/2,limy 00 g(c; n) < 524 Then

Sn— E[S)] _D_>

anAn N(O’ >\)7

where A = limp_oo 1 — (%)2



Results

Almost Sure Convergence Theorem

Assume that the strong property holds, that p < 1/2 and that
limp—o0 g(cv, n) > ﬁ. Then,

Sn— E[Sn] as.
37 RN

M (8)

where M is a non—degenerate random variable with zero mean,
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Two repelling rw. Stochastic approximation: An
introduction

» Consider a coffee machine which can be working or not. Let
¥n be the number of days the machine has been working and
let x, = yn/n

P> Assume that the conditional probability that in the n + 1 day
the coffee machine will be working given the past up to the
day n is just a function of x,, f(x,). Then,

» Ynt1 = Yn + Zny1 Where
zp+1 = 1{ coffee machine is working by day n+ 1}.

Then,
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Stochastic approximation

> Xpi1 = Xp+ n+1 (zZn+1 — xn) with xo = 0. Thus,

1 1
Xpt1 = Xp + m (f(xn) — xn) + m (zn1 — f(xn)) -

» If D, := z, — f(x,—1), then its mean is 0, its conditional
expectation given z, is zero and {D,} is a martingale
difference sequence (A noise = uncorrelated with the past).
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Stochastic approximation

» This equation may be thought as a noisy discretization for the
ODE

for t > 0.
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Two repelling random walks

» Consider two interacting random walks on Z.

» The transition probability of one walk in one direction
decreases exponentially with the number of transitions of the
other walk in that direction.
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Two repelling random walks

» The joint process may thus be seen as two random walks
reinforced to repel each other.

» The strength of the repulsion is further modulated in our
model by a parameter 8 > 0.

» We study the recurrence and transience of this random walk
in terms of this parameter.
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» Consider two repelling random walks {S/; i = 1,2, n > 0}
taking values on Z.

» The repulsion is determined by the full previous history of the
joint process.

> Let F, = o({S},S2:0< k < n}).
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The model

» The transition probability for each process is defined as
P(Shi1 = Sh+1| Fa) = ((S5=S3)/n) = 1-P(Sjs1 = Sh—1] Fa),
(9)

with i=1,2, j=3—1i, n> ng.
> ¢ :[-1,1] — [0, 1], defined by

1

H—Tp(ﬁy)’ B = 0. (10)

Y(y) =

> When 3 =0, then ¢(y) = 3 for all y € [~1,1] and both S}
and S2 form two independent simple random walks on Z.
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Main results

We regard a walk S/ as recurrent (transient) if every vertex of Z is
visited by S;, infinitely (finitely) many times almost surely.

Theorem
If B> 2, both random walks S} and S? are transient and

lim S} = — lim S?2 =400 as.
n—oo n—o0

Theorem
If 3 € [0,1], then both S} and S? are recurrent.
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Forn>0,i=1,2, set

E(n) = (&1(n), & (n), &7 (n). & (n)), &i(n) =15 -1y (11)

and .
&(n) =i siz1y-
Also, let

1 n—1 . ) 1 n—1 )
== &k, Xi(n) == &(k)
k=0 k=0
Denote by X = {X(n)}n,>0 the process determined by

X(n) = (X (n), X7 (n), X7 (n), X2 (n))
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A dynamical system approach

The process X takes values on the set
D=AXNA

where
A = {x € R? |XV20,ZXV:1}.

Some notation. Now, let 7 : D — D be the map

x = w(x) = (7 (x), 77 (x), 77 (x), 77 (x))

where for i =1,2and v =1,r,

m(x) =y -1), j=3-i.

(12)

(13)



A dynamical system approach

Lemma
The process X = {X(n)}n>0 satisfies the following recursion

X(n+1) = X(n) = va(F(X(n)) + Un) (14)
where 1
Yn = n+1 (15)

and F : D — TD is the vector field F = (F}, F}, F2, F?) defined

by
F(X(n)) = =X(n) + m(X(n)). (16)



A dynamical system approach

P> A discrete-time process whose increments are recursively
computed according to (14) is known as a stochastic
approximation.
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» Provided the random term U, can be damped by ~,, (14)
may be thought as a Cauchy-Euler approximation scheme,
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for the numerical solution of the autonomous ODE



A dynamical system approach

P> A discrete-time process whose increments are recursively
computed according to (14) is known as a stochastic
approximation.

» Provided the random term U, can be damped by ~,, (14)
may be thought as a Cauchy-Euler approximation scheme,

x(n+1) —x(n) = v,F(x(n)),
for the numerical solution of the autonomous ODE

x = F(x).



A dynamical system approach

» A natural approach to determine the limit behaviour of the
process X consists in studying the asymptotic properties of
the related ODE.



A dynamical system approach

» A natural approach to determine the limit behaviour of the
process X consists in studying the asymptotic properties of
the related ODE.

» This heuristic, known as the ODE method, has been rather
effective while studying various reinforced stochastic processes.
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Equilibria

» A point x € D is an equilibrium of F if F(x) = 0.

» For any point x € D, let Jg(x) be the Jacobian matrix of the
vector field F at x and let o(Jg(x)) be the set of its
eigenvalues.
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Equilibria

» The equilibrium x is hyperbolic if all the eigenvalues of
o(Jr(x)) have non-zero real parts.

» The hyperbolic equilibrium x is linearly stable if o(Jr(x))
contains only eigenvalues with negative real parts; otherwise x
is said to be linearly unstable.



Convergence to equilibria

Theorem

Assume that X = (X(n))n be a process satisfying our recursion

equation. Then, for any 8 > 0,3 # 2, the process X converges a.s.
to an equilibrium point of our vector field.
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Convergence to equilibria

Lemma
For 8 € [0,2], the point (

%, %) is the only equilibrium for the
vector field F. For any B >

11

22, tie field has three equilibria,
(%,%,%,%), (w,1—w,1—w,w) and (1—-w,w,w,1—w),

(17)

where w € (0, %) is uniquely determined by (3. The equilibrium (%

%, % %) is linearly stable for 3 € [0,2) and linearly unstable for

f > 2. The equilibria (w,1 — w,1 — w,w) and

(1 — w,w,w,1— w) are linearly stable for § > 2.



Non-convergence to the unstable equilibrium

Lemma
Let X = {X(n)}n>0 be a process satisfying an stochastic
approximation recursion. Then, if § > 2,



Almost sure convergence of the proportions

Lemma
There is a unique point x € [0, 1], depending on 3, such that,

nlgr;(}%(S,% - 5,%0, S2 - S§0> € {(x, —x), (—x,x)} a.s.

In addition, if 0 < <2, thenx =0, and if B > 2, then
0<x<1.



Proof of transience

> It follows from the previous lemma that (S /n, S2/n)
converges a.s. to (x, —x) or to (—x, x) where x > 0.



Proof of transience

> It follows from the previous lemma that (S /n, S2/n)
converges a.s. to (x, —x) or to (—x, x) where x > 0.

» Since S! = S!/n x n, the proof is complete after making
n — +oo.



Figura: UFABC — Campus S.A.

Thanks.
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