LISTA PARA ENTREGA 5

1 — Seja V o subespaço de \mathbb{R}^2 dado por $V = \langle \{(1, -1)\} \rangle$.

- a Desenhe $V \text{ em } \mathbb{R}^2$.
- b Desenhe as classes

$$S_1 = (1, 1) + V, S_2 = (2, 1) + V$$

- $oxed{c}$ Descreva o espaço quociente \mathbb{R}^2/V .
- d Desenhe a classe $S_3 = (-2)S_1 + S_2$.
- ullet Determine se S_3 é igual a (-1,0) + V.
- **2** Seja V o subespaço de $\mathbb{R}[x]_2$ satisfazendo

$$\int_{-1}^{1} p(t) dt = 0, \ p(t) \in \mathbb{R}[x]_{2}.$$

- b Determine uma base do espaço quociente $\mathbb{R}[x]_2/V$.

3 — (Teorema de Isomorfismo) Prove que dada $T: U \rightarrow V$ uma transformação linear, então temos:

$$\frac{U}{\ker(T)} \simeq \operatorname{Im}(T)$$

4 — Prove que \mathbb{R}^n/\mathbb{R} é isomorfo a \mathbb{R}^{n-1} .