Álgebra Linear Avançada

Soma de Espaços Vetoriais

Daniel Miranda Machado

18 de Setembro

UFABC

Soma de Subespaços

O conjunto S(V) de todos os subespaços de um espaço vetorial V possui uma estrutura rica que apresentamos a seguir.

Se $S, T \in \mathcal{S}(V)$, então é fácil de demonstrar que $S \cap T$ é o maior subespaço de V contido simultaneamente em S e T. Em termos de inclusão de conjuntos, $S \cap T$ é o maior limite inferior de S e T. Da mesma forma, se $\{S_i \mid i \in I\}$ é uma coleção de subespaços de V, então sua interseção é o maior limite inferior dos subespaços

$$\inf\{S_i\,|\,i\in I\}=\bigcap_i S_i$$

Para determinar o menor subespaço de V contendo os subespaços S e T, fazemos a seguinte definição.

Definição (Soma)

Se S e T são subespaços de V. A soma S + T é definida por

$$S + T \triangleq \{\mathbf{x} + \mathbf{y} \mid \mathbf{x} \in S, \ \mathbf{y} \in T\}$$

Em geral, a soma de qualquer coleção $\{S_i \mid i \in I\}$ de subespaços é o conjunto de todas as somas **finitas** de vetores da união $\bigcup_{i \in I} S_i$

$$\sum_{i\in I} S_i \triangleq \{\mathbf{x}_1 + \cdots + \mathbf{x}_n \mid \mathbf{x}_j \in \bigcup_{i\in I} S_i\}$$

Proposição

Dado uma coleção $\{S_i | i \in I\}$ de subespaços. Então são equivalentes:

- $m{\mathsf{W}}$ $m{\mathsf{e}}$ o menos subespaço contendo $m{\mathsf{S}}_i$ para $m{\mathsf{i}} \in m{\mathsf{I}}$
- [] w /| |(c | i = n)
- $W = \langle \bigcup \{S_i \mid i \in I\} \rangle$ $W = \sum_{i \in I} S_i$

A demonstração será deixada como exercício.

Ou seja, acabamos de mostrar que a soma é a menor das cotas superiores.

 $\sup\{S_i\,|\,i\in I\}=\sum_{i\in I}S_i$

Se um conjunto parcialmente ordenado *P* tiver a propriedade de que cada par de elementos tem um ínfimo e supremo então *P* será denominado **reticulado**.

que toda coleção de elementos possui um ínfimo e supremo, então P é

Se P tiver um menor elemento e um maior elemento e possuir a propriedade de

denominado **reticulado completo**.

Teorema

O conjunto S(V) de todos os subespacos de um espaco vetorial V é um reticulado completo sob inclusão de conjuntos, com o menor elemento $\{\mathbf{o}\}$.

maior elemento V,
$$\inf\{S_i \mid i \in I\} = \bigcap S_i e$$

 $\sup\{S_i\,|\,i\in I\}=\sum S_i$

$$\inf\{\mathsf{S}_i\,|\,i\in I\}=\bigcap\mathsf{S}_i\;\mathbf{e}$$

 $\inf\{S_i \mid i \in I\} = \bigcap_{i \in I} S_i e$

Soma Direta

Soma Direta Externa

Se V e W forem espaços vetoriais sobre um corpo \mathbb{K} , o produto cartesiano

$$V \times W = \{(\mathbf{v}, \mathbf{w}) : \mathbf{v} \in V, \mathbf{w} \in W\}$$

pode ser munido de uma estrutura de espaço vetorial definindo as operações

$$(\mathbf{v}_1, \ \mathbf{w}_1) + (\mathbf{v}_2, \ \mathbf{w}_2) \triangleq (\mathbf{v}_1 + \mathbf{v}_2, \ \mathbf{w}_1 + \mathbf{w}_2)$$

$$\lambda(\mathbf{v}, \ \mathbf{w}) \triangleq (\lambda \mathbf{v}, \ \lambda \mathbf{w}) .$$

$$(3)$$

O produto cartesiano $V \times W$, munido das operações de espaço vetorial acima, é denominado de soma direta externa de V e W.

A construção anterior pode ser generalizada facilmente.

Definição (Soma Direta Externa)

Sejam V_1, \ldots, V_n espacos vetoriais sobre um corpo \mathbb{K} . A soma direta externa

de 1, denotado por
$$V = V_1 \boxplus \cdots \boxplus V_n$$
 é o espaço vetorial $V = V_1 \times \cdots \times V_n$ cujos elementos são as ênuplas ordenadas, i.e.,

$$V_1 \boxplus \cdots \boxplus V_n = \{(\mathbf{x}_1, \ldots, \mathbf{x}_n) \, | \, \mathbf{x}_i \in V_i, \, i = 1, \ldots, n\}$$

$$V_1 \boxplus \cdots \boxplus V_n = \{(\mathbf{x}_1, \ldots, \mathbf{x}_n) \mid \mathbf{x}_i \in V_i, i = 1, \ldots, n\}$$

$$\mathbf{v}_1 \sqcup \cdots \sqcup \mathbf{v}_n = \{(\mathbf{A}_1, \ldots, \mathbf{A}_n) \mid \mathbf{A}_i \in \mathbf{v}_i, i = 1, \ldots, m\}$$

$$V_1 \boxplus \cdots \boxplus V_n = \{(\mathbf{X}_1, \ldots, \mathbf{X}_n) \mid \mathbf{X}_i \in V_i, \ i = 1, \ldots, n\}$$

 $(\mathbf{y}_1, \ldots, \mathbf{y}_n) + (\mathbf{x}_1, \ldots, \mathbf{x}_n) \triangleq (\mathbf{y}_1 + \mathbf{x}_1, \ldots, \mathbf{y}_n + \mathbf{x}_n)$

 $\lambda(\mathbf{X}_1, \ldots, \mathbf{X}_n) \triangleq (\lambda \mathbf{X}_1, \ldots, \lambda \mathbf{X}_n)$

$$V_1 \boxplus \cdots \boxplus V_n = \{(\mathbf{X}_1, \ldots, \mathbf{X}_n) \mid \mathbf{X}_i \in V_i, \ i = 1, \ldots, n\}$$

é o espaço vetorial V
$$=$$
 V $_1 imes\cdots imes$ V $_n$ cujo

$$\mathcal{F}_{\infty}$$
. A soma uneta externa \mathcal{F}_{∞} cuio:

(5)

(6)

Exemplo

O espaço vetorial \mathbb{K}^n é a soma direta externa de n cópias de \mathbb{K} , isto é,

$$\mathbb{K}^{\textit{n}} = \mathbb{K} \boxplus \cdots \boxplus \mathbb{K}$$

Essa construção pode ser generalizada novamente para qualquer coleção de espaços vetoriais, generalizando a idéia de que um ênupla ordenada $(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ é apenas uma função $f: \{1, \ldots, n\} \to \bigcup V_i$ do conjunto de índices $\{1, \ldots, n\}$ para a união dos espaços com a propriedade que $f(i) \in V_i$.

Produto Direto

Definição (Produto Direto)

Seja $\mathcal{F}=\{V_i\,|\,i\in I\}$ família de espaços vetoriais acima de \mathbb{K} . O produto direto de \mathcal{F} é o espaço vetorial

$$\prod_{i \in I} V_i \triangleq \{f : K \to \bigcup_{i \in I} V_i | f(i) \in V_i\}$$

pensado como um subespaço do espaço vetorial de todas as funções de $I \rightarrow \cup V_i$.

Será mais útil restringir o conjunto de funções àquelas com suporte finito.

Definição (Suporte)

Seja $\mathcal{F}=\{V_i\,|\,i\in I\}$ uma família de espaços vetoriais sobre \mathbb{K} . O suporte de uma função $f:K\to \cup V_i$ é o conjunto

$$\operatorname{suporte}(f) riangleq \{i \in I \, | \, f(i)
eq \mathbf{0} \}$$

Assim, uma função f tem suporte finito se f(i) = 0 para todos, exceto um número finito de $i \in I$.

Soma Direta Externa

Definição (Soma Direta Externa)

A soma direta externa da família \mathcal{F} é o espaço vetorial

$$\cfrac{+}{i \in I} V_i riangleq \{f: I o igcup_{i \in I} V_i | f(i) \in V_i f \text{ possui suporte finito } \}$$

$$=\{f:I o igcup_{i=1} \mathsf{V}_i\,|\, f(i)\in \mathsf{V}_i, f(i)\ ext{\'e}\ ext{o}\ ext{exceto}\ ext{por}\ ext{um}\ ext{n\'umero}\ ext{finito}\ ext{de}\ ext{termos.}\}$$

visto como um subespaço do espaço vetorial de todas as funções de $I \to \cup V_i$.

Um caso especial importante ocorre quando $V_i = V$ para todos os $i \in I$. Se permitirmos que V^I denote o conjunto de todas as funções de I a V e $(V^I)_o$ denote o conjunto de todas as funções em V^I que possuem suporte finito então

$$\prod_{i\in I} \mathsf{V} = \mathsf{V}^I \qquad \mathsf{e} \qquad \mathop{}igoplus_{i\in I} \mathsf{V} = (\mathsf{V}^I)_\mathsf{o}$$

Observe que o produto direto e a soma direta externa são os mesmos para uma família de espaços vetoriais finita.

Exemplos

O espaço vetorial \mathbb{K}^{∞} é produto direto de \mathbb{K} e (\mathbb{K}^{∞})_o é soma direta externa:

 $\mathbb{K}^{\infty} = \prod_{i \in \mathbb{N}} \mathbb{K} \quad \mathsf{e} \quad (\mathbb{K}^{\infty})_{\mathsf{o}} = \biguplus_{i \in \mathbb{N}} \mathbb{K}$

Somas Diretas Internas

Definição (Soma Direta)

Seja V é um espaco vetorial. Dizemos que V é a soma direta (interna) de uma família $S = \{S_i | i \in I\}$ de subespacos de V se todo vetor $v \in V$ puder ser

escrito, de uma maneira única (exceto pela ordem), como uma soma finita de vetores dos subespaços em
$$S$$
, isto é, se para todo $\mathbf{v} \in V$,

escrito, de uma maneira unica (exceto pela ordem), como uma soma finita de vetores dos subespaços em
$$\mathcal{S}$$
, isto é, se para todo $\mathbf{v} \in V$,

vetores dos subespaços em
$$S$$
, isto é, se para todo $\mathbf{v} \in V$,

 $\mathbf{v} = \mathbf{v}_1 + \cdots + \mathbf{v}_n$ com $\mathbf{v}_i \in S_i$ e $\mathbf{v} = \mathbf{v}_1' + \cdots + \mathbf{v}_m', \ com \ \mathbf{v}_i' \in S_i$

Então
$$m=n$$
 e (após trocar os índices se necessário) $\mathbf{v}_i=\mathbf{v}_i'$ para $i=1,\ldots,n$.

Se V é a soma direta de S, escrevemos

$$V = \bigoplus_{i \in I} S_i$$
.

Se $S = \{S_1, \ldots, S_n\}$ é uma família finita, escrevemos

$$V = S_1 \oplus \cdots \oplus S_n$$

Os conceitos de soma direta interna e externa são essencialmente equivalentes (como veremos esses espaços são isomorfos). Por esse motivo, costumamos

usar o termo soma direta sem qualificação. Observe que uma soma é direta se, e somente se, sempre que $\mathbf{u}_{i_1} + \cdots + \mathbf{u}_{i_n} = \mathbf{0}$ em que $\mathbf{u}_{i_j} \in S_{i_j}$ e $i_j \neq i_k$ então $\mathbf{u}_{i_j} = \mathbf{0}$ para todos os j, isto é, se e somente se o tiver uma representação única como uma soma de vetores de subespaços distintos. Essa afirmação motiva a seguinte definição e a próxima proposição.

Espaços Independentes

Definição (Espaços Independentes)

Seja V um espaço vetorial e $\{W_1, \ldots, W_k\}$ seja um conjunto de subespaços de V. Esse conjunto de espaços é **independente** se $O = W_1 + \cdots + W_k$ com $W_i \in W_i$ implica $W_i = O$ para todo i.

Proposição

Seja V um espaço vetorial e $\{W_1, \ldots, W_k\}$ seja um conjunto de subespaços de V. Então V é a soma direta $V = W_1 \oplus \cdots \oplus W_k$ se

 $V = W_1 + \cdots + W_b e$

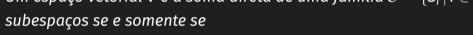
 $\{W_1, \ldots, W_k\}$ são independentes.

A seguinte caracterização de somas diretas é bastante útil.

Para cada $i \in I$, $S_i \cap (\sum_{i \neq i} S_i) = \{\mathbf{0}\}$

Teorema

Um espaço vetorial V é a soma direta de uma família $S = \{S_i | i \in I\}$ de



- - $V \in a \text{ soma dos } S_i, V = \sum_{i \in I} S_i$

Demonstração:

Suponha primeiro que V seja a soma direta de S. Então \boxed{a} é verdadeiro e se

$$\mathbf{v} \in S_i \cap (\sum_{j \neq i} S_j)$$

então $\mathbf{v} = \mathbf{s}_i$ para algum $\mathbf{s}_i \in \mathsf{S}_i$ e

$$\mathbf{v} = \mathbf{s}_{j_1} + \cdots + \mathbf{s}_{j_n}$$

onde $\mathbf{s}_{j_k} \in S_{j_k}$ e $j_k
eq i$ para todos os $k=1,\ldots,n$.

Portanto, pela unicidade das representações de soma direta, $\mathbf{s}_i = \mathbf{0}$ e, portanto, $\mathbf{v} = \mathbf{0}$. Logo demonstramos **b**.

Para a reciproca, suponha que a e b sejam válidos. Precisamos apenas verificar a condição de unicidade

$$\mathbf{v} = \mathbf{s}_{j_1} + \dots + \mathbf{s}_{j_n} \quad \mathbf{e} \tag{7}$$

$$\mathbf{v} = \mathbf{t}_{k_1} + \dots + \mathbf{t}_{k_m} \tag{8}$$

onde $\mathbf{s}_{j_i} \in S_{j_i}$ e $\mathbf{t}_{k_i} \in S_{k_i}$ e incluindo termos adicionais iguais a o, podemos assumir que o índice define $\{j_1, \ldots, j_n\}$ e $\{k_1, \ldots, k_m\}$ são o mesmo conjunto $\{i_1, \ldots, i_p\}$, isto é

$$\mathbf{v} = \mathbf{s}_{i_1} + \dots + \mathbf{s}_{i_p}$$
 e (9)
 $\mathbf{v} = \mathbf{t}_{i_1} + \dots + \mathbf{t}_{i_p}$

Mas $(\mathbf{s}_{i_1} - \mathbf{t}_{i_1}) + \cdots + (\mathbf{s}_{i_p} - \mathbf{t}_{i_p}) = \mathsf{o}$. Portanto, cada termo $\mathbf{s}_{i_1} - \mathbf{t}_{i_2} \in S_{i_1}$ é uma soma de vetores de subespaços diferentes de S_{io}, que só pode acontecer se

soma de vetores de subespaços diferentes de
$$S_{i_u}$$
, que só pode acontecer se $\mathbf{s}_{i_u} - \mathbf{t}_{i_u} = \mathbf{o}$. Portanto, $\mathbf{s}_{i_u} = \mathbf{t}_{i_u}$ para todos os i_u e assim demonstramos que V é a

soma direta de S.

Se tivermos apenas dois subespaços $\{W_1, W_2\}$, essa condição simplesmente indicará $W_1 \cap W_2 = \{o\}$. Se tivermos mais de dois subespaços, essa condição é

mais forte que a condição $W_i \cap W_i = \{0\}$ para $i \neq j$.

Exemplo

Toda matriz $A \in \mathcal{M}_{n,n}(\mathbb{K})$ pode ser decomposta como

$$A = \frac{1}{2}(A + A^{t}) + \frac{1}{2}(A - A^{t}) = B + C$$
 (11)

onde A^t é a transposta de A. É fácil verificar que B é uma matriz simétrica e C é assimétrica e assim temos uma decomposição de A como a soma de uma matriz simétrica e uma matriz simétrica.

Como os conjuntos $\operatorname{Sim}_{n,n}$ e $\operatorname{ASim}_{n,n}$ de todas as matrizes simétricas e assimétricas em $\mathcal{M}_{n,n}(\mathbb{K})$ são subespaços de $\mathcal{M}_{n,n}(\mathbb{K})$, temos que

$$\mathcal{M}_{n,n}(\mathbb{K}) = \mathsf{Sim}_{n,n} + \mathsf{ASim}_{n,n}$$

Além disso, se S + T = S' + T', onde S e S' são simétricas e T e T' são antissimétricas, então a matriz

$$U = S - S' = T' - T$$

é simétrica e antissimétrica. Portanto, se char $(\mathbb{K}) \neq 2$, devemos ter U = 0 e, portanto, S = S' e T = T'. Assim se char $(\mathbb{K}) \neq 2$ a soma é direta:

$$\mathcal{M}_{n,n}(\mathbb{K}) = \mathsf{Sim}_{n,n} \oplus \mathsf{ASim}_{n,n}$$

Decomposição em Somas Direta

Proposição

Seja V um espaço vetorial e seja $\{W_1, \ldots, W_k\}$ um conjunto de subespaços de V. Seja, \underline{B}_i seja uma base de W_i , para cada i, e deixe, $\underline{B} = \bigcup \underline{B}_i$. Então

- \underline{B} gera V se e somente se V = $W_1 + \cdots + W_k$.
- <u>B</u> é linearmente independente se e somente se $\{W_1, \ldots, W_k\}$ for independente.
- \underline{B} é uma base para V se e somente se V $=W_1\oplus\cdots\oplus W_k$.

A demonstração da proposição será deixada como exercício

Corolário

Sejam V um espaço vetorial de dimensão finita e $\{W_1, \ldots, W_k\}$ um conjunto de subespaços com $V = W_1 \oplus \cdots \oplus W_k$. Então $\dim(V) = \dim(W_1) + \cdots + \dim(W_k)$.

A demonstração da proposição será deixada como exercício

Corolário

Seja V um espaço vetorial da dimensão n e seja $\{W_1, \ldots, W_k\}$ um conjunto de

- subespacos. Sejam $n_i = \dim(W_i)$.
 - Se $n_1 + \cdots + n_k > n$, então $\{W_1, \ldots, W_k\}$ não é independente.

 - Se $n_1 + \cdots + n_h < n$, então $V \neq W_1 + \cdots + W_h$.

 - Se $n_1 + \cdots + n_k = n$, o sequinte é equivalente:

 $\{W_1, \ldots, W_k\}$ é independente.

 $V = W_1 + \cdots + \overline{W_h}$

- $V = W_1 \oplus \cdots \oplus W_h$.

Complemento

Definição (Complemento)

Seja V um espaço vetorial e W_1 seja um subespaço de V. Então W_2 é um complemento de W_1 se $V = W_1 \oplus W_2$.

Teorema

Seja V um espaço vetorial e W seja um subespaço de V. Então W_1 possui um complemento W'. Além disso temos $\dim V = \dim W + \dim W'$

DEMONSTRAÇÃO. Suponha que W seja um subespaço de V. Seja B uma base de W. Pelo Teorema ??, existe uma base B' de V tal que B \subseteq B'. Seja W' = $\langle B' - B \rangle$.

Como B' = B \cup (B' - B), $V = \langle B' \rangle = \langle B \rangle + \langle B' - B \rangle = W + W'$. Como B' é linearmente independente e B \cap (B' - B) = o, \langle B \rangle \cap \langle B' - B \rangle = (o). Assim,

 $W \cap W' = (o)$, e a prova está completa.

