Álgebra Linear Avançada

Decomposição Cíclica

Daniel Miranda Machado

29 de novembro de 2020

UFABC

Embora, em geral, o polinômio característico de transformação linear $T: V \to V$ possa ser decomposto como um produto de potências de polinômios irredutíveis sobre $\mathbb{K}[x]$, digamos $c_T = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, os polinômios irredutíveis p_j não precisam ser lineares.

Em outras palavras, os autovalores de T não precisam pertencer ao corpo \mathbb{K} . Portanto, é natural procurar uma forma canônica para T nesse caso geral.

Neste vídeo apresentamos a Decomposição Cíclica e no próximo a Forma Canônica Racional.

Forma Racional

Seja $T: V \to V$ um operador linear em um espaço vetorial de dimensão finita. Mostraremos que existe uma base \underline{B} de V, na qual $[T]_{\underline{B}}$ é uma matriz na forma canônica racional:

$$\begin{bmatrix} C_{p_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & C_{p_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & C_{p_r} \end{bmatrix} \quad \text{com} \quad C_{p_1} = \begin{bmatrix} 0 & 0 & 0 & 0 & -a_{i0} \\ 1 & 0 & 0 & 0 & -a_{i1} \\ 0 & 1 & 0 & 0 & -a_{i2} \\ \vdots & & & \vdots \\ 0 & 0 & 0 & 1 & -a_{ik-1} \end{bmatrix}$$

onde C_{p_i} é uma matriz companheira para algum polinômio $p_i(x) = a_{ik}x^k + \cdots + a_{in}x + a_{io} \in \mathbb{K}[x].$

Vamos agora focar em um tipo particular de subespaço invariante. Suponha que V seja um espaço vetorial de dimensão finita e que $T: V \to V$ seja um operador linear. É fácil ver que a interseção de qualquer família de subespaços de V invariantes por T também é um subespaço de V invariante por T.

Disso segue imediatamente que para cada subconjunto A de V existe um menor subespaço invariante por T que contém A, ou seja, a interseção de todos os subespaços invariante por T que contêm A. Denotaremos esse subespaço por Z_{Λ}^{T} .

Subespaços invariante por T que contem A. Denotaremos esse subespaço por $Z_{\mathbf{v}}^T$ No caso em que $A = \{\mathbf{v}\}$, escreveremos $Z_{\mathbf{v}}^T$ ou simplesmente $Z_{\mathbf{v}}$ quando T for claramente subentendido.

Definição

Seja T: $V \to V$ um operador linear então o **subespaço** T**-cíclico** de V gerado por \mathbf{v} , e denotado por $\mathbf{Z}_{\mathbf{v}}$, é o menor subespaço invariante por \mathbf{T} que contém \mathbf{v} .

Exemplo

Seja a transformação linear $T: \mathbb{K}^3 \to \mathbb{K}^3$ definida por

$$T(x, y, z) = (y + 2z, -2z, x)$$

$$T(x, y, z) = (y + 2z, -2z, x)$$

Considere o vetor (1, 0, 0). Temos $T(1, 0, 0) = (0, 0, 1)$ e

 $Z_{(1,0,0)} = \{(x, 0, z); x, z \in \mathbb{K}\}.$

 $T^{2}(1, 0, 0) = T(0, 0, 1) = (2, 0, 1)$, e assim

O subespaco Z_v pode ser caracterizado do seguinte modo.

Teorema

Sejam V um espaço vetorial de dimensão finita sobre um corpo \mathbb{K} e T: V \rightarrow V um operador linear. Então, para cada $\mathbf{v} \in V$

 $Z_{\mathbf{v}} = \{p(T)(\mathbf{v}); p \in \mathbb{K}[x]\}.$

um operador linear. Então, para cada $\mathbf{v} \in V$,

Demonstração

É fácil ver que o conjunto $W = \{p(T)(\mathbf{v}) \mid p \in \mathbb{K}[x]\}$ é um subespaço de V que contém \mathbf{v} . Como T comuta com p(T), esse subespaço é T-invariante.

Suponha agora que U seja um subespaço invariante por T que contenha \mathbf{v} . Então, claramente, U contém $T^k(\mathbf{v})$ para todos os inteiros não negativos k e, consequentemente, $p(T)(\mathbf{v})$ para cada polinômio $p \in \mathbb{K}[x]$. Assim, U contém W. Portanto, W é o menor subespaço invariante por T que contém \mathbf{v} e, portanto, coincide com $Z_{\mathbf{v}}$.

Nosso objetivo imediato é descobrir uma base para o subespaço $Z_{\mathbf{v}}$. Para esse propósito, considere a sequência

$$\mathbf{v}, T(\mathbf{v}), T^2(\mathbf{v}), \ldots, T^r(\mathbf{v}), \ldots$$

de elementos em $Z_{\mathbf{v}}$. Claramente, existe um menor número inteiro positivo k, de modo que $T^k(\mathbf{v})$ é uma combinação linear dos elementos que o precedem nesta lista, digamos

$$T^k(\mathbf{v}) = \lambda_0 \mathbf{v} + \lambda_1 T(\mathbf{v}) + \cdots + \lambda_{k-1} T^{k-1}(\mathbf{v})$$

e $\{\mathbf{v}, T(\mathbf{v}), \dots, T^{k-1}(\mathbf{v})\}$ é então um subconjunto linearmente independente de

 $Z_{\mathbf{v}}$.

Escrevendo $a_i = -\lambda_i$ para $i = 0, \dots, k-1$ deduzimos que o polinômio

 $m_{y} = a_{0} + a_{1}X + \cdots + a_{k-1}X^{k-1} + X^{k}$

é o polinômio mônico de menor grau tal que $m_{\mathbf{v}}(T)(\mathbf{v}) = \mathbf{o}$.

Definição

Seja $\mathbf{v} \in V$. Então o conjunto

$$\{p(X) \in \mathbb{K}[X] : p(T)(v) = 0\}$$

é um ideal de $\mathbb{K}[X]$ e seu gerador mônico $m_{\mathbf{v}}$ é dito T-aniquilador de \mathbf{v} .

O T-aniquilador de \mathbf{v} também será denotado por $Ann(\mathbf{v};T)$

Exemplo

Seja T a transformação apresentada no Exemplo 1. Nesse exemplo tínhamos

que se $\mathbf{u} = (0, 0, 1)$ então $T^2\mathbf{u} = 2\mathbf{I}\mathbf{u} + T\mathbf{u}$ e logo o T-aniquilador de \mathbf{u} é o

polinômio $m_{y} = x^{2} - x - 2 = (x - 2)(x + 1)$.

Teorema

Sejam V um espaço vetorial de dimensão finita e T : V \rightarrow V uma

é uma base de Z_v e, portanto, $\dim Z_v = \deg m_v$.

 $m_{\rm w} = a_{\rm O} + a_{\rm 1} x + \cdots + a_{k-1} x^{k-1} + x^k$

 $B_{\mathbf{v}} = \{\mathbf{v}, T(\mathbf{v}), \ldots, T^{k-1}(\mathbf{v})\}$

transformação linear. Se $\mathbf{v} \in V$ tem T-aniquilador

Então o conjunto

Teorema (cont)

Além disso, se $T \upharpoonright_{Z_{\mathbf{v}}}: Z_{\mathbf{v}} \to Z_{\mathbf{v}}$, é a transformação linear induzida no

T-subespaço invariante Z_v , então a matriz de T_{Z_v} em relação à base ordenada B., é

ordenada
$$\underline{B}_{\mathbf{v}}$$
 é
$$\begin{bmatrix} 0 & 0 & 0 & 0 & -a_0 \\ 1 & 0 & 0 & 0 & -a_1 \\ 0 & 1 & 0 & 0 & -a_1 \end{bmatrix}$$

$$C_{m_{\mathbf{v}}} = egin{bmatrix} 0 & 0 & 0 & 0 & -a_{\mathrm{o}} \ 1 & 0 & 0 & 0 & -a_{\mathrm{1}} \ 0 & 1 & 0 & 0 & -a_{\mathrm{2}} \ dots & & dots \ 0 & 0 & 0 & 1 & -a_{k-l} \ \end{bmatrix}$$

Finalmente, o polinômio mínimal de T_Z, é m_v.

Demonstração

Claramente, $\underline{B}_{\mathbf{v}}$ é linearmente independente e $T^k(\mathbf{v}) \in \langle \underline{B}_{\mathbf{v}} \rangle$. Provaremos por indução que, de fato, $T^n(\mathbf{v}) \in \langle B \rangle$ para todo n.

A afirmação é verdadeira para $n=1,\ldots,k$ suponha que n>k e $T^{n-i}(\mathbf{v})\in \langle \underline{\mathbf{B}}_{\mathbf{v}}\rangle$. Então $T^{n-i}(\mathbf{v})$ é uma combinação linear de $\mathbf{v},T(\mathbf{v}),\ldots,T^{k-i}(\mathbf{v})$ e assim $T^n(\mathbf{v})$ é combinação linear de $T(\mathbf{v}),T^2(\mathbf{v}),\ldots,T^k(\mathbf{v})$, e logo $T^n(\mathbf{v})\in \langle B\rangle$.

É imediato a partir dessa observação que $p(T)(\mathbf{v}) \in \langle \underline{\mathbf{B}}_{\mathbf{v}} \rangle$ para cada polinômio p. Portanto, $Z_{\mathbf{v}} \subseteq \langle \underline{\mathbf{B}}_{\mathbf{v}} \rangle$ de onde temos igualdade, pois a demonstração da inclusão inversa é direta.

Consequentemente, $\underline{B}_{\mathbf{v}}$ é uma base de $Z_{\mathbf{v}}$.

Agora como

$$T \upharpoonright_{Z_{\mathbf{v}}}(\mathbf{v}) = T(\mathbf{v})$$
 $T \upharpoonright_{Z_{\mathbf{v}}}[T(\mathbf{v})] = T^{2}(\mathbf{v})$
 \vdots
 $T \upharpoonright_{Z_{\mathbf{v}}}[T^{k-2}(\mathbf{v})] = T^{k-1}(\mathbf{v})$
 $T \upharpoonright_{Z_{\mathbf{v}}}[T^{k-1}(\mathbf{v})] = T^{k}(\mathbf{v}) = -a_{0}\mathbf{v} - a_{1}T(\mathbf{v}) - \cdots - a_{k-1}T^{k-1}(\mathbf{v})$

é claro que a matriz de $T\!\upharpoonright_{Z_{\mathbf{v}}}$ em relação à base $\underline{B}_{\mathbf{v}}$ é a matriz acima C_{m_λ} acima.

Por fim, suponha que o polinômio mínimal de $T|_{Z_n}$ seja

$$m_{T|_{T_{r}}} = b_{0} + b_{1}x + \cdots + b_{r-1}x^{r-1} + x^{r}$$

Então

$$O=m_{T\upharpoonright_{z_{r}}}(T)(\mathbf{v})=b_{o}\mathbf{v}+b_{1}T(\mathbf{v})+\cdots+b_{r-1}T^{r-1}(\mathbf{v})+T^{r}(\mathbf{v})$$

 $m_{T|_{Z_{\mathbf{v}}}}$ é a transformação nula em $Z_{\mathbf{v}}$, bem como o é $m_{\mathbf{v}}(T|_{Z_{\mathbf{v}}})$. Consequentemente,

temos $m_{T|_{Z_{\bullet}}}|m_{\mathbf{v}}$ e, portanto, $r \leq k$. Assim, r = k e $m_{T|_{Z_{\bullet}}} = m_{\mathbf{v}}$.

Logo $T^r(\mathbf{v})$ é combinação linear de $\mathbf{v}, T(\mathbf{v}), \dots, T^{r-1}(\mathbf{v})$ e, portanto, $k \leq R$. Mas

Exemplo

Seja T a transformação apresentada no Exemplo 1. No Exemplo 1 mostramos que o T-aniquilador de \mathbf{v} é o polinômio $m_{\mathbf{v}}=(x-2)(x+1)$. Nesse caso o polinômio mínimal de T é $m_T=-(x-2)(x+1)(x+2)$ e logo $m_{\mathbf{v}}$ divide m_T

Exemplo

Seja T o operador que na base canônica \underline{B} é representado pela matriz

$$[T]_{\underline{\mathsf{B}}} = \left[\begin{array}{rrr} -2 & 3 & 6 \\ -2 & 2 & 5 \\ -1 & 1 & 3 \end{array} \right]$$

 $m_{y} = -1 + 3x - 3x^2 + x^3$

Vamos calcular o aniquilador de
$$\mathbf{v}_1 = [1, 1, 0]$$
. Observamos que

 $\mathbf{v}_2 = T\mathbf{v}_1 = [1, 0, 0] \mathbf{v}_3 = T^2\mathbf{v}_1 = T\mathbf{v}_2 = [-2, -2, -1] \mathbf{v}_4 = T^3\mathbf{v} = [-8, -5, -3].$ Os

vetores $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ são linearmente independentes e formam uma base de $Z_{\mathbf{v}} = V$. Temos para \mathbf{v}_{4} a seguinte relação linear $1\mathbf{v}_{1}+3T\mathbf{v}_{1}-3T^{2}\mathbf{v}_{1}+T^{3}\mathbf{v}_{1}=0$. Logo

Nessa base temos

$$\begin{bmatrix} -2 & 3 & 6 \\ -2 & 2 & 5 \\ -1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 1 & 0 & -2 \\ 0 & 0 & -1 \end{bmatrix}$$

Definicão

denominado **vetor** T**-cíclico** para W.

Se V é um espaço vetorial de dimensão finita e T: $V \rightarrow V$ é linear, então um subespaço W de V é dito T-cíclico se é T-invariante e possui uma base no

formato $\{\mathbf{v}, T(\mathbf{v}), \dots, T^m(\mathbf{v})\}$. Essa base é denominada **base cíclica** e \mathbf{v} é

- \Box O Teorema 4 mostra que $\mathbf{v} \in V$ é um vetor cíclico para o subespaço $Z_{\mathbf{v}}$ com base cíclica $\underline{B}_{\mathbf{v}}$.
- \Box O subespaço $Z_{\mathbf{v}}$ é denominado **subespaço cíclico de** T gerado por $\{\mathbf{v}\}$.
- \square matriz C_{m_v} do Teorema 4 é denominada **matriz companheira** do T-aniquilador m_v .

Exemplo

Um operador nilpotente N com índice de nilpotência $n = \dim V$ sempre possui um vetor cíclico.

Teorema da Decomposição Cíclica

Sejam V um espaço vetorial de dimensão finita sobre um corpo \mathbb{K} e $T:V\to V$ um operador linear. Então existem vetores T-cíclicos $\mathbf{v}_1,\ldots,\mathbf{v}_k$ tais que

$$V=\bigoplus_{j=1}^{\kappa}Z_{\mathbf{v}_{j}},$$

Em particular, existe uma base de V na qual a matriz de T é da forma

e que $p_T = p_1 \cdots p_k$.

Demonstração

A prova será feita por indução sobre $n = \dim V$. O teorema claramente vale se n = 1, portanto, assuma que o teorema vale para todos os operadores lineares em espaços vetoriais de dimensão menor que n.

Nosso objetivo é mostrar que $V = Z_{\mathbf{v}_1}$ para algum $\mathbf{v}_1 \in V$ ou que $V = Z_{\mathbf{v}_1} \oplus M$ para algum subespaço T-invariante M.

Seja $m \le n$ a maior dimensão de um subespaço cíclico, ou seja, $\dim Z_{\mathbf{v}} \le m$ para todos os $\mathbf{v} \in V$, e seja $\mathbf{v}_1 \in V$, de modo que $\dim Z_{\mathbf{v}_1} = m$.

Se m=n, então $Z_{\mathbf{v}_1}=V$ temos o que queríamos demonstrar. Caso contrário, devemos mostrar que existe um complemento T-invariante para

 $Z_{\mathbf{v}_1} = \langle \{\mathbf{v}_1, T(\mathbf{v}_1), \ldots, T^{m-1}(\mathbf{v}_1) \rangle \}$

em V.

Para construir esse complemento, consideramos a aplicação linear $au: V \to \mathbb{K}^m$ definida como

$$au(\mathbf{v}) = [f(\mathbf{v}), f(T(\mathbf{v})), \dots, f(T^{m-1}(\mathbf{v}))]^{\mathrm{t}}$$

onde $f: V \to \mathbb{K}$ é um funcional linear escolhido de modo que

$$f(\mathbf{v}_1) = 0$$

$$f(T(\mathbf{v}_1)) = 0$$

$$\vdots \quad \vdots$$

$$f(T^{m-2}(\mathbf{v}_1)) = 0$$

$$f(T^{m-1}(\mathbf{v}_1)) = 1.$$

Observe que é possível escolher tal funcional pois os vetores $\mathbf{v}_1, T(\mathbf{v}_1), \dots$ $T^{m-1}(\mathbf{v}_1)$ são linearmente independentes e, portanto, parte de uma base para V.

Afirmamos agora que $\tau \upharpoonright_{Z_{\mathbf{v}_1}} : Z_{\mathbf{v}_1} \to \mathbb{K}^m$ é um isomorfismo. Para demonstrar isso, encontramos a representação matricial para $\tau \upharpoonright_{Z_{w}}$.

Usando a base $\underline{B} = \{\mathbf{v}_1, T(\mathbf{v}_1), \dots, T^{m-1}(\mathbf{v}_1)\}$ para $Z_{\mathbf{v}_1}$ e a base canônica

 $C = \mathbf{e}_1, \dots, \mathbf{e}_m$ para \mathbb{K}^m .

Vemos que:

onde * indica que não nos importamos com o valor da entrada.

Como a matriz é invertível, temos que $\tau \upharpoonright_{Z_{\mathbf{v}_1}} : Z_{\mathbf{v}_1} \to \mathbb{K}^m$ é um isomorfismo.

Em seguida, precisamos mostrar que $\ker \tau$ é T-invariante. Seja $\mathbf{v} \in \ker \tau$ logo por definição

definição
$$\tau(\mathbf{v}) = [f(\mathbf{v}), f(T(\mathbf{v})), \dots, f(T^{m-1}(\mathbf{v}))] = [o, o, \dots, o]$$

e consequentemente

$$\tau(T(\mathbf{v})) = [f(T(\mathbf{v})), f(T^2(\mathbf{v})), \dots, f(T^{m-1}(\mathbf{v})), f(T^m(\mathbf{v}))] = [\mathsf{o}, \mathsf{o}, \dots, f(T^m(\mathbf{v}))]$$

Agora, pela definição de m, temos que $T^m(\mathbf{v})$ é uma combinação linear de $T^m(\mathbf{v})$ $T^{m-1}(\mathbf{v})$ less mostra que $f(T^m(\mathbf{v})) = 0$ e consequentemente.

 $(\mathbf{v}), T(\mathbf{v}), \ldots, T^{m-1}(\mathbf{v})$. Isso mostra que $f(T^m(\mathbf{v})) = 0$ e, consequentemente, $T(\mathbf{v}) \in \ker \tau$.

Finalmente, mostramos que $V = Z_{\mathbf{v}_1} \oplus \ker \tau$. Vimos que $\tau \upharpoonright_{Z_{\mathbf{v}_1}} : Z_{\mathbf{v}_1} \to \mathbb{K}^m$ é um isomorfismo. Isso implica que $Z_{\mathbf{v}_1} \cap \ker \tau = \{\mathbf{o}\}$.

Logo

$$= \dim (\ker \tau) + \dim (Z_{\mathbf{v}_1})$$
$$= \dim (\ker \tau + Z_{\mathbf{v}_1}).$$

Assim,
$$V = Z_{\mathbf{v}_{\bullet}} + \ker \tau = Z_{\mathbf{v}_{\bullet}} \oplus \ker \tau$$
.

 $\dim(V) = \dim(\ker \tau) + \dim(\operatorname{im} \tau)$

 $= \dim (\ker \tau) + m$

Logo temos a decomposição $V = \bigoplus_{i=1}^k Z_{\mathbf{v}_i}$.

(1)

Comentários Finais.