Lista 2 Cálculo Vetorial

Gradiente, Divergente e Rotacional

1 — Desenhe os seguintes campos vetoriais:

- a) -yi + xj
- b) xi + yj
- c)
- d)

2 — Calcule a matriz Jacobiana de $f(x,y) = (e^x \sin x, e^x \cos y)$.

3 — Desenhe as curvas de nível correspondentes aos respectivos valores c=0,1,4,9 para a função $f(x,y)=x^2+y^2$. Determine $\nabla f(x_0,y_0)$, onde (x_0,y_0) é um ponto da curva de nível 1 da função e relacione-o com o vetor tangente à curva de nível neste ponto.

4 — Calcule $\frac{\partial^2 f}{\partial x \partial y}$ dos seguintes campos escalares:

- a) $f(x,y) = \ln(x^2 + y^2)$, com $(x,y) \neq (0,0)$
- b) $f(x,y) = \arctan(y/x)$, $com x \neq 0$.

5 — Calcule $\|\nabla f\|$ dos seguintes campos escalares:

- a) $f(x, y) = x^2 + y^2 \sin(xy)$
- b) $f(x,y) = e^x \cos y$
- c) $f(x,y,z) = ln(x^2 + 2y^2 z^5)$.

6 — Uma espaçonave está em apuros perto do

lado ensolarado de Mercúrio. A temperatura do casco do navio quando ele está na localização (x,y,z) será dada por

$$T(x, y, z) = e^{-x^2 - 2y^2 - 3z^2},$$

onde x, y e z são medido em metros. Ele está atualmente em (1,1,1).

- a) Em que direção deve mover a fim de diminuir a temperatura mais rapidamente?
- b) Se a espaçonave viaja a e⁸ metros por segundo, quão rápido será a diminuição da temperatura se ele prosseguir Essa direção?
- c) Infelizmente, o metal do o casco se quebrará se arrefecido a uma taxa maior que $\sqrt{14}e^2$ graus por segundo. Descreva o conjunto de possíveis direções em que ele pode ir para diminuir a temperatura abaixo de essa taxa.

7 — Dado uma transformação linear L : $\mathbb{R}^3 \to \mathbb{R}^3$ e

$$F: \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ x & \mapsto & x \times L(x) \end{array}.$$

Mostre que F é diferenciável e que

$$D_{\boldsymbol{x}}(F)(\boldsymbol{h}) = \boldsymbol{x} \times L(\boldsymbol{h}) + \boldsymbol{h} \times L(\boldsymbol{x}).$$

8 — Dado $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}$, $n \ge 1$, $\mathbf{f}(\mathbf{x}) = \|\mathbf{x}\|$ a norma usual em \mathbb{R}^n , com $\|\mathbf{x}\|^2 = \mathbf{x} \cdot \mathbf{x}$. Prove que

$$D_{\mathbf{x}}(f)(\mathbf{v}) = \frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{x}\|'}$$

para $x \neq 0$, mas que f não é diferenciável no 0.

9 — Seja $v(r,t) = t^n \exp(-\frac{r^2}{4t})$. Calcule n para que o campo escalar v satisfaça a equação

$$\frac{\partial \nu}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \nu}{\partial r}).$$

10 — Considere duas funções f, $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$. Prove que $\nabla(fg) = f\nabla g + g\nabla f$.

11 — Calcule $\nabla \cdot \mathbf{F}$ e $\nabla \times \mathbf{F}$ para os seguintes campos vetoriais:

- a) $F(x, y, z) = x^2yz\mathbf{i} + xy^2z\mathbf{j} + xyz^2\mathbf{k}$
- b) $F(x,y,z) = \cos(xz)\mathbf{j} \sin(xy)\mathbf{k}$
- c) $F(x, y, z) = (1, x + yz, xy \sqrt{z})$

12 — Considere o campo de força central

$$\overrightarrow{g}(x,y) = f(||\overrightarrow{r}||)\overrightarrow{r},$$

onde $f : \mathbb{R} \longrightarrow \mathbb{R}$ é uma função derivável e $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j}$. Calcule rot \overrightarrow{g} .

13 — Considere o escoamento bidimensional

$$\overrightarrow{v}(x,y) = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}.$$

Desenhe tal campo, calcule $\operatorname{rot} \overrightarrow{v}$, $\operatorname{div} \overrightarrow{v}$ e interprete.

14 — Mostre que qualquer campo vetorial da forma $F(x, y, z) = f(x)\mathbf{i} + g(y)\mathbf{j} + h(z)\mathbf{k}$, onde f, g, h são funções diferenciáveis, é irrotacional.

15 — Mostre que qualquer campo vetorial da forma $F(x, y, z) = f(y, z)\mathbf{i} + g(x, z)\mathbf{j} + h(x, y)\mathbf{k}$, onde f, g, h são funções diferenciáveis, é incompressível.

16 — Calcule o Laplaciano das seguintes funções:

- a) $f(x,y) = \arctan(y/x)$, com y > 0
- b) f(x,y) = xy
- c) $f(x,y) = ln(x^2 + y^2)$
- d) $f(x,y) = \frac{1}{4}e^{x^2-y^2}$

17 — Seja $\phi(x,y) = f(x^2 + y^2)$, onde f(u) é uma função de uma variável real derivável até $2^{\underline{a}}$ ordem. Suponha que $\nabla^2 \phi = 0$.

- a) Mostre que $\mathfrak{u}f''(\mathfrak{u}) = -f'(\mathfrak{u}), \quad \mathfrak{u} > 0.$
- b) Determine uma f não-constante para que se tenha $\nabla^2 \phi = 0$.

18 — Mostre que os operadores divergente e rotacional são lineares, ou seja, dados $u, v \in \mathbb{R}^3$ e constantes $a, b \in \mathbb{R}$, então:

- a) $\nabla \cdot (au + bv) = a\nabla \cdot u + b\nabla \cdot v$
- b) $\nabla \times (au + bv) = a\nabla \times u + b\nabla \times v$.

19 — Mostre que $\nabla \times (\mathbf{f}\mathbf{u}) = \mathbf{f}\nabla \times \mathbf{u} + (\nabla \mathbf{f}) \times \mathbf{u}$

20 — Mostre que $\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\nabla \times \mathbf{u}) - \mathbf{u} \mathbf{\mathring{u}} \cdot (\nabla \times \mathbf{v})$

21 — Se f, g forem campos escalares e F, G forem campos vetoriais, defina as operações fF, F · G e F × G por:

$$(fF)(x,y,z) = f(x,y,z)F(x,y,z)$$
$$(F \cdot G)(x,y,z) = F(x,y,z) \cdot G(x,y,z)$$
$$(F \times G)(x,y,z) = F(x,y,z) \times G(x,y,z).$$

Suponha que existam as derivadas parciais das funções envolvidas e são contínuas. Mostre que:

- a) $\operatorname{div}((\mathbf{F}) + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$
- b) rot(F + G) = rot F + rot G
- c) $rot(fF) = f rot F + (\nabla f) \times F$
- d) $\operatorname{div}(\nabla f \times \nabla g) = 0$
- e) $\nabla \times (\mathbf{u} \times \mathbf{v}) = \mathbf{u}(\nabla \cdot \mathbf{v}) \mathbf{v}(\nabla \cdot \mathbf{u}) + (\mathbf{v} \cdot \nabla)\mathbf{u} (\mathbf{u} \cdot \nabla)\mathbf{v}$, onde $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$

f) se
$$\overrightarrow{F} = (P, Q, R)$$
 então $rot(rotF) = grad(divF) - \nabla^2 F$, onde $\nabla^2 F = (\triangle P, \triangle Q, \triangle R)$.

22 — Um campo vetorial é dito solenoidal se seu divergente for nulo. Mostre que se u é irrotacional, sendo $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, então $\mathbf{u} \times \mathbf{r}$ é solenoidal.

23 — Mostre que se u é um vetor constante então $\nabla \times (\mathbf{u} \times \mathbf{r}) = 2\mathbf{u}$, sendo $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

24 — Mostre que se u e ν são irrotacionais então $\stackrel{\cdot}{\text{ciável}}$ então $\stackrel{\cdot}{\nabla}\times(\varphi\nabla\varphi)=0.$

$$= u \times v$$
 é solenoidal.

25 — A velocidade de um fluido bidimensional é dada por $v = v(x,y) = u(x,y) \cdot \vec{i} - v(x,y) \cdot \vec{j}$. Supondo que o fluido seja incompressível e irrotacional, prove que valem as condições de Cauchy-Riemann:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

26 — Mostre que se ϕ é um campo escalar diferenciável então $\nabla \times (\phi \nabla \phi) = 0$.

Respostas dos Exercícios

7 Temos

$$F(\mathbf{x} + \mathbf{h}) - F(\mathbf{x}) = (\mathbf{x} + \mathbf{h}) \times L(\mathbf{x} + \mathbf{h}) - \mathbf{x} \times L(\mathbf{x})$$
$$= (\mathbf{x} + \mathbf{h}) \times (L(\mathbf{x}) + L(\mathbf{h})) - \mathbf{x} \times L(\mathbf{x})$$
$$= \mathbf{x} \times L(\mathbf{h}) + \mathbf{h} \times L(\mathbf{x}) + \mathbf{h} \times L(\mathbf{h})$$

Agora provaremos que $\|\mathbf{h} \times \mathsf{L}(\mathbf{h})\| = \mathbf{o}(\|\mathbf{h}\|)$ as $\mathbf{h} \to \mathbf{0}$. Para terminar basta ver que $\mathsf{L}(\mathbf{h}) \to 0$. Esse fato pode ser utilizado, mas por completude o demonstraremos:

Para isso deixe

$$\mathbf{h} = \sum_{k=1}^{n} \mathbf{h}_{k} \mathbf{e}_{k},$$

onde os vetores \mathbf{e}_k formam a base canônica de \mathbb{R}^n . Então

$$L(\mathbf{h}) = \sum_{k=1}^{n} h_k L(\mathbf{e}_k),$$

e logo pela desigualdade triangular e pela desigualdade de Cauchy-Bunyakovsky-Schwarz,

$$\begin{split} \|L(\mathbf{h})\| &\leqslant & \sum_{k=1}^{n} |h_k| \|L(\mathbf{e}_k)\| \\ &\leqslant & \left(\sum_{k=1}^{n} |h_k|^2\right)^{1/2} \left(\sum_{k=1}^{n} \|L(\mathbf{e}_k)\|^2\right)^{1/2} \\ &= & \|\mathbf{h}\| (\sum_{k=1}^{n} \|L(\mathbf{e}_k)\|^2)^{1/2}, \end{split}$$

pela desigualdade de Cauchy-Bunyakovsky-Schwarz,

$$\|\mathbf{h} \times L(\mathbf{h})\| \le \|\mathbf{h}\| \|L(\mathbf{h})\| \le \|\mathbf{h}\|^2 \| \|L(\mathbf{e}_k)\|^2)^{1/2} = \mathbf{o}(\|\mathbf{h}\|),$$

como queriamos.

8 Assuma que $\mathbf{x}\neq\mathbf{0}$. Usaremos o fato que $(1+t)^{1/2}=1+\frac{t}{2}+\mathbf{o}\left(t\right)$ as $t\to0$. Assim temos

$$\begin{aligned} \mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x}) &= \|\mathbf{x} + \mathbf{h}\| - \|\mathbf{x}\| \\ &= \sqrt{(\mathbf{x} + \mathbf{h}) \cdot (\mathbf{x} + \mathbf{h})} - \|\mathbf{x}\| \\ &= \sqrt{\|\mathbf{x}\|^2 + 2\mathbf{x} \cdot \mathbf{h} + \|\mathbf{h}\|^2} - \|\mathbf{x}\| \\ &= \frac{2\mathbf{x} \cdot \mathbf{h} + \|\mathbf{h}\|^2}{\sqrt{\|\mathbf{x}\|^2 + 2\mathbf{x} \cdot \mathbf{h} + \|\mathbf{h}\|^2} + \|\mathbf{x}\|}. \end{aligned}$$

As $h \rightarrow 0$,

$$\sqrt{\|\mathbf{x}\|^2 + 2\mathbf{x} \cdot \mathbf{h} + \|\mathbf{h}\|^2} + \|\mathbf{x}\| \to 2\|\mathbf{x}\|.$$

Como $\|\mathbf{h}\|^2 = \mathbf{o}(\|\mathbf{h}\|)$ e $\mathbf{h} \to \mathbf{0}$, temos

$$\frac{2x \cdot h + \|h\|^2}{\sqrt{\|x\|^2 + 2x \cdot h + \|h\|^2} + \|x\|} \to \frac{x \cdot h}{\|h\|} + o(\|h\|),$$

provando a primeira afirmação

Para demonstrar a segunda afirmação, assuma que existe uma transformação linear $D_0(f)=L$, $L:\mathbb{R}^n\to\mathbb{R}$ Tal que

$$\|\mathbf{f}(\mathbf{0}+\mathbf{h})-\mathbf{f}(\mathbf{0})-\mathbf{L}(\mathbf{h})\|=\mathbf{o}\left(\|\mathbf{h}\|\right)$$
 ,

 $\text{as } \|\mathbf{h}\| \to 0. \text{ Claramente L}(\mathbf{0}) = \mathbf{0}, \text{e assim, D}_{\mathbf{0}}(L)(\mathbf{0}) = L(\mathbf{0}) = \mathbf{0}. \text{ Este fato implica que } \frac{L(\mathbf{h})}{\|\mathbf{h}\|} \to D_{\mathbf{0}}(L)(\mathbf{0}) = \mathbf{0}, \text{ as } \|\mathbf{h}\| \to 0. \text{ Como } \mathbf{f}(\mathbf{0}) = \|\mathbf{0}\| = 0, \mathbf{f}(\mathbf{h}) = \|\mathbf{h}\| \text{ isto implicaria em }$

$$\left|\left|\left|\mathbf{h}\right|\right|-\mathbf{L}(\mathbf{h})\right|\right|=\mathbf{o}\left(\left\|\mathbf{h}\right\|\right)$$
,

ou

$$\left|\left|1-\frac{\mathsf{L}(\mathbf{h})}{\|\mathbf{h}\|}\right|\right|=\mathbf{o}\left(1\right).$$

Mas o lado esquerdo da expressão anterior $\to 1$ seria $\mathbf{h} \to \mathbf{0}$, e o lado direito $\to 0$ seria $\mathbf{h} \to \mathbf{0}$. O que é uma contradição, e logo a derivada não existe.