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Part I.

Differential Vector Calculus

1





1.
Multidimensional Vectors

1.1. Vectors Space

In this section we introduce an algebraic structure forRn, the vector space in n-dimensions.

We assume that you are familiar with the geometric interpretation of members of R2 and R3 as the
rectangular coordinates of points in a plane and three-dimensional space, respectively.

Although Rn cannot be visualized geometrically if n ≥ 4, geometric ideas from R, R2, and R3 often
help us to interpret the properties ofRn for arbitrary n.
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1. Multidimensional Vectors

1 Definition
The n-dimensional space,Rn, is defined as the set

Rn =
¶
(x1, x2, . . . , xn) : xk ∈ R

©
.

Elementsv ∈ Rnwill be called vectors andwill bewritten in boldfacev. In the blackboard the vectors
generally are written with an arrow v⃗.

2 Definition
If x and y are two vectors inRn their vector sum x + y is defined by the coordinatewise addition

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) . (1.1)

Note that the symbol “+” has two distinct meanings in (1.1): on the left, “+” stands for the newly de-
fined addition of members ofRn and, on the right, for the usual addition of real numbers.

The vector with all components 0 is called the zero vector and is denoted by 0. It has the property
that v + 0 = v for every vector v; in other words, 0 is the identity element for vector addition.

3 Definition
A real number λ ∈ R will be called a scalar. If λ ∈ R and x ∈ Rn we define scalar multiplication of a

4



1.1. Vectors Space

vector and a scalar by the coordinatewise multiplication

λx = (λx1, λx2, . . . , λxn) . (1.2)

The space Rn with the operations of sum and scalar multiplication defined above will be called n di-
mensional vector space.

The vector (−1)x is also denoted by−x and is called the negative or opposite of x
We leave the proof of the following theorem to the reader.

4 Theorem
If x, z, and y are inRn and λ, λ1 and λ2 are real numbers, then

Ê x + z = z + x (vector addition is commutative).

Ë (x + z) + y = x + (z + y) (vector addition is associative).

Ì There is a unique vector 0, called the zero vector, such that x + 0 = x for all x inRn.

Í For each x inRn there is a unique vector−x such that x + (−x) = 0.

Î λ1(λ2x) = (λ1λ2)x.

Ï (λ1 + λ2)x = λ1x + λ2x.

5



1. Multidimensional Vectors

Ð λ(x + z) = λx + λz.

Ñ 1x = x.

Clearly, 0 = (0, 0, . . . , 0) and, if x = (x1, x2, . . . , xn), then

−x = (−x1,−x2, . . . ,−xn).

Wewrite x + (−z) as x− z. The vector 0 is called the origin.
In a more general context, a nonempty set V , together with two operations+, · is said to be a vector

space if it has the properties listed in Theorem 4. The members of a vector space are called vectors.
Whenwewish to note that we are regarding amember ofRn as part of this algebraic structure, wewill

speak of it as a vector; otherwise, we will speak of it as a point.

5 Definition
The canonical ordered basis forRn is the collection of vectors

{e1, e2, . . . , en}

6



1.1. Vectors Space

with
ek = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸

a 1 in the k slot and 0’s everywhere else

.

Observe that
n∑

k=1

vkek = (v1, v2, . . . , vn) . (1.3)

This means that any vector can be written as sums of scalar multiples of the standard basis. We will
discuss this fact more deeply in the next section.

6 Definition
Let a,b be distinct points in Rn and let x = b − a ̸= 0. The parametric line passing through a in the
direction of x is the set

{r ∈ Rn : r = a + tx t ∈ R} .

7 Example
Find the parametric equation of the line passing through the points (1, 2, 3) and (−2,−1, 0).

Solution: ▶ The line follows the directionÄ
1− (−2), 2− (−1), 3− 0

ä
= (3, 3, 3) .

7



1. Multidimensional Vectors

The desired equation is
(x, y, z) = (1, 2, 3) + t (3, 3, 3) .

Equivalently
(x, y, z) = (−2,−1, 0) + t (3, 3, 3) .

◀

Length, Distance, and Inner Product

8 Definition
Given vectors x,y ofRn, their inner product or dot product is defined as

x•y =
n∑

k=1

xkyk.

9 Theorem
For x,y, z ∈ Rn, and α and β real numbers, we have:

Ê (αx + βy)•z = α(x•z) + β(y•z)

8



1.1. Vectors Space

Ë x•y = y•x

Ì x•x ≥ 0

Í x•x = 0 if and only if x = 0

The proof of this theorem is simple and will be left as exercise for the reader.
The norm or length of a vector x, denoted as ∥x∥, is defined as

∥x∥ =
√

x•x

10 Definition
Given vectors x,y ofRn, their distance is

d(x,y) = ∥x− y∥ =
»
(x− y)•(x− y) =

n∑
i=1

(xi − yi)2

If n = 1, the previous definition of length reduces to the familiar absolute value, for n = 2 and n = 3,
the length and distance of Definition 10 reduce to the familiar definitions for the two and three dimen-
sional space.

9



1. Multidimensional Vectors

11 Definition
A vector x is called unit vector

∥x∥ = 1.

12 Definition
Let x be a non-zero vector, then the associated versor (or normalized vector) denoted x̂ is the unit vector

x̂ =
x
∥x∥ .

We now establish one of the most useful inequalities in analysis.

13 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality)
Let x and y be any two vectors inRn. Then we have

|x•y| ≤ ∥x∥∥y∥.

10



1.1. Vectors Space

Proof. Since the norm of any vector is non-negative, we have

∥x + ty∥ ≥ 0 ⇐⇒ (x + ty)•(x + ty) ≥ 0

⇐⇒ x•x + 2tx•y + t2y•y ≥ 0

⇐⇒ ∥x∥2 + 2tx•y + t2∥y∥2 ≥ 0.

This last expression is a quadratic polynomial in twhich is always non-negative. As such its discriminant
must be non-positive, that is,

(2x•y)2 − 4(∥x∥2)(∥y∥2) ≤ 0 ⇐⇒ |x•y| ≤ ∥x∥∥y∥,

giving the theorem. ■

The Cauchy-Bunyakovsky-Schwarz inequality can be written as

∣∣∣∣∣∣
n∑

k=1

xkyk

∣∣∣∣∣∣ ≤
Ñ

n∑
k=1

x2k

é1/2Ñ
n∑

k=1

y2k

é1/2

, (1.4)

for real numbers xk, yk.

11



1. Multidimensional Vectors

14 Theorem (Triangle Inequality)
Let x and y be any two vectors inRn. Then we have

∥x + y∥ ≤ ∥x∥+ ∥y∥.

Proof.
||x + y||2 = (x + y)•(x + y)

= x•x + 2x•y + y•y

≤ ||x||2 + 2||x||||y||+ ||y||2

= (||x||+ ||y||)2,
fromwhere the desired result follows. ■

15 Corollary
If x, y, and z are inRn, then

|x− y| ≤ |x− z|+ |z− y|.

Proof. Write
x− y = (x− z) + (z− y),

12



1.1. Vectors Space

and apply Theorem 14. ■

16 Definition
Let x and y be two non-zero vectors inRn. Then the angle (̂x,y) between them is given by the relation

cos (̂x,y) = x•y
∥x∥∥y∥ .

This expression agrees with the geometry in the case of the dot product forR2 andR3.

17 Definition
Let x and y be two non-zero vectors inRn. These vectors are said orthogonal if the angle between them
is 90 degrees. Equivalently, if: x•y = 0 .

Let P0 = (p1, p2, . . . , pn), and n = (n1, n2, . . . , nn) be a nonzero vector.

18 Definition
Thehyperplanedefinedby thepointP0 andthevectorn isdefinedas thesetofpointsP : (x1, , x2, . . . , xn) ∈
Rn, such that the vector drawn from P0 to P is perpendicular to n.

13



1. Multidimensional Vectors

Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the
desired hyperplane can be described as the set of all points P such that

n•(P−P0) = 0.

Expanded this becomes

n1(x1 − p1) + n2(x2 − p2) + · · ·+ nn(xn − pn) = 0,

which is the point-normal form of the equation of a hyperplane. This is just a linear equation

n1x1 + n2x2 + · · ·nnxn + d = 0,

where

d = −(n1p1 + n2p2 + · · ·+ nnpn).

1.2. Basis and Change of Basis

1.2. Linear Independence and Spanning Sets

14



1.2. Basis and Change of Basis

19 Definition
Let λi ∈ R, 1 ≤ i ≤ n. Then the vectorial sum

n∑
j=1

λjxj

is said to be a linear combination of the vectors xi ∈ Rn, 1 ≤ i ≤ n.

20 Definition
The vectors xi ∈ Rn, 1 ≤ i ≤ n, are linearly dependent or tied if

∃(λ1, λ2, · · · , λn) ∈ Rn \ {0} such that
n∑

j=1

λjxj = 0,

that is, if there is a non-trivial linear combination of them adding to the zero vector.

21 Definition
The vectorsxi ∈ Rn, 1 ≤ i ≤ n, are linearly independent or free if they are not linearly dependent. That

15



1. Multidimensional Vectors

is, if λi ∈ R, 1 ≤ i ≤ n then

n∑
j=1

λjxj = 0 =⇒ λ1 = λ2 = · · · = λn = 0.

A family of vectors is linearly independent if and only if the only linear combination of them
giving the zero-vector is the trivial linear combination.

22 Example ¶
(1, 2, 3) , (4, 5, 6) , (7, 8, 9)

©
is a tied family of vectors inR3, since

(1) (1, 2, 3) + (−2) (4, 5, 6) + (1) (7, 8, 9) = (0, 0, 0) .

23 Definition
A family of vectors {x1,x2, . . . ,xk, . . . , } ⊆ Rn is said to span or generate Rn if every x ∈ Rn can be
written as a linear combination of the xj ’s.

24 Example
Since

n∑
k=1

vkek = (v1, v2, . . . , vn) . (1.5)

16
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This means that the canonical basis generateRn.

25 Theorem
If {x1,x2, . . . ,xk, . . . , } ⊆ Rn spansRn, then any superset

{y,x1,x2, . . . ,xk, . . . , } ⊆ Rn

also spansRn.

Proof. This follows at once from
l∑

i=1

λixi = 0y +
l∑

i=1

λixi.

■

26 Example
The family of vectors ¶

i = (1, 0, 0) , j = (0, 1, 0) ,k = (0, 0, 1)
©

spansR3 since given (a, b, c) ∈ R3 wemay write

(a, b, c) = ai + bj + ck.

17



1. Multidimensional Vectors
27 Example

Prove that the family of vectors¶
t1 = (1, 0, 0) , t2 = (1, 1, 0) , t3 = (1, 1, 1)

©
spansR3.

Solution: ▶ This follows from the identity

(a, b, c) = (a− b) (1, 0, 0) + (b− c) (1, 1, 0) + c (1, 1, 1) = (a− b)t1 + (b− c)t2 + ct3.

◀

1.2. Basis

28 Definition
A familyE = {x1,x2, . . . ,xk, . . .} ⊆ Rn is said to be a basis ofRn if

Ê are linearly independent,

Ë they spanRn.

18
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29 Example

The family
ei = (0, . . . , 0, 1, 0, . . . , 0) ,

where there is a 1 on the i-th slot and 0’s on the other n− 1 positions, is a basis forRn.

30 Theorem
All basis ofRn have the same number of vectors.

31 Definition
The dimension ofRn is the number of elements of any of its basis, n.

32 Theorem
Let {x1, . . . ,xn} be a family of vectors in Rn. Then the x’s form a basis if and only if the n × nmatrixA
formed by taking the x’s as the columns ofA is invertible.

Proof. Since we have the right number of vectors, it is enough to prove that the x’s are linearly inde-
pendent. But ifX = (λ1, λ2, . . . , λn), then

λ1x1 + · · ·+ λnxn = AX.

19



1. Multidimensional Vectors

If A is invertible, then AX = 0n =⇒ X = A−10 = 0, meaning that λ1 = λ2 = · · ·λn = 0, so the x’s
are linearly independent.

The reciprocal will be left as a exercise. ■

33 Definition

Ê A basisE = {x1,x2, . . . ,xk} of vectors inRn is called orthogonal if

xi•xj = 0

for all i ̸= j.

Ë An orthogonal basis of vectors is called orthonormal if all vectors in E are unit vectors, i.e, have
norm equal to 1.

1.2. Coordinates

20



1.2. Basis and Change of Basis

34 Theorem
LetE = {e1, e2, . . . , en} be a basis for a vector spaceRn. Then any x ∈ Rn has a unique representation

x = a1e1 + a2e2 + · · ·+ anen.

Proof. Let
x = b1e1 + b2e2 + · · ·+ bnen

be another representation of x. Then

0 = (a1 − b1)e1 + (a2 − b2)e2 + · · ·+ (an − bn)en.

Since {e1, e2, . . . , en} forms a basis forRn, they are a linearly independent family. Thus wemust have

a1 − b1 = a2 − b2 = · · · = an − bn = 0R,

that is
a1 = b1; a2 = b2; · · · ; an = bn,

proving uniqueness. ■

21



1. Multidimensional Vectors

35 Definition
An ordered basisE = {e1, e2, . . . , en} of a vector spaceRn is a basis where the order of the xk has been
fixed. Given an ordered basis {e1, e2, . . . , en} of a vector space Rn, Theorem 34 ensures that there are
unique (a1, a2, . . . , an) ∈ Rn such that

x = a1e1 + a2e2 + · · ·+ anen.

The ak’s are called the coordinates of the vector x.
We will denote the coordinates the vector x on the basisE by

[x]E

or simply [x].

36 Example
The standard ordered basis forR3 isE = {i, j,k}. The vector (1, 2, 3) ∈ R3 for example, has coordinates
(1, 2, 3)E . If the order of the basis were changed to the ordered basis F = {i,k, j}, then (1, 2, 3) ∈ R3

would have coordinates (1, 3, 2)F .

Usually, when we give a coordinate representation for a vector x ∈ Rn, we assume that we
are using the standard basis.

22



1.2. Basis and Change of Basis
37 Example

Consider the vector (1, 2, 3) ∈ R3 (given in standard representation). Since

(1, 2, 3) = −1 (1, 0, 0)− 1 (1, 1, 0) + 3 (1, 1, 1) ,

under theorderedbasisE =
¶
(1, 0, 0) , (1, 1, 0) , (1, 1, 1)

©
, (1, 2, 3)has coordinates (−1,−1, 3)E . Wewrite

(1, 2, 3) = (−1,−1, 3)E .

38 Example
The vectors of

E =
¶
(1, 1) , (1, 2)

©
are non-parallel, and so form a basis forR2. So do the vectors

F =
¶
(2, 1) , (1,−1)

©
.

Find the coordinates of (3, 4)E in the base F .

Solution: ▶We are seeking x, y such that

3 (1, 1) + 4 (1, 2) = x

2
1

+ y

 1

−1

 =⇒

1 1

1 2


3
4

 =

2 1

1 −1

 (x, y)F .

23



1. Multidimensional Vectors

Thus

(x, y)F =

2 1

1 −1


−1 1 1

1 2


3
4



=


1

3

1

3
1

3
−2

3


1 1

1 2


3
4



=


2

3
1

−1

3
−1


3
4



=

 6

−5


F

.

Let us check by expressing both vectors in the standard basis ofR2:

(3, 4)E = 3 (1, 1) + 4 (1, 2) = (7, 11) ,

(6,−5)F = 6 (2, 1)− 5 (1,−1) = (7, 11) .

◀
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In general let us consider basisE , F for the same vector spaceRn. We want to convertXE to YF . We
let A be the matrix formed with the column vectors of E in the given order an B be the matrix formed
with the column vectors of F in the given order. BothA andB are invertible matrices since theE,F are
basis, in view of Theorem 32. Then wemust have

AXE = BYF =⇒ YF = B−1AXE.

Also,
XE = A−1BYF .

This prompts the following definition.

39 Definition
Let E = {x1,x2, . . . ,xn} and F = {y1,y2, . . . ,yn} be two ordered basis for a vector space Rn. Let
A ∈ Mn×n(R) be the matrix having the x’s as its columns and let B ∈ Mn×n(R) be the matrix having
the y’s as its columns. The matrix P = B−1A is called the transition matrix fromE to F and the matrix
P−1 = A−1B is called the transitionmatrix from F toE.

40 Example
Consider the basis ofR3

E =
¶
(1, 1, 1) , (1, 1, 0) , (1, 0, 0)

©
,

F =
¶
(1, 1,−1) , (1,−1, 0) , (2, 0, 0)

©
.
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1. Multidimensional Vectors

Find the transitionmatrix fromE toF and also the transitionmatrix fromF toE. Also find the coordinates
of (1, 2, 3)E in terms of F .

Solution: ▶ Let

A =


1 1 1

1 1 0

1 0 0

 , B =


1 1 2

1 −1 0

−1 0 0

 .

26
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The transition matrix fromE to F is

P = B−1A

=


1 1 2

1 −1 0

−1 0 0



−1 
1 1 1

1 1 0

1 0 0



=


0 0 −1

0 −1 −1
1

2

1

2
1




1 1 1

1 1 0

1 0 0



=


−1 0 0

−2 −1 −0

2 1
1

2

 .

27



1. Multidimensional Vectors

The transition matrix from F toE is

P−1 =


−1 0 0

−2 −1 0

2 1
1

2



−1

=


−1 0 0

2 −1 0

0 2 2

 .

Now,

YF =


−1 0 0

−2 −1 0

2 1
1

2




1

2

3


E

=


−1

−4
11

2


F

.

As a check, observe that in the standard basis forR3ñ
1, 2, 3

ô
E

= 1

ñ
1, 1, 1

ô
+ 2

ñ
1, 1, 0

ô
+ 3

ñ
1, 0, 0

ô
=

ñ
6, 3, 1

ô
,ñ

−1,−4, 11
2

ô
F

= −1
ñ
1, 1,−1

ô
− 4

ñ
1,−1, 0

ô
+

11

2

ñ
2, 0, 0

ô
=

ñ
6, 3, 1

ô
.

◀

1.3. Linear Transformations and Matrices
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41 Definition
A linear transformation or homomorphism betweenRn andRm

L :
Rn → Rm

x 7→ L(x)
,

is a function which is

■ Additive: L(x + y) = L(x) + L(y),

■ Homogeneous: L(λx) = λL(x), for λ ∈ R.

It is clear that the above two conditions can be summarized conveniently into

L(x + λy) = L(x) + λL(y).

Assume that {xi}i∈[1;n] is an ordered basis forRn, andE = {yi}i∈[1;m] an ordered basis forRm.
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1. Multidimensional Vectors

Then

L(x1) = a11y1 + a21y2 + · · ·+ am1ym =



a11

a21
...

am1


E

L(x2) = a12y1 + a22y2 + · · ·+ am2ym =



a12

a22
...

am2


E

...
...

...
...

...

L(xn) = a1ny1 + a2ny2 + · · ·+ amnym =



a1n

a2n
...

amn


E

.
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42 Definition
Them× nmatrix

ML =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn


formedby thecolumnvectorsabove is called thematrix representationof the linearmapLwith respect
to the basis {xi}i∈[1;m], {yi}i∈[1;n].

43 Example
ConsiderL : R3 → R3,

L (x, y, z) = (x− y − z, x+ y + z, z) .

ClearlyL is a linear transformation.

1. Find the matrix corresponding toL under the standard ordered basis.

2. Find the matrix corresponding to L under the ordered basis (1, 0, 0) , (1, 1, 0) , (1, 0, 1) , for both the
domain and the image ofL.
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Solution: ▶

1. The matrix will be a 3 × 3 matrix. We have L (1, 0, 0) = (1, 1, 0), L (0, 1, 0) = (−1, 1, 0), and
L (0, 0, 1) = (−1, 1, 1), whence the desired matrix is

1 −1 −1

1 1 1

0 0 1

 .

2. Call this basisE. We have

L (1, 0, 0) = (1, 1, 0) = 0 (1, 0, 0) + 1 (1, 1, 0) + 0 (1, 0, 1) = (0, 1, 0)E ,

L (1, 1, 0) = (0, 2, 0) = −2 (1, 0, 0) + 2 (1, 1, 0) + 0 (1, 0, 1) = (−2, 2, 0)E ,

and
L (1, 0, 1) = (0, 2, 1) = −3 (1, 0, 0) + 2 (1, 1, 0) + 1 (1, 0, 1) = (−3, 2, 1)E ,

whence the desired matrix is 
0 −2 −3

1 2 2

0 0 1

 .
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1.4. Three Dimensional Space

◀
44 Definition

The column rank of A is the dimension of the space generated by the columns of A, while the row rank of A
is the dimension of the space generated by the rows of A.

A fundamental result in linear algebra is that the column rank and the row rank are always equal. This
number (i.e., the number of linearly independent rows or columns) is simply called the rank of A.

1.4. Three Dimensional Space

In this section we particularize some definitions to the important case of three dimensional space

45 Definition
The 3-dimensional space is defined and denoted by

R3 =
¶
r = (x, y, z) : x ∈ R, y ∈ R, z ∈ R

©
.

Having oriented the z axis upwards, we have a choice for the orientation of the the x and y-axis. We
adopt a convention known as a right-handed coordinate system, as in figure 1.1. Let us explain. Put

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),
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1. Multidimensional Vectors

and observe that
r = (x, y, z) = xi + yj + zk.

j

k

i

j

Figure 1.1. Right-handed system.
Figure 1.2. Right Hand.

j

k

i

j

Figure 1.3. Left-handed system.

1.4. Cross Product

The cross product of two vectors is defined only in three-dimensional spaceR3. We will define a gener-
alization of the cross product for the n dimensional space in the section 1.5.

The standard cross product is defined as a product satisfying the following properties.
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1.4. Three Dimensional Space

46 Definition
Let x,y, z be vectors in R3, and let λ ∈ R be a scalar. The cross product× is a closed binary operation
satisfying

Ê Anti-commutativity: x × y = −(y × x)

Ë Bilinearity:

(x + z)× y = x × y + z × y and x × (z + y) = x × z + x × y

Ì Scalar homogeneity: (λx)× y = x × (λy) = λ(x × y)

Í x × x = 0

Î Right-hand Rule:
i × j = k, j × k = i, k × i = j.

It follows that the cross product is an operation that, given two non-parallel vectors on a plane, allows
us to “get out” of that plane.
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47 Example

Find
(1, 0,−3)× (0, 1, 2) .

Solution: ▶ We have

(i− 3k)× (j + 2k) = i × j + 2i × k− 3k × j− 6k × k

= k− 2j + 3i + 0

= 3i− 2j + k

Hence
(1, 0,−3)× (0, 1, 2) = (3,−2, 1) .

◀

The cross product of vectors inR3 is not associative, since

i × (i × j) = i × k = −j

but
(i × i)× j = 0 × j = 0.

Operating as in example 47 we obtain
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1.4. Three Dimensional Space

x × y

yx

Figure 1.4. Theorem 51.

∥x∥

∥y
∥

θ ∥x
∥∥

y∥
sin

θ

Figure 1.5. Area of a parallelogram
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1. Multidimensional Vectors

48 Theorem
Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors inR3. Then

x × y = (x2y3 − x3y2)i + (x3y1 − x1y3)j + (x1y2 − x2y1)k.

Proof. Since i × i = j × j = k × k = 0, we only worry about the mixed products, obtaining,

x × y = (x1i + x2j + x3k)× (y1i + y2j + y3k)

= x1y2i × j + x1y3i × k + x2y1j × i + x2y3j × k

+x3y1k × i + x3y2k × j

= (x1y2 − y1x2)i × j + (x2y3 − x3y2)j × k + (x3y1 − x1y3)k × i

= (x1y2 − y1x2)k + (x2y3 − x3y2)i + (x3y1 − x1y3)j,

proving the theorem. ■

The cross product can also be expressed as the formal/mnemonic determinant

u× v =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣∣∣
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1.4. Three Dimensional Space

Using cofactor expansion we have

u× v =

∣∣∣∣∣∣∣∣
u2 u3

v2 v3

∣∣∣∣∣∣∣∣ i +
∣∣∣∣∣∣∣∣
u3 u1

v3 v1

∣∣∣∣∣∣∣∣ j +
∣∣∣∣∣∣∣∣
u1 u2

v1 v2

∣∣∣∣∣∣∣∣k
Using the cross product, wemay obtain a third vector simultaneously perpendicular to two other vec-

tors in space.

49 Theorem
x ⊥ (x × y) and y ⊥ (x × y), that is, the cross product of two vectors is simultaneously perpendicular
to both original vectors.

Proof. Wewill only check the first assertion, the second verification is analogous.

x•(x × y) = (x1i + x2j + x3k)•((x2y3 − x3y2)i

+(x3y1 − x1y3)j + (x1y2 − x2y1)k)

= x1x2y3 − x1x3y2 + x2x3y1 − x2x1y3 + x3x1y2 − x3x2y1

= 0,

completing the proof. ■

Although the cross product is not associative, we have, however, the following theorem.
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1. Multidimensional Vectors

50 Theorem

a × (b × c) = (a•c)b− (a•b)c.

Proof.

a × (b × c) = (a1i + a2j + a3k)× ((b2c3 − b3c2)i+

+(b3c1 − b1c3)j + (b1c2 − b2c1)k)

= a1(b3c1 − b1c3)k− a1(b1c2 − b2c1)j− a2(b2c3 − b3c2)k

+a2(b1c2 − b2c1)i + a3(b2c3 − b3c2)j− a3(b3c1 − b1c3)i

= (a1c1 + a2c2 + a3c3)(b1i + b2j + b3i)+

(−a1b1 − a2b2 − a3b3)(c1i + c2j + c3i)

= (a•c)b− (a•b)c,

completing the proof. ■
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Figure 1.6. Theorem 497.
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Figure 1.7. Example ??.

51 Theorem
Let (̂x,y) ∈ [0; π] be the convex angle between two vectors x and y. Then

||x × y|| = ||x||||y|| sin (̂x,y).

41



1. Multidimensional Vectors

Proof. We have

||x × y||2 = (x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

= x22y
2
3 − 2x2y3x3y2 + x23y

2
2 + x23y

2
1 − 2x3y1x1y3+

+x21y
2
3 + x21y

2
2 − 2x1y2x2y1 + x22y

2
1

= (x21 + x22 + x23)(y
2
1 + y22 + y23)− (x1y1 + x2y2 + x3y3)

2

= ||x||2||y||2 − (x•y)2

= ||x||2||y||2 − ||x||2||y||2 cos2 (̂x,y)

= ||x||2||y||2 sin2 (̂x,y),

whence the theorem follows. ■

Theorem51 has the following geometric significance: ∥x × y∥ is the area of the parallelogram formed
when the tails of the vectors are joined. See figure 1.5.

The following corollaries easily follow from Theorem 51.

52 Corollary
Two non-zero vectors x,y satisfy x × y = 0 if and only if they are parallel.
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1.4. Three Dimensional Space

53 Corollary (Lagrange’s Identity)

||x × y||2 = ∥x∥2∥y∥2 − (x•y)2.

The following result mixes the dot and the cross product.

54 Theorem
Let x, y, z, be linearly independent vectors in R3. The signed volume of the parallelepiped spanned by
them is (x × y) • z.

Proof. See figure 1.6. The area of the base of the parallelepiped is the area of the parallelogram deter-
mined by the vectors x and y, which has area ∥x × y∥. The altitude of the parallelepiped is ∥z∥ cos θ
where θ is the angle between z and x × y. The volume of the parallelepiped is thus

∥x × y∥∥z∥ cos θ = (x × y)•z,

proving the theorem. ■

Since wemay have used any of the faces of the parallelepiped, it follows that

(x × y)•z = (y × z)•x = (z × x)•y.
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1. Multidimensional Vectors

In particular, it is possible to “exchange” the cross and dot products:

x•(y × z) = (x × y)•z

1.4. Cylindrical and Spherical Coordinates

λ3e3

bO

b

P

v

e1
e3

e2

b
K

λ1e1

λ2e2−−→
OK

LetB = {x1,x2,x3} be an ordered basis forR3. As we have already seen,
for every v ∈ Rn there is a unique linear combination of the basis vectors
that equals v:

v = xx1 + yx2 + zx3.

The coordinate vector of v relative toE is the sequence of coordinates

[v]E = (x, y, z).

In this representation, the coordinates of a point (x, y, z) are determined by following straight paths
starting from the origin: first parallel to x1, then parallel to the x2, then parallel to the x3, as in Figure
1.7.1.

In curvilinear coordinate systems, these paths can be curved. We will provide the definition of curvi-
linear coordinate systems in the section 3.10 and 8. In this section we provide some examples: the three
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1.4. Three Dimensional Space

types of curvilinear coordinates which wewill consider in this section are polar coordinates in the plane
cylindrical and spherical coordinates in the space.

Instead of referencing a point in terms of sides of a rectangular parallelepiped, as with Cartesian co-
ordinates, we will think of the point as lying on a cylinder or sphere. Cylindrical coordinates are often
usedwhen there is symmetry around the z-axis; spherical coordinates areusefulwhen there is symmetry
about the origin.

LetP = (x, y, z) be a point in Cartesian coordinates inR3, and letP0 = (x, y, 0) be the projection ofP
upon thexy-plane. Treating (x, y) as a point inR2, let (r, θ)be its polar coordinates (see Figure 1.7.2). Let
ρbe the length of the line segment from the origin toP , and letϕbe the angle between that line segment
and the positive z-axis (see Figure 1.7.3). ϕ is called the zenith angle. Then the cylindrical coordinates
(r, θ, z) and the spherical coordinates (ρ, θ, ϕ) of P (x, y, z) are defined as follows:1

1This “standard”definitionof spherical coordinatesusedbymathematicians results in a left-handedsystem. For this reason,
physicists usually switch the definitions of θ and ϕ to make (ρ, θ, ϕ) a right-handed system.
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1. Multidimensional Vectors
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P(x, y, z)
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θx

y

z

r
Figure 1.8.
Cylindrical coordinates

Cylindrical coordinates (r, θ, z):

x = r cos θ r =
»
x2 + y2

y = r sin θ θ = tan−1
Åy
x

ã
z = z z = z

where 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0

x
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z

0

P(x, y, z)

P0(x, y,0)

θx

y

z
ρ

ϕ

Figure 1.9.
Spherical coordinates46



1.4. Three Dimensional Space

Spherical coordinates (ρ, θ, ϕ):

x = ρ sinϕ cos θ ρ =
»
x2 + y2 + z2

y = ρ sinϕ sin θ θ = tan−1
Åy
x

ã
z = ρ cosϕ ϕ = cos−1

(
z√

x2 + y2 + z2

)

where 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0

Both θ and ϕ are measured in radians. Note that r ≥ 0, 0 ≤ θ < 2π, ρ ≥ 0 and 0 ≤ ϕ ≤ π. Also, θ is
undefined when (x, y) = (0, 0), and ϕ is undefined when (x, y, z) = (0, 0, 0).

55 Example
Convert the point (−2,−2, 1) from Cartesian coordinates to (a) cylindrical and (b) spherical coordinates.

Solution: ▶ (a) r =
»
(−2)2 + (−2)2 = 2

√
2, θ = tan−1

Ç−2
−2

å
= tan−1(1) =

5π

4
, since y = −2 < 0.

∴ (r, θ, z) =

Ç
2
√
2,

5π

4
, 1

å
(b) ρ =

»
(−2)2 + (−2)2 + 12 =

√
9 = 3, ϕ = cos−1

Ç
1

3

å
≈ 1.23 radians.

∴ (ρ, θ, ϕ) =

Ç
3,

5π

4
, 1.23

å
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1. Multidimensional Vectors

◀

For cylindrical coordinates (r, θ, z), and constants r0, θ0 and z0, we see from Figure 8.3 that the surface
r = r0 is a cylinder of radius r0 centered along the z-axis, the surface θ = θ0 is a half-plane emanating
from the z-axis, and the surface z = z0 is a plane parallel to the xy-plane.

y

z

x

0

r0

(a) r = r0

y

z

x

0

θ0

(b) θ = θ0

y

z

x

0

z0

(c) z = z0

Figure 1.10. Cylindrical coordinate surfaces

The unit vectors r̂, θ̂, k̂ at any point P are perpendicular to the surfaces r = constant, θ = constant,
z = constant through P in the directions of increasing r, θ, z. Note that the direction of the unit vectors
r̂, θ̂ vary from point to point, unlike the corresponding Cartesian unit vectors.

48



1.4. Three Dimensional Space

x

y

z

r = r1 surface

z = z1 plane

ϕ = ϕ1 plane

P1(r1, ϕ1, z1)

r̂
ϕ̂

k̂

ϕ1

r1

z1

For spherical coordinates (ρ, θ, ϕ), and constants ρ0, θ0 and ϕ0, we see from Figure 1.11 that the surface
ρ = ρ0 is a sphere of radius ρ0 centered at the origin, the surface θ = θ0 is a half-plane emanating from
the z-axis, and the surface ϕ = ϕ0 is a circular cone whose vertex is at the origin.

Figures 8.3(a) and 1.11(a) show how these coordinate systems got their names.
Sometimes the equationof a surface in Cartesian coordinates canbe transformed into a simpler equa-

tion in some other coordinate system, as in the following example.

56 Example
Write the equation of the cylinder x2 + y2 = 4 in cylindrical coordinates.
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z

x

0
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(b) θ = θ0

y
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0

ϕ0

(c) ϕ = ϕ0

Figure 1.11. Spherical coordinate surfaces

Solution: ▶ Since r =
√
x2 + y2, then the equation in cylindrical coordinates is r = 2. ◀

Using spherical coordinates to write the equation of a sphere does not necessarily make the equation
simpler, if the sphere is not centered at the origin.

57 Example
Write the equation (x− 2)2 + (y − 1)2 + z2 = 9 in spherical coordinates.

Solution: ▶ Multiplying the equation out gives

x2 + y2 + z2 − 4x− 2y + 5 = 9 , so we get
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1.4. Three Dimensional Space

ρ2 − 4ρ sinϕ cos θ − 2ρ sinϕ sin θ − 4 = 0 , or

ρ2 − 2 sinϕ (2 cos θ − sin θ ) ρ− 4 = 0

after combining terms. Note that this actually makes it more difficult to figure out what the surface is,
as opposed to the Cartesian equation where you could immediately identify the surface as a sphere of
radius 3 centered at (2, 1, 0). ◀

58 Example
Describe the surface given by θ = z in cylindrical coordinates.

Solution: ▶ This surface is called a helicoid. As the (vertical) z coordinate increases, so does the angle
θ, while the radius r is unrestricted. So this sweeps out a (ruled!) surface shaped like a spiral staircase,
where the spiral has an infinite radius. Figure 1.12 shows a section of this surface restricted to 0 ≤ z ≤ 4π

and 0 ≤ r ≤ 2. ◀

Exercises

A
For Exercises 1-4, find the (a) cylindrical and (b) spherical coordinates of the point whose Cartesian co-
ordinates are given.
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1. Multidimensional Vectors

Figure 1.12. Helicoid θ = z

1. (2, 2
√
3,−1)

2. (−5, 5, 6)

3. (
√
21,−

√
7, 0)

4. (0,
√
2, 2)

For Exercises 5-7, write the given equation in (a) cylindrical and (b) spherical coordinates.
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1.4. Three Dimensional Space

5. x2 + y2 + z2 = 25

6. x2 + y2 = 2y

7. x2 + y2 + 9z2 = 36

B

8. Describe the intersection of the surfaces whose equations in spherical coordinates are θ =
π

2
and

ϕ =
π

4
.

9. Show that for a ̸= 0, the equation ρ = 2a sinϕ cos θ in spherical coordinates describes a sphere
centered at (a, 0, 0)with radius|a|.

C
10. Let P = (a, θ, ϕ) be a point in spherical coordinates, with a > 0 and 0 < ϕ < π. Then P lies on

the sphere ρ = a. Since 0 < ϕ < π, the line segment from the origin to P can be extended to
intersect the cylinder given by r = a (in cylindrical coordinates). Find the cylindrical coordinates
of that point of intersection.

11. Let P1 and P2 be points whose spherical coordinates are (ρ1, θ1, ϕ1) and (ρ2, θ2, ϕ2), respectively.
Let v1 be the vector from the origin to P1, and let v2 be the vector from the origin to P2. For the
angle γ between

cos γ = cosϕ1 cosϕ2 + sinϕ1 sinϕ2 cos( θ2 − θ1 ).
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1. Multidimensional Vectors

This formula is used in electrodynamics to prove the addition theorem for spherical harmonics,
which provides a general expression for the electrostatic potential at a point due to a unit charge.
See pp. 100-102 in [36].

12. Show that the distance d between the pointsP1 andP2 with cylindrical coordinates (r1, θ1, z1) and
(r2, θ2, z2), respectively, is

d =
»
r21 + r22 − 2r1 r2 cos( θ2 − θ1 ) + (z2 − z1)2 .

13. Show that the distance d between the points P1 and P2 with spherical coordinates (ρ1, θ1, ϕ1) and
(ρ2, θ2, ϕ2), respectively, is

d =
»
ρ21 + ρ22 − 2ρ1 ρ2[sinϕ1 sinϕ2 cos( θ2 − θ1 ) + cosϕ1 cosϕ2] .

1.5. ⋆ Cross Product in the n-Dimensional Space

In this sectionwewill answer the followingquestion: Canonedefineacrossproduct in then-dimensional
space so that it will have properties similar to the usual 3 dimensional one?

Clearly the answer depends which properties we require.
The most direct generalizations of the cross product are to define either:
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1.5. ⋆ Cross Product in the n-Dimensional Space

■ a binary product× : Rn×Rn → Rn which takes as input two vectors and gives as output a vector;

■ a n − 1-ary product × : Rn × · · · × Rn︸ ︷︷ ︸
n−1 times

→ Rn which takes as input n − 1 vectors, and gives as

output one vector.

Under the correct assumptions it can be proved that a binary product exists only in the dimensions 3
and 7. A simple proof of this fact can be found in [51].

In this section we focus in the definition of the n− 1-ary product.

59 Definition
Let v1, . . . ,vn−1 be vectors in Rn,, and let λ ∈ R be a scalar. Then we define their generalized cross
product vn = v1 × · · · × vn−1 as the (n− 1)-ary product satisfying

Ê Anti-commutativity: v1 × · · ·vi × vi+1 × · · · × vn−1 = −v1 × · · ·vi+1 × vi × · · · × vn−1, i.e,
changing two consecutive vectors a minus sign appears.

Ë Bilinearity: v1 × · · ·vi + x× vi+1 × · · · × vn−1 = v1 × · · ·vi × vi+1 × · · · × vn−1 + v1 × · · ·x×
vi+1 × · · · × vn−1

Ì Scalar homogeneity: v1 × · · ·λvi × vi+1 × · · · × vn−1 = λv1 × · · ·vi × vi+1 × · · · × vn−1
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1. Multidimensional Vectors

Í Right-hand Rule: e1 × · · · × en−1 = en, e2 × · · · × en = e1, and so forth for cyclic permutations of
indices.

Wewill also write

×(v1, . . . ,vn−1) := v1 × · · ·vi × vi+1 × · · · × vn−1

In coordinates, one can give a formula for this (n− 1)-ary analogue of the cross product inRn by:

60 Proposition
Let e1, . . . , en be the canonical basis of Rn and let v1, . . . ,vn−1 be vectors in Rn,with coordinates:

v1 = (v11, . . . v1n) (1.6)
... (1.7)

vi = (vi1, . . . vin) (1.8)
... (1.9)

vn = (vn1, . . . vnn) (1.10)

in the canonical basis. Then
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1.5. ⋆ Cross Product in the n-Dimensional Space

×(v1, . . . ,vn−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v11 · · · v1n
... . . . ...

vn−11 · · · vn−1n

e1 · · · en

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This formula is very similar to the determinant formula for the normal cross product inR3 except that
the row of basis vectors is the last row in the determinant rather than the first.

The reason for this is to ensure that the ordered vectors

(v1, ...,vn−1,×(v1, ...,vn−1))

have a positive orientation with respect to

(e1, ..., en).

61 Proposition
The vector product have the following properties:

The vector×(v1, . . . ,vn−1) is perpendicular to vi,

ÊË the magnitude of×(v1, . . . ,vn−1) is the volume of the solid defined by the vectors v1, . . .vi−1
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1. Multidimensional Vectors

Ì vn•v1 × · · · × vn−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v11 · · · v1n
... . . . ...

vn−11 · · · vn−1n

vn1 · · · vnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

1.6. Multivariable Functions

LetA ⊆ Rn. For most of this course, our concern will be functions of the form

f : A ⊆ Rn → Rm.

Ifm = 1, we say that f is a scalar field. Ifm ≥ 2, we say that f is a vector field.
We would like to develop a calculus analogous to the situation in R. In particular, we would like to

examine limits, continuity, differentiability, and integrability ofmultivariable functions. Needless to say,
the introduction of more variables greatly complicates the analysis. For example, recall that the graph
of a function f : A→ Rm,A ⊆ Rn. is the set

{(x, f(x)) : x ∈ A)} ⊆ Rn+m.

Ifm + n > 3, we have an object of more than three-dimensions! In the case n = 2,m = 1, we have a
tri-dimensional surface. We will now briefly examine this case.
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1.6. Multivariable Functions

62 Definition
LetA ⊆ R2 and let f : A → R be a function. Given c ∈ R, the level curve at z = c is the curve resulting
from the intersection of the surface z = f(x, y) and the plane z = c, if there is such a curve.

63 Example
The level curves of the surface f(x, y) = x2 + 3y2 (an elliptic paraboloid) are the concentric ellipses

x2 + 3y2 = c, c > 0.

1.6. Graphical Representation of Vector Fields

In this section we present a graphical representation of vector fields. For this intent, we limit ourselves
to low dimensional spaces.

A vector fieldv : R3 → R3 is an assignment of a vectorv = v(x, y, z) to each point (x, y, z) of a subset
U ⊂ R3. Each vector v of the field can be regarded as a ”bound vector” attached to the corresponding
point (x, y, z). In components

v(x, y, z) = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k.

64 Example
Sketch each of the following vector fields.
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-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 1.13. Level curves for f(x, y) = x2 + 3y2.

F = xi + yj

F = −yi + xj

r = xi + yj + zk

Solution: ▶
a) The vector field is null at the origin; at other points, F is a vector pointing away from the origin;
b) This vector field is perpendicular to the first one at every point;
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c) The vector field is null at the origin; at other points,F is a vector pointing away from the origin. This
is the 3-dimensional analogous of the first one. ◀

-3 -2 -1 0 1 2 3
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-2

-1

0

1

2

3

−1 −0.5 0
0.5 1−1

0

1

−1

0

1

65 Example
Suppose that an object of massM is located at the origin of a three-dimensional coordinate system. We
can think of this object as inducing a force field g in space. The effect of this gravitational field is to attract
any object placed in the vicinity of the origin toward it with a force that is governed by Newton’s Law of
Gravitation.

F =
GmM

r2

To find an expression for g , suppose that an object of massm is located at a point with position vector
r = xi + yj + zk .
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The gravitational field is the gravitational force exerted per unit mass on a small test mass (that won’t
distort the field)atapoint in the field. Like force, it is avectorquantity: apointmassMat theoriginproduces
the gravitational field

g = g(r) = −GM
r3

r,

where r is the position relative to the origin and where r = ∥r∥. Its magnitude is

g = −GM
r2

and, due to the minus sign, at each point g is directed opposite to r, i.e. towards the central mass.

Exercises
66 Problem

Sketch the level curves for the followingmaps.

1. (x, y) 7→ x+ y

2. (x, y) 7→ xy

3. (x, y) 7→ min(|x|, |y|)

4. (x, y) 7→ x3 − x

5. (x, y) 7→ x2 + 4y2

6. (x, y) 7→ sin(x2 + y2)

7. (x, y) 7→ cos(x2 − y2)
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1.6. Multivariable Functions

Figure 1.14. Gravitational Field

67 Problem
Sketch the level surfaces for the followingmaps.

1. (x, y, z) 7→ x+ y + z

2. (x, y, z) 7→ xyz

3. (x, y, z) 7→ min(|x|, |y|, |z|)

4. (x, y, z) 7→ x2 + y2

5. (x, y, z) 7→ x2 + 4y2

6. (x, y, z) 7→ sin(z − x2 − y2)

7. (x, y, z) 7→ x2 + y2 + z2
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1. Multidimensional Vectors

1.7. Levi-Civitta and Einstein Index Notation

Weneedan efficient abbreviatednotation to handle the complexity ofmathematical structure before us.
Wewill use indices of a given “type” to denote all possible values of given index ranges. By index typewe
mean a collection of similar letter types, like those from the beginning or middle of the Latin alphabet,
or Greek letters

a, b, c, . . .

i, j, k, . . .

λ, β, γ . . .

each index ofwhich is understood to have a given common rangeof successive integer values. Variations
of these might be barred or primed letters or capital letters. For example, suppose we are looking at
linear transformations betweenRn andRm wherem ̸= n. We would need two different index ranges to
denote vector components in the two vector spaces of different dimensions, say i, j, k, ... = 1, 2, . . . , n

and λ, β, γ, . . . = 1, 2, . . . ,m.
In order to introduce the so called Einstein summation convention, we agree to the following limita-

tions on how indicesmay appear in formulas. A given index lettermay occur only once in a given term in
an expression (call this a “free index”), in which case the expression is understood to stand for the set of
all such expressions for which the index assumes its allowed values, or it may occur twice but only as a
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1.7. Levi-Civitta and Einstein Index Notation

superscript-subscript pair (one up, one down) which will stand for the sum over all allowed values (call
this a “repeated index”). Here are some examples. If i, j = 1, . . . , n then

Ai ←→ n expressions : A1, A2, . . . , An,

Ai
i ←→

n∑
i=1

Ai
i, a single expression with n terms

(this is called the trace of the matrixA = (Ai
j)),

Aji
i ←→

n∑
i=1

A1i
i, . . . ,

n∑
i=1

Ani
i, n expressions each of which has n terms in the sum,

Aii ←→ no sum, just an expression for each i, if we want to refer to a specific
diagonal component (entry) of a matrix, for example,

Aivi + Aiwi = Ai(vi + wi), 2 sums of n terms each (left) or one combined sum (right).

A repeated index is a “dummy index,” like the dummy variable in a definite integral

ˆ b

a

f(x) dx =

ˆ b

a

f(u) du.

We can change them at will: Ai
i = Aj

j .

In order to emphasize that we are using Einstein’s convention, we will enclose any terms
under consideration with ⌜ · ⌟.
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68 Example

Using Einstein’s Summation convention, the dot product of two vectors x ∈ Rn and y ∈ Rn can be written
as

x•y =
n∑

i=1

xiyi = ⌜xtyt⌟.

69 Example
Given that ai, bj, ck, dl are the components of vectors inR3, a,b, c,d respectively, what is the meaning of

⌜aibickdk⌟?

Solution: ▶ We have

⌜aibickdk⌟ =
3∑

i=1

aibi⌜ckdk⌟ = a•b⌜ckdk⌟ = a•b
3∑

k=1

ckdk = (a•b)(c•d).

◀
70 Example

UsingEinstein’sSummationconvention, the ij-thentry (AB)ij of theproductof twomatricesA ∈Mm×n(R)
andB ∈Mn×r(R) can be written as

(AB)ij =
n∑

k=1

AikBkj = ⌜AitBtj⌟.
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71 Example

Using Einstein’s Summation convention, the trace tr (A) of a square matrix A ∈ Mn×n(R) is tr (A) =∑n
t=1Att = ⌜Att⌟.

72 Example
Demonstrate, via Einstein’s Summation convention, that ifA,B are two n× nmatrices, then

tr (AB) = tr (BA) .

Solution: ▶ We have

tr (AB) = tr
Ä
(AB)ij

ä
= tr

Ä
⌜AikBkj⌟

ä
= ⌜⌜AtkBkt⌟⌟,

and
tr (BA) = tr

Ä
(BA)ij

ä
= tr

Ä
⌜BikAkj⌟

ä
= ⌜⌜BtkAkt⌟⌟,

fromwhere the assertion follows, since the indices are dummy variables and can be exchanged. ◀
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73 Definition (Kronecker’s Delta)
The symbol δij is defined as follows:

δij =


0 if i ̸= j

1 if i = j.

74 Example
It is easy to see that ⌜δikδkj⌟ =

∑3
k=1 δikδkj = δij .

75 Example
We see that

⌜δijaibj⌟ =
3∑

i=1

3∑
j=1

δijaibj =
3∑

k=1

akbk = x•y.

Recall that a permutation of distinct objects is a reordering of them. The 3! = 6 permutations of the
index set {1, 2, 3} can be classified into even or odd. We start with the identity permutation 123 and
say it is even. Now, for any other permutation, we will say that it is even if it takes an even number of
transpositions (switching only two elements in onemove) to regain the identity permutation, and odd if
it takes an odd number of transpositions to regain the identity permutation. Since

231→ 132→ 123, 312→ 132→ 123,
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1.7. Levi-Civitta and Einstein Index Notation

the permutations 123 (identity), 231, and 312 are even. Since

132→ 123, 321→ 123, 213→ 123,

the permutations 132, 321, and 213 are odd.

76 Definition (Levi-Civitta’s Alternating Tensor)
The symbol εjkl is defined as follows:

εjkl =



0 if {j, k, l} ̸= {1, 2, 3}

−1 if

Ü
1 2 3

j k l

ê
is an odd permutation

+1 if

Ü
1 2 3

j k l

ê
is an even permutation

In particular, if one subindex is repeated we have εrrs = εrsr = εsrr = 0. Also,

ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1.
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77 Example

Using the Levi-Civitta alternating tensor and Einstein’s summation convention, the cross product can also
be expressed, if i = e1, j = e2, k = e3, then

x × y = ⌜εjkl(akbl)ej⌟.
78 Example

IfA = [aij] is a 3× 3matrix, then, using the Levi-Civitta alternating tensor,

detA = ⌜εijka1ia2ja3k⌟.
79 Example

Let x,y, z be vectors inR3. Then

x•(y × z) = ⌜xi(y × z)i⌟ = ⌜xiεikl(ykzl)⌟.

Identities Involving δ and ϵ

ϵijkδ1iδ2jδ3k = ϵ123 = 1 (1.11)

ϵijkϵlmn =

∣∣∣∣∣∣∣∣∣∣∣∣

δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣∣∣∣∣
= δilδjmδkn+δimδjnδkl+δinδjlδkm−δilδjnδkm−δimδjlδkn−δinδjmδkl (1.12)
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1.7. Levi-Civitta and Einstein Index Notation

ϵijkϵlmk =

∣∣∣∣∣∣∣∣
δil δim

δjl δjm

∣∣∣∣∣∣∣∣ = δilδjm − δimδjl (1.13)

The last identity is very useful in manipulating and simplifying tensor expressions and proving vector
and tensor identities.

ϵijkϵljk = 2δil (1.14)

ϵijkϵijk = 2δii = 6 (1.15)

80 Example
Write the following identities using Einstein notation

1. A · (B×C) = C · (A×B) = B · (C×A)

2. A× (B×C) = B (A ·C)−C (A ·B)

Solution: ▶

A · (B×C) =C · (A×B) =B · (C×A)

⇕ ⇕ (1.16)

ϵijkAiBjCk = ϵkijCkAiBj = ϵjkiBjCkAi
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1. Multidimensional Vectors

A× (B×C) = B (A ·C)−C (A ·B)

⇕ (1.17)

ϵijkAjϵklmBlCm = Bi (AmCm)− Ci (AlBl)

◀

1.7. Common Definitions in Einstein Notation

The trace of a matrix A tensor is:
tr (A) = Aii (1.18)

For a 3× 3matrix the determinant is:

det (A) =

∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣∣∣∣∣∣
= ϵijkA1iA2jA3k = ϵijkAi1Aj2Ak3 (1.19)

where the last two equalities represent the expansion of the determinant by row and by column. Alter-
natively

det (A) =
1

3!
ϵijkϵlmnAilAjmAkn (1.20)
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1.7. Levi-Civitta and Einstein Index Notation

For an n× nmatrix the determinant is:

det (A) = ϵi1···inA1i1 . . . Anin = ϵi1···inAi11 . . . Ainn =
1

n!
ϵi1···in ϵj1···jnAi1j1 . . . Ainjn (1.21)

The inverse of a matrix A is: î
A−1

ó
ij
=

1

2 det (A)
ϵjmn ϵipqAmpAnq (1.22)

Themultiplication of a matrix A by a vector b as defined in linear algebra is:

[Ab]i = Aijbj (1.23)

Themultiplication of two n× nmatrices A and B as defined in linear algebra is:

[AB]ik = AijBjk (1.24)

Again, here we are usingmatrix notation; otherwise a dot should be inserted between the twomatrices.
The dot product of two vectors is:

A ·B =δijAiBj = AiBi (1.25)

The cross product of two vectors is:

[A×B]i = ϵijkAjBk (1.26)
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The scalar triple product of three vectors is:

A · (B×C) =

∣∣∣∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣∣∣∣
= ϵijkAiBjCk (1.27)

The vector triple product of three vectors is:î
A× (B×C)

ó
i
= ϵijkϵklmAjBlCm (1.28)

1.7. Examples of Using Einstein Notation to Prove Identities

81 Example
A · (B×C) = C · (A×B) = B · (C×A):

Solution: ▶
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1.7. Levi-Civitta and Einstein Index Notation

A · (B×C) = ϵijkAiBjCk (Eq. ??)

= ϵkijAiBjCk (Eq. 10.40)

= ϵkijCkAiBj (commutativity)

= C · (A×B) (Eq. ??)

= ϵjkiAiBjCk (Eq. 10.40)

= ϵjkiBjCkAi (commutativity)

= B · (C×A) (Eq. ??)

(1.29)

The negative permutations of these identities can be similarly obtained and proved by changing the
order of the vectors in the cross products which results in a sign change.

◀

82 Example
Show that A× (B×C) = B (A ·C)−C (A ·B):
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Solution: ▶î
A× (B×C)

ó
i
= ϵijkAj [B×C]k (Eq. ??)

= ϵijkAjϵklmBlCm (Eq. ??)

= ϵijkϵklmAjBlCm (commutativity)

= ϵijkϵlmkAjBlCm (Eq. 10.40)

=
Ä
δilδjm − δimδjl

ä
AjBlCm (Eq. 10.58)

= δilδjmAjBlCm − δimδjlAjBlCm (distributivity)

= (δilBl)
Ä
δjmAjCm

ä
− (δimCm)

Ä
δjlAjBl

ä
(commutativity and grouping)

= Bi (AmCm)− Ci (AlBl) (Eq. 10.32)

= Bi (A ·C)− Ci (A ·B) (Eq. 1.25)

=
î
B (A ·C)

ó
i
−
î
C (A ·B)

ó
i

(definition of index)

=
î
B (A ·C)−C (A ·B)

ó
i

(Eq. ??)

(1.30)

Because i is a free index the identity is proved for all components. Other variants of this identity [e.g.
(A×B)×C] can be obtained and proved similarly by changing the order of the factors in the external
cross product with adding a minus sign. ◀

Exercises
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83 Problem

Let x,y, z be vectors inR3. Demonstrate that

⌜xiyizj⌟ = (x•y)z.
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2.
Limits and Continuity

2.1. Some Topology

84 Definition
Let a ∈ Rn and let ε > 0. An open ball centered at a of radius ε is the set

Bε(a) = {x ∈ Rn : ∥x− a∥ < ε}.
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2. Limits and Continuity

An open box is a Cartesian product of open intervals

]a1; b1[×]a2; b2[× · · ·×]an−1; bn−1[×]an; bn[,

where the ak, bk are real numbers.

The set

Bε(a) = {x ∈ Rn : ∥x− a∥ < ε}.

is also called the ε-neighborhood of the point a.

b

b

(a1, a2)

ε

Figure 2.1. Open ball inR2.

b b

bb

b1 − a1

b 2
−
a
2

b

Figure 2.2. Open rectangle inR2.
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x y

z

b

b

ε
(a1, a2, a3)

Figure 2.3. Open ball inR3.

x y

z

Figure 2.4. Open box inR3.

85 Example
An open ball inR is an open interval, an open ball inR2 is an open disk and an open ball inR3 is an open
sphere. An open box inR is an open interval, an open box inR2 is a rectangle without its boundary and an
open box inR3 is a box without its boundary.

86 Definition
A setA ⊆ Rn is said to be open if for every point belonging to it we can surround the point by a sufficiently
small open ball so that this balls lies completely within the set. That is, ∀a ∈ A ∃ε > 0 such thatBε(a) ⊆
A.

87 Example
The open interval ]− 1; 1[ is open inR. The interval ]− 1; 1] is not open, however, as no interval centred at
1 is totally contained in ]− 1; 1].

88 Example
The region ]− 1; 1[×]0; +∞[ is open inR2.
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Figure 2.5. Open Sets

89 Example
The ellipsoidal region

¶
(x, y) ∈ R2 : x2 + 4y2 < 4

©
is open inR2.

The reader will recognize that open boxes, open ellipsoids and their unions and finite intersections are
open sets inRn.

90 Definition
A set F ⊆ Rn is said to be closed inRn if its complementRn \ F is open.

91 Example
The closed interval [−1; 1] is closed inR, as its complement, R \ [−1; 1] =] −∞;−1[∪]1; +∞[ is open in
R. The interval ]− 1; 1] is neither open nor closed inR, however.
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92 Example

The region [−1; 1]× [0; +∞[×[0; 2] is closed inR3.

93 Lemma
If x1 and x2 are in Sr(x0) for some r > 0, then so is every point on the line segment from x1 to x2.

Proof. The line segment is given by

x = tx2 + (1− t)x1, 0 < t < 1.

Suppose that r > 0. If
|x1 − x0| < r, |x2 − x0| < r,

and 0 < t < 1, then

|x− x0| = |tx2 + (1− t)x1 − tx0 − (1− t)x0| (2.1)

= |t(x2 − x0) + (1− t)(x1 − x0)| (2.2)

≤ t|x2 − x0|+ (1− t)|x1 − x0| (2.3)

< tr + (1− t)r = r.

■
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94 Definition
A sequence of points {xk} inRn converges to the limit x if

lim
k→∞
|xk − x| = 0.

In this case we write
lim
k→∞

xk = x.

The next two theorems follow from this, the definition of distance in Rn, and what we already know
about convergence inR.

95 Theorem
Let

x = (x1, x2, . . . , xn) and xk = (x1k, x2k, . . . , xnk), k ≥ 1.

Then lim
k→∞

xk = x if and only if
lim
k→∞

xik = xi, 1 ≤ i ≤ n;

that is, a sequence {xk} of points inRn converges to a limit x if and only if the sequences of components
of {xk} converge to the respective components of x.
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96 Theorem (Cauchy’s Convergence Criterion)
A sequence {xk} inRn converges if and only if for each ε > 0 there is an integerK such that

∥xr − xs∥ < ε if r, s ≥ K.

97 Definition
Let S be a subset ofR. Then

1. x0 is a limit point of S if every deleted neighborhood of x0 contains a point of S.

2. x0 is a boundary point of S if every neighborhood of x0 contains at least one point in S and one
not in S. The set of boundary points of S is the boundary of S, denoted by ∂S. The closure of S,
denoted by S, is S = S ∪ ∂S.

3. x0 is an isolated point ofS if x0 ∈ S and there is a neighborhood of x0 that contains no other point
of S.

4. x0 is exterior to S if x0 is in the interior of Sc. The collection of such points is the exterior of S.

98 Example
Let S = (−∞,−1] ∪ (1, 2) ∪ {3}. Then

1. The set of limit points of S is (−∞,−1] ∪ [1, 2].
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2. ∂S = {−1, 1, 2, 3} and S = (−∞,−1] ∪ [1, 2] ∪ {3}.

3. 3 is the only isolated point of S.

4. The exterior of S is (−1, 1) ∪ (2, 3) ∪ (3,∞).

99 Example
For n ≥ 1, let

In =

ñ
1

2n+ 1
,
1

2n

ô
and S =

∞∪
n=1

In.

Then

1. The set of limit points of S is S ∪ {0}.

2. ∂S = {x|x = 0 or x = 1/n (n ≥ 2)} and S = S ∪ {0}.

3. S has no isolated points.

4. The exterior of S is

(−∞, 0) ∪

 ∞∪
n=1

Ç
1

2n+ 2
,

1

2n+ 1

å ∪ Ç1
2
,∞
å
.
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100 Example

Let S be the set of rational numbers. Since every interval contains a rational number, every real number is
a limit point of S; thus, S = R. Since every interval also contains an irrational number, every real number
is a boundary point ofS; thus ∂S = R. The interior and exterior ofS are both empty, andS has no isolated
points. S is neither open nor closed.

The next theorem says that S is closed if and only if S = S (Exercise 108).

101 Theorem
A set S is closed if and only if no point of Sc is a limit point of S.

Proof. Suppose that S is closed and x0 ∈ Sc. Since Sc is open, there is a neighborhood of x0 that is
contained in Sc and therefore contains no points of S. Hence, x0 cannot be a limit point of S. For the
converse, if nopoint ofSc is a limit point ofS thenevery point inScmust haveaneighborhood contained
in Sc. Therefore, Sc is open and S is closed. ■

Theorem 101 is usually stated as follows.

102 Corollary
A set is closed if and only if it contains all its limit points.
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A1

A2
A3

An

Figure 2.6. Polygonal curve

A polygonal curve P is a curve specified by a sequence of points (A1, A2, . . . , An) called its vertices.
The curve itself consists of the line segments connecting the consecutive vertices.

103 Definition
A domain is a path connected open set. A path connected setDmeans that any two points of this set can
be connected by a polygonal curve lying withinD.

104 Definition
A simply connected domain is a path-connected domain where one can continuously shrink any simple
closed curve into a point while remaining in the domain.

Equivalently a pathwise-connected domain U ⊆ R3 is called simply connected if for every simple
closed curve Γ ⊆ U , there exists a surfaceΣ ⊆ U whose boundary is exactly the curve Γ.
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(a) Simply connected domain (b) Non-simply connected domain

Figure 2.7. Domains

Exercises
105 Problem

Determine whether the following subsets of R2 are
open, closed, or neither, inR2.

1. A = {(x, y) ∈ R2 : |x| < 1, |y| < 1}

2. B = {(x, y) ∈ R2 : |x| < 1, |y| ≤ 1}

3. C = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}

4. D = {(x, y) ∈ R2 : x2 ≤ y ≤ x}

5. E = {(x, y) ∈ R2 : xy > 1}

6. F = {(x, y) ∈ R2 : xy ≤ 1}
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2. Limits and Continuity

7. G = {(x, y) ∈ R2 : |y| ≤ 9, x < y2}

106 Problem (Putnam Exam 1969)
Let p(x, y) be a polynomial with real coefficients in
the real variables x and y, defined over the entire
plane R2. What are the possibilities for the image
(range) of p(x, y)?

107 Problem (Putnam 1998)
LetF be a finite collection of open disks inR2 whose

union contains a set E ⊆ R2. Shew that there is a
pairwise disjoint subcollectionDk, k ≥ 1 in F such
that

E ⊆
n∪

j=1

3Dj.

108 Problem
A set S is closed if and only if no point of Sc is a limit
point of S.

2.2. Limits

Wewill start with the notion of limit.

109 Definition
A function f : Rn → Rm is said to have a limit L ∈ Rm at a ∈ Rn if ∀ε > 0, ∃δ > 0 such that

0 < ||x− a|| < δ =⇒ ||f(x)− L|| < ε.
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In such a case we write,
lim
x→a

f(x) = L.

The notions of infinite limits, limits at infinity, and continuity at a point, are analogously defined.

110 Theorem
A function f : Rn → Rm have limit

lim
x→a

f(x) = L.

if and only if the coordinates functions f1, f2, . . . fm have limitsL1, L2, . . . , Lm respectively, i.e., fi → Li.

Proof.
We start with the following observation:∥∥∥f(x)− L∥∥∥2 = ∣∣∣f1(x)− L1

∣∣∣2 + ∣∣∣f2(x)− L2

∣∣∣2 + · · ·+ ∣∣∣fm(x)− Lm

∣∣∣2 .
So, if ∣∣∣f1(x)− L1

∣∣∣ < ε∣∣∣f2(x)− L2

∣∣∣ < ε

...
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2. Limits and Continuity ∣∣∣fm(x)− Lm

∣∣∣ < ε

then
∥∥∥f(t)− L

∥∥∥ < √mε.
Now, if

∥∥∥f(x)− L
∥∥∥ < ε then ∣∣∣f1(x)− L1∣∣∣ < ε∣∣∣f2(x)− L2∣∣∣ < ε

...∣∣∣fm(x)− Lm

∣∣∣ < ε

■

Limits in more than one dimension are perhaps trickier to find, as one must approach the test point
from infinitely many directions.

111 Example
Find lim

(x,y)→(0,0)

(
x2y

x2 + y2
,
x5y3

x6 + y4

)

Solution: ▶ First we will calculate lim
(x,y)→(0,0)

x2y

x2 + y2
We use the sandwich theorem. Observe that 0 ≤
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x2 ≤ x2 + y2, and so 0 ≤ x2

x2 + y2
≤ 1. Thus

lim
(x,y)→(0,0)

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣∣∣ x2y

x2 + y2

∣∣∣∣∣∣ ≤ lim
(x,y)→(0,0)

|y|,

and hence

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Nowwe find lim
(x,y)→(0,0)

x5y3

x6 + y4
.

Either |x| ≤ |y| or |x| ≥ |y|. Observe that if |x| ≤ |y|, then∣∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣∣ ≤ y8

y4
= y4.

If |y| ≤ |x|, then ∣∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣∣ ≤ x8

x6
= x2.

Thus ∣∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣∣ ≤ max(y4, x2) ≤ y4 + x2 −→ 0,
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as (x, y)→ (0, 0).

Aliter: LetX = x3, Y = y2. ∣∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣∣ = X5/3Y 3/2

X2 + Y 2
.

Passing to polar coordinatesX = ρ cos θ, Y = ρ sin θ, we obtain∣∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣∣ = X5/3Y 3/2

X2 + Y 2
= ρ5/3+3/2−2| cos θ|5/3| sin θ|3/2 ≤ ρ7/6 → 0,

as (x, y)→ (0, 0).

◀
112 Example

Find lim
(x,y)→(0,0)

1 + x+ y

x2 − y2
.

Solution: ▶ When y = 0,
1 + x

x2
→ +∞,

as x→ 0. When x = 0,
1 + y

−y2
→ −∞,

as y → 0. The limit does not exist. ◀
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113 Example

Find lim
(x,y)→(0,0)

xy6

x6 + y8
.

Solution: ▶ Putting x = t4, y = t3, we find

xy6

x6 + y8
=

1

2t2
→ +∞,

as t→ 0. But when y = 0, the function is 0. Thus the limit does not exist. ◀

114 Example
Find lim

(x,y)→(0,0)

((x− 1)2 + y2) loge((x− 1)2 + y2)

|x|+ |y|
.

Solution: ▶ When y = 0we have

2(x− 1)2 ln(|1− x|)
|x|

∼ −2x

|x|
,

and so the function does not have a limit at (0, 0). ◀

115 Example
Find lim

(x,y)→(0,0)

sin(x4) + sin(y4)√
x4 + y4

.
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Figure 2.8. Example 114.
Figure 2.9. Example 115.

Figure 2.10. Example 116.
Figure 2.11. Example 113.
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Solution: ▶ sin(x4) + sin(y4) ≤ x4 + y4 and so∣∣∣∣∣∣sin(x
4) + sin(y4)√
x4 + y4

∣∣∣∣∣∣ ≤
»
x4 + y4 → 0,

as (x, y)→ (0, 0). ◀
116 Example

Find lim
(x,y)→(0,0)

sinx− y
x− sin y .

Solution: ▶ When y = 0we obtain
sinx
x
→ 1,

as x→ 0.When y = x the function is identically−1. Thus the limit does not exist. ◀

If f : R2 → R, it may be that the limits

lim
y→y0

Å
lim
x→x0

f(x, y)
ã
, lim

x→x0

Ç
lim
y→y0

f(x, y)

å
,

both exist. These are called the iterated limits of f as (x, y) → (x0, y0). The following possibilities
might occur.

1. If lim
(x,y)→(x0,y0)

f(x, y)exists, theneachof the iterated limits lim
y→y0

Å
lim
x→x0

f(x, y)
ã
and lim

x→x0

Ç
lim
y→y0

f(x, y)

å
exists.
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2. If the iterated limits exist and lim
y→y0

Å
lim
x→x0

f(x, y)
ã
̸= lim

x→x0

Ç
lim
y→y0

f(x, y)

å
then lim

(x,y)→(x0,y0)
f(x, y)

does not exist.

3. It may occur that lim
y→y0

Å
lim
x→x0

f(x, y)
ã
= lim

x→x0

Ç
lim
y→y0

f(x, y)

å
, but that lim

(x,y)→(x0,y0)
f(x, y) does not

exist.

4. It may occur that lim
(x,y)→(x0,y0)

f(x, y) exists, but one of the iterated limits does not.

Exercises
117 Problem

Sketch the domain of definition of (x, y) 7→
√
4− x2 − y2.

118 Problem
Sketch the domain of definition of (x, y) 7→ log(x +

y).

119 Problem
Sketch the domain of definition of (x, y) 7→ 1

x2 + y2
.

120 Problem
Find lim

(x,y)→(0,0)
(x2 + y2) sin 1

xy
.

121 Problem
Find lim

(x,y)→(0,2)

sinxy
x

.
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2.2. Limits
122 Problem

For what cwill the function

f(x, y) =


√
1− x2 − 4y2, if x2 + 4y2 ≤ 1,

c, if x2 + 4y2 > 1

be continuous everywhere on the xy-plane?

123 Problem
Find

lim
(x,y)→(0,0)

»
x2 + y2 sin 1

x2 + y2
.

124 Problem
Find

lim
(x,y)→(+∞,+∞)

max(|x|, |y|)√
x4 + y4

.

125 Problem
Find

lim
(x,y)→(0,0

2x2 sin y2 + y4e−|x|
√
x2 + y2

.

126 Problem
Demonstrate that

lim
(x,y,z)→(0,0,0)

x2y2z2

x2 + y2 + z2
= 0.

127 Problem
Prove that

lim
x→0

(
lim
y→0

x− y
x+ y

)
= 1 = − lim

y→0

(
lim
x→0

x− y
x+ y

)
.

Does lim
(x,y)→(0,0)

x− y
x+ y

exist?.

128 Problem
Let

f(x, y) =


x sin 1

x
+ y sin 1

y
if x ̸= 0, y ̸= 0

0 otherwise

Prove that lim
(x,y)→(0,0)

f(x, y) exists, but that the iter-

ated limits lim
x→0

Ç
lim
y→0

f(x, y)

å
and lim

y→0

Å
lim
x→0

f(x, y)
ã

do not exist.
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2. Limits and Continuity
129 Problem

Prove that

lim
x→0

(
lim
y→0

x2y2

x2y2 + (x− y)2

)
= 0,

and that

lim
y→0

(
lim
x→0

x2y2

x2y2 + (x− y)2

)
= 0,

but still lim
(x,y)→(0,0)

x2y2

x2y2 + (x− y)2
does not exist.

2.3. Continuity

130 Definition
LetU ⊂ Rm be a domain, and f : U → Rd be a function. We say f is continuous at a if lim

x→a
f(x) = f(a).

131 Definition
If f is continuous at every point a ∈ U , then we say f is continuous on U (or sometimes simply f is con-
tinuous).

Again the standard results on continuity from one variable calculus hold. Sums, products, quotients
(with a non-zero denominator) and composites of continuous functions will all yield continuous func-
tions.
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2.3. Continuity

The notion of continuity is useful is computing the limits along arbitrary curves.

132 Proposition
Let f : Rd → R be a function, and a ∈ Rd. Let γ : [0, 1]→ Rd be a any continuous functionwith γ(0) = a,
and γ(t) ̸= a for all t > 0. If lim

x→a
f(x) = l, then wemust have lim

t→0
f(γ(t)) = l.

133 Corollary
If there exists two continuous functions γ1, γ2 : [0, 1]→ Rd such that for i ∈ {1, 2}we have γi(0) = a and
γi(t) ≠ a for all t > 0. If lim

t→0
f(γ1(t)) ̸= lim

t→0
f(γ2(t)) then lim

x→a
f(x) can not exist.

134 Theorem
The vector function f : Rd → R is continuous at t0 if and only if the coordinates functions f1, f2, . . . fn
are continuous at t0.

The proof of this Theorem is very similar to the proof of Theorem 110.

Exercises
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2. Limits and Continuity
135 Problem

Sketch the domain of definition of (x, y) 7→
√
4− x2 − y2.

136 Problem
Sketch the domain of definition of (x, y) 7→ log(x +

y).

137 Problem
Sketch the domain of definition of (x, y) 7→ 1

x2 + y2
.

138 Problem
Find lim

(x,y)→(0,0)
(x2 + y2) sin 1

xy
.

139 Problem
Find lim

(x,y)→(0,2)

sinxy
x

.

140 Problem
For what cwill the function

f(x, y) =


√
1− x2 − 4y2, if x2 + 4y2 ≤ 1,

c, if x2 + 4y2 > 1

be continuous everywhere on the xy-plane?

141 Problem
Find

lim
(x,y)→(0,0)

»
x2 + y2 sin 1

x2 + y2
.

142 Problem
Find

lim
(x,y)→(+∞,+∞)

max(|x|, |y|)√
x4 + y4

.

143 Problem
Find

lim
(x,y)→(0,0

2x2 sin y2 + y4e−|x|
√
x2 + y2

.

144 Problem
Demonstrate that

lim
(x,y,z)→(0,0,0)

x2y2z2

x2 + y2 + z2
= 0.
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2.4. ⋆ Compactness
145 Problem

Prove that

lim
x→0

(
lim
y→0

x− y
x+ y

)
= 1 = − lim

y→0

(
lim
x→0

x− y
x+ y

)
.

Does lim
(x,y)→(0,0)

x− y
x+ y

exist?.

146 Problem
Let

f(x, y) =


x sin 1

x
+ y sin 1

y
if x ̸= 0, y ̸= 0

0 otherwise

Prove that lim
(x,y)→(0,0)

f(x, y) exists, but that the iter-

ated limits lim
x→0

Ç
lim
y→0

f(x, y)

å
and lim

y→0

Å
lim
x→0

f(x, y)
ã

do not exist.

147 Problem
Prove that

lim
x→0

(
lim
y→0

x2y2

x2y2 + (x− y)2

)
= 0,

and that

lim
y→0

(
lim
x→0

x2y2

x2y2 + (x− y)2

)
= 0,

but still lim
(x,y)→(0,0)

x2y2

x2y2 + (x− y)2
does not exist.

2.4. ⋆ Compactness

The next definition generalizes the definition of the diameter of a circle or sphere.
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2. Limits and Continuity

148 Definition
If S is a nonempty subset ofRn, then

d(S) = sup
¶
|x−Y|

©
x,Y ∈ S

is the diameter of S. If d(S) <∞, S is bounded; if d(S) =∞, S is unbounded.

149 Theorem (Principle of Nested Sets)
If S1, S2,…are closed nonempty subsets ofRn such that

S1 ⊃ S2 ⊃ · · · ⊃ Sr ⊃ · · · (2.4)

and
lim
r→∞

d(Sr) = 0, (2.5)

then the intersection
I =

∞∩
r=1

Sr

contains exactly one point.
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2.4. ⋆ Compactness

Proof. Let {xr} be a sequence such that xr ∈ Sr (r ≥ 1). Because of (2.4), xr ∈ Sk if r ≥ k, so

|xr − xs| < d(Sk) if r, s ≥ k.

From (2.5) and Theorem 96, xr converges to a limit x. Since x is a limit point of every Sk and every Sk

is closed, x is in every Sk (Corollary 102). Therefore, x ∈ I , so I ̸= ∅. Moreover, x is the only point in I ,
since if Y ∈ I , then

|x−Y| ≤ d(Sk), k ≥ 1,

and (2.5) implies that Y = x. ■

We can now prove the Heine–Borel theorem for Rn. This theorem concerns compact sets. As in R, a
compact set inRn is a closed and bounded set.

Recall that a collectionH of open sets is an open covering of a set S if

S ⊂ ∪{H}H ∈ H.

150 Theorem (Heine–Borel Theorem)
IfH is an open covering of a compact subset S, then S can be covered by finitely many sets fromH.
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2. Limits and Continuity

Proof. The proof is by contradiction. We first consider the case where n = 2, so that you can visual-
ize the method. Suppose that there is a covering H for S from which it is impossible to select a finite
subcovering. Since S is bounded, S is contained in a closed square

T = {(x, y)|a1 ≤ x ≤ a1 + L, a2 ≤ x ≤ a2 + L}

with sides of length L (Figure ??).
Bisecting thesidesofT as shownby thedashed lines inFigure?? leads to four closedsquares,T (1), T (2),

T (3), and T (4), with sides of length L/2. Let

S(i) = S ∩ T (i), 1 ≤ i ≤ 4.

Each S(i), being the intersection of closed sets, is closed, and

S =
4∪

i=1

S(i).

Moreover, H covers each S(i), but at least one S(i) cannot be covered by any finite subcollection ofH,
since if all the S(i) could be, then so could S. Let S1 be a set with this property, chosen from S(1), S(2),
S(3), and S(4). We are now back to the situation we started from: a compact set S1 covered byH, but
not by any finite subcollection of H. However, S1 is contained in a square T1 with sides of length L/2
instead of L. Bisecting the sides of T1 and repeating the argument, we obtain a subset S2 of S1 that has
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2.4. ⋆ Compactness

the same properties as S, except that it is contained in a square with sides of length L/4. Continuing in
this way produces a sequence of nonempty closed sets S0 (= S), S1, S2, …, such that Sk ⊃ Sk+1 and
d(Sk) ≤ L/2k−1/2 (k ≥ 0). From Theorem 149, there is a point x in ∩∞

k=1 Sk. Since x ∈ S, there is an
open setH inH that contains x, and thisH must also contain some ε-neighborhood of x. Since every x
in Sk satisfies the inequality

|x− x| ≤ 2−k+1/2L,

it follows that Sk ⊂ H for k sufficiently large. This contradicts our assumption on H, which led us to
believe that no Sk could be covered by a finite number of sets fromH. Consequently, this assumption
must be false: Hmust have a finite subcollection that covers S. This completes the proof for n = 2.

The idea of the proof is the same for n > 2. The counterpart of the square T is the hypercube with
sides of length L:

T =
¶
(x1, x2, . . . , xn)

©
ai ≤ xi ≤ ai + L, i = 1, 2, . . . , n.

Halving the intervals of variation of the n coordinates x1, x2, …, xn divides T into 2n closed hypercubes
with sides of length L/2:

T (i) =
¶
(x1, x2, . . . , xn)

©
bi ≤ xi ≤ bi + L/2, 1 ≤ i ≤ n,

where bi = ai or bi = ai+L/2. If no finite subcollection ofH covers S, then at least one of these smaller
hypercubesmust contain a subset ofS that is not coveredby any finite subcollection ofS. Now theproof
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2. Limits and Continuity

proceeds as for n = 2. ■

151 Theorem (Bolzano-Weierstrass)
Every bounded infinite set of real numbers has at least one limit point.

Proof. Wewill show that a boundednonempty setwithout a limit point can contain only a finite number
of points. If S has no limit points, then S is closed (Theorem 101) and every point x of S has an open
neighborhoodNx that contains no point of S other than x. The collection

H = {Nx}x ∈ S

is an open covering for S. Since S is also bounded, implies that S can be covered by a finite collec-
tion of sets from H, say Nx1 , …, Nxn . Since these sets contain only x1, …, xn from S, it follows that
S = {x1, . . . , xn}. ■
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3.
Differentiation of Vector Function

In this chapter we consider functions f : Rn → Rm. This functions are usually classified based on the
dimensions n andm:

Ê if thedimensionsnandmareequal to1, sucha function is calleda real functionofa real variable.

Ë ifm = 1 andn > 1 the function is called a real-valued function of a vector variable or,more briefly,
a scalar field.

Ì if n = 1 andm > 1 it is called a vector-valued function of a real variable.
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3. Differentiation of Vector Function

Í if n > 1 andm > 1 it is called a vector-valued function of a vector variable, or simply a vector
field.

We suppose that the cases of real functionof a real variable andof scalar fields havebeen studiedbefore.
This chapter extends the concepts of limit, continuity, and derivative to vector-valued function and

vector fields.
We start with the simplest one: vector-valued function.

3.1. Differentiation of Vector Function of a Real Variable

152 Definition
A vector-valued function of a real variable is a rule that associates a vector f(t) with a real number t,
where t is in some subset D of R (called the domain of f). We write f : D → Rn to denote that f is a
mapping ofD intoRn.

f : R→ Rn

f(t) =
Ä
f1(t), f2(t), . . . , fn(t)

ä
with

f1, f2, . . . , fn : R→ R.
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3.1. Differentiation of Vector Function of a Real Variable

called the component functions of f.
InR3 vector-valued function of a real variable can be written in component form as

f(t) = f1(t)i + f2(t)j + f3(t)k

or in the form
f(t) = (f1(t), f2(t), f3(t))

for some real-valued functions f1(t), f2(t), f3(t). The first form is often used when emphasizing that f(t)
is a vector, and the second form is useful when considering just the terminal points of the vectors. By
identifying vectorswith their terminal points, a curve in space canbewritten as a vector-valued function.

153 Example
For example, f(t) = ti+t2j+t3k is a vector-valued function inR3, defined forall real numbers t. At t = 1 the
value of the function is the vector i + j + k, which in Cartesian coordinates has the terminal point (1, 1, 1).

154 Example
Define f : R→ R3 by f(t) = (cos t, sin t, t).
This is the equation of a helix (see Figure 1.8.1). As the value of t increases, the terminal points of f(t) trace
out a curve spiraling upward. For each t, the x- and y-coordinates of f(t) are x = cos t and y = sin t, so

x2 + y2 = cos2 t+ sin2 t = 1.

Thus, the curve lies on the surface of the right circular cylinder x2 + y2 = 1.
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3. Differentiation of Vector Function

y

z

x

0

f(0)
f(2π)

It may help to think of vector-valued functions of a real variable inRn as a generalization of the para-
metric functions in R2 which you learned about in single-variable calculus. Much of the theory of real-
valued functions of a single real variable can be applied to vector-valued functions of a real variable.

155 Definition
Let f(t) = (f1(t), f2(t), . . . , fn(t)) be a vector-valued function, and let a be a real number in its domain.

The derivative of f(t) at a, denoted by f′(a) or df
dt(a), is the limit

f′(a) = lim
h→0

f(a+ h)− f(a)
h

if that limit exists. Equivalently, f′(a) = (f ′
1(a), f

′
2(a), . . . , f

′
n(a)), if the component derivatives exist. We

say that f(t) is differentiable at a if f′(a) exists.
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3.1. Differentiation of Vector Function of a Real Variable

The derivative of a vector-valued function is a tangent vector to the curve in spacewhich the function
represents, and it lies on the tangent line to the curve (see Figure 3.1).

y

z

x
0

L

f(t)

f′(a)

f(a)

f(a+ h)

f(a+
h)− f(a)

Figure 3.1. Tangent vector f′(a) and tangent
lineL = f(a) + sf′(a)

156 Example
Let f(t) = (cos t, sin t, t). Then f′(t) = (− sin t, cos t, 1) for all t. The tangent lineL to the curve at f(2π) =
(1, 0, 2π) isL = f(2π) + s f′(2π) = (1, 0, 2π) + s(0, 1, 1), or in parametric form: x = 1, y = s, z = 2π + s

for−∞ < s <∞.

Note that if u(t) is a scalar function and f(t) is a vector-valued function, then their product, defined
by (u f)(t) = u(t) f(t) for all t, is a vector-valued function (since the product of a scalar with a vector is a
vector).
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3. Differentiation of Vector Function

The basic properties of derivatives of vector-valued functions are summarized in the following theo-
rem.

157 Theorem
Let f(t) and g(t) be differentiable vector-valued functions, let u(t) be a differentiable scalar function, let
k be a scalar, and let c be a constant vector. Then

Ê
d
dtc = 0

Ë
d
dt (kf) = k

df
dt

Ì
d
dt (f + g) = df

dt +
dg
dt

Í
d
dt (f− g) = df

dt −
dg
dt

Î
d
dt (u f) = du

dt f + u
df
dt
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3.1. Differentiation of Vector Function of a Real Variable

Ï
d
dt (f

•g) = df
dt

•g + f•dg
dt

Ð
d
dt (f×g) = df

dt×g + f×dg
dt

Proof. The proofs of parts (1)-(5) follow easily by differentiating the component functions and using the
rules for derivatives from single-variable calculus. We will prove part (6), and leave the proof of part (7)
as an exercise for the reader.

(6) Write f(t) =
Ä
f1(t), f2(t), f3(t)

ä
and g(t) =

Ä
g1(t), g2(t), g3(t)

ä
, where the component functions f1(t),

f2(t), f3(t), g1(t), g2(t), g3(t) are all differentiable real-valued functions. Then

d
dt(f(t)

•g(t)) = d
dt(f1(t) g1(t) + f2(t) g2(t) + f3(t) g3(t))

=
d
dt(f1(t) g1(t)) +

d
dt(f2(t) g2(t)) +

d
dt(f3(t) g3(t))

=
df1

dt (t) g1(t) + f1(t)
dg1
dt (t) +

df2

dt (t) g2(t) + f2(t)
dg2
dt (t) +

df3

dt (t) g3(t) + f3(t)
dg3
dt (t)

=

(
df1

dt (t),
df2

dt (t),
df3

dt
(t)

)
•
Ä
g1(t), g2(t), g3(t)

ä
+
Ä
f1(t), f2(t), f3(t)

ä
•

(
dg1
dt (t),

dg2
dt (t),

dg3
dt

(t)

)
(3.1)
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3. Differentiation of Vector Function

=
df
dt(t)

•g(t) + f(t)•dg
dt(t) for all t.■ (3.2)

■

158 Example
Suppose f(t) is differentiable. Find the derivative of

∥∥∥f(t)∥∥∥. Solution: ▶
Since

∥∥∥f(t)∥∥∥ is a real-valued function of t, then by the Chain Rule for real-valued functions, we know that
d
dt
∥∥∥f(t)∥∥∥2 = 2

∥∥∥f(t)∥∥∥ d
dt
∥∥∥f(t)∥∥∥.

But
∥∥∥f(t)∥∥∥2 = f(t)•f(t), so d

dt
∥∥∥f(t)∥∥∥2 = d

dt(f(t)
•f(t)). Hence, we have

2
∥∥∥f(t)∥∥∥ d

dt
∥∥∥f(t)∥∥∥ = d

dt(f(t)
•f(t)) = f′(t)•f(t) + f(t)•f′(t) by Theorem 157(f), so

= 2f′(t)•f(t) , so if
∥∥∥f(t)∥∥∥ ̸= 0 then

d
dt
∥∥∥f(t)∥∥∥ = f′(t)•f(t)∥∥∥f(t)∥∥∥ .

◀
We know that

∥∥∥f(t)∥∥∥ is constant if and only if
d
dt
∥∥∥f(t)∥∥∥ = 0 for all t. Also, f(t) ⊥ f′(t) if and only if

f′(t)•f(t) = 0. Thus, the above example shows this important fact:
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3.1. Differentiation of Vector Function of a Real Variable
159 Proposition

If
∥∥∥f(t)∥∥∥ ̸= 0, then

∥∥∥f(t)∥∥∥ is constant if and only if f(t) ⊥ f′(t) for all t.

This means that if a curve lies completely on a sphere (or circle) centered at the origin, then the tangent
vector f′(t) is always perpendicular to the position vector f(t).

160 Example
The spherical spiral f(t) =

(
cos t√
1 + a2t2

,
sin t√
1 + a2t2

,
−at√
1 + a2t2

)
, for a ̸= 0.

Figure 3.2 shows the graph of the curve when a = 0.2. In the exercises, the reader will be asked to show
that this curve lies on the sphere x2 + y2 + z2 = 1 and to verify directly that f′(t)•f(t) = 0 for all t.

Just as in single-variable calculus, higher-order derivatives of vector-valued functions are obtained by
repeatedly differentiating the (first) derivative of the function:

f′′(t) = d
dtf

′(t) , f′′′(t) = d
dtf

′′(t) , . . . ,
dnf
dtn =

d
dt

(
dn−1f
dtn−1

)
(for n = 2, 3, 4, . . .)

We can use vector-valued functions to represent physical quantities, such as velocity, acceleration,
force, momentum, etc. For example, let the real variable t represent time elapsed from some initial time
(t = 0), and suppose that an object of constant massm is subjected to some force so that it moves in
space, with its position (x, y, z) at time t a function of t. That is, x = x(t), y = y(t), z = z(t) for some
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3. Differentiation of Vector Function

-1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

z

x

y

z

Figure 3.2. Spherical spiral with a = 0.2

real-valued functions x(t), y(t), z(t). Call r(t) = (x(t), y(t), z(t)) the position vector of the object. We
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3.1. Differentiation of Vector Function of a Real Variable

can define various physical quantities associated with the object as follows:1

position: r(t) = (x(t), y(t), z(t))

velocity: v(t) = ṙ(t) = r′(t) = dr
dt

= (x′(t), y′(t), z′(t))

acceleration: a(t) = v̇(t) = v′(t) =
dv
dt

= r̈(t) = r′′(t) = d2r
dt2

= (x′′(t), y′′(t), z′′(t))

momentum: p(t) = mv(t)

force: F(t) = ṗ(t) = p′(t) =
dp
dt (Newton’s Second Law of Motion)

Themagnitude
∥∥∥v(t)∥∥∥ of the velocity vector is called the speed of the object. Note that since themassm

is a constant, the force equation becomes the familiar F(t) = ma(t).

161 Example
Let r(t) = (5 cos t, 3 sin t, 4 sin t) be the position vector of an object at time t ≥ 0. Find its (a) velocity and
(b) acceleration vectors.

1Wewill often use the older dot notation for derivatives when physics is involved.
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3. Differentiation of Vector Function

Solution: ▶
(a) v(t) = ṙ(t) = (−5 sin t, 3 cos t, 4 cos t)

(b) a(t) = v̇(t) = (−5 cos t,−3 sin t,−4 sin t)

Note that
∥∥∥r(t)∥∥∥ = √25 cos2 t+ 25 sin2 t = 5 for all t, so by Example 158 we know that r(t)•ṙ(t) = 0 for

all t (which we can verify from part (a)). In fact,
∥∥∥v(t)∥∥∥ = 5 for all t also. And not only does r(t) lie on

the sphere of radius 5 centered at the origin, but perhaps not so obvious is that it lies completely within
a circle of radius 5 centered at the origin. Also, note that a(t) = −r(t). It turns out (see Exercise 16)
that whenever an object moves in a circle with constant speed, the acceleration vector will point in the
opposite direction of the position vector (i.e. towards the center of the circle). ◀

3.1. Antiderivatives

162 Definition
An antiderivative of a vector-valued function f is a vector-valued function F such that

F′(t) = f(t).

The indefinite integral
ˆ

f(t) dt of a vector-valued function f is the general antiderivative of f and
represents the collection of all antiderivatives of f.
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3.1. Differentiation of Vector Function of a Real Variable

The same reasoning that allows us to differentiate a vector-valued function componentwise applies
to integrating as well. Recall that the integral of a sum is the sum of the integrals and also that we can
remove constant factors from integrals. So, given f(t) = x(t) vi+ y(t)j + z(t)k, it follows that we can
integrate componentwise. Expressedmore formally,

If f(t) = x(t)i + y(t)j + z(t)k, then
ˆ

f(t) dt =
Çˆ

x(t) dt

å
i +
Çˆ

y(t) dt

å
j +
Çˆ

z(t) dt

å
k.

163 Proposition
Twoantiderivarivesof f(t)differsbyavector, i.e., ifF(t)andG(t)areantiderivativesoff thenexistsc ∈ Rn

such that
F(t)−G(t) = c

Exercises
164 Problem

For Exercises 1-4, calculate f′(t) and find the tangent
line at f(0).

1. f(t) = (t + 1, t2 +

1, t3 + 1)

2. f(t) = (et+1, e2t+

1, et
2
+ 1)

3. f(t) = (cos 2t, sin 2t, t) 4. f(t) = (sin 2t, 2 sin2 t, 2 cos t)
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3. Differentiation of Vector Function

For Exercises 5-6, find the velocity v(t) and acceler-
ation a(t) of an object with the given position vector
r(t).

5. r(t) = (t, t −
sin t, 1− cos t)

6. r(t) = (3 cos t, 2 sin t, 1)

165 Problem
1. Let

f(t) =
(

cos t√
1 + a2t2

,
sin t√
1 + a2t2

,
−at√
1 + a2t2

)
,

with a ̸= 0.

(a) Show that
∥∥∥f(t)∥∥∥ = 1 for all t.

(b) Show directly that f′(t)•f(t) = 0 for all t.

2. If f′(t) = 0 forall t in some interval (a, b), show
that f(t) is a constant vector in (a, b).

3. For a constant vector c ̸= 0, the function
f(t) = tc represents a line parallel to c.

(a) What kind of curve does g(t) = t3c repre-
sent? Explain.

(b) What kind of curve does h(t) = etc repre-
sent? Explain.

(c) Compare f′(0) and g′(0). Given your an-
swer to part (a), how do you explain the
difference in the two derivatives?

4. Show that
d
dt

(
f× df

dt

)
= f× d2f

dt2 .

5. Let a particle of (constant) mass m have po-
sition vector r(t), velocity v(t), acceleration
a(t) and momentum p(t) at time t. The an-
gular momentum L(t) of the particle with
respect to the origin at time t is defined as
L(t) = r(t)×p(t). If F(t) is the force act-
ing on the particle at time t, then define the
torque N(t) acting on the particle with re-
spect to the origin as N(t) = r(t)×F(t).
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3.2. Kepler Law

Show that L′(t) = N(t).

6. Show that
d
dt(f

•(g×h)) =
df
dt

•(g×h) +

f•
(

dg
dt×h

)
+ f•

(
g×dh

dt

)
.

7. The Mean Value Theorem does not hold for

vector-valued functions: Show that for f(t) =
(cos t, sin t, t), there is no t in the interval
(0, 2π) such that

f′(t) = f(2π)− f(0)
2π − 0

.

3.2. Kepler Law

Why do planets have elliptical orbits? In this section we will solve the two body system problem, i.e.,
describe the trajectory of two body that interact under the force of gravity. In particular we will proof
that the trajectory of a body is a ellipse with focus on the other body.

We will made two simplifying assumptions:

Ê The bodies are spherically symmetric and can be treated as point masses.

Ë There are no external or internal forces acting upon the bodies other than theirmutual gravitation.

Twopointmassobjectswithmassesm1 andm2 andpositionvectorsx1 andx2 relative to some inertial
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3. Differentiation of Vector Function

Figure 3.3. Two Body System

reference frame experience gravitational forces:

m1ẍ1 =
−Gm1m2

r2
r̂

m2ẍ2 =
Gm1m2

r2
r̂

where x is the relative position vector of mass 1 with respect to mass 2, expressed as:

x = x1 − x2

and r̂ is the unit vector in that direction and r is the length of that vector.
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3.2. Kepler Law

Dividingby their respectivemasses and subtracting the secondequation fromthe first yields theequa-
tion of motion for the acceleration of the first object with respect to the second:

ẍ = − µ
r2

r̂ (3.3)

where µ is the parameter:
µ = G(m1 +m2)

With the versor r̂ we can write r = rr̂ and with this notation equation 3.3 can be written

r̈ = − µ
r2

r̂. (3.4)

For movement under any central force, i.e. a force parallel to r, the relative angular momentum

L = r× ṙ

stays constant. This fact can be easily deduced:

L̇ =
d
dt (r× ṙ) = ṙ× ṙ + r× r̈ = 0 + 0 = 0
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3. Differentiation of Vector Function

Since the cross product of the position vector and its velocity stays constant, theymust lie in the same
plane, orthogonal to L. This implies the vector function is a plane curve.

From 3.4 it follows that

L = r× ṙ = rr̂× d
dt(rr̂) = rr̂× (r ˙̂r + ṙr̂) = r2(r̂× ˙̂r) + rṙ(r̂× r̂) = r2r̂× ˙̂r

Now consider

r̈× L = − µ
r2

r̂× (r2r̂× ˙̂r) = −µr̂× (r̂× ˙̂r) = −µ[(r̂• ˙̂r)r̂− (r̂•r̂) ˙̂r]

Since r̂•r̂ = |r̂|2 = 1we have that

r̂• ˙̂r =
1

2
(r̂• ˙̂r + ˙̂r•r̂) = 1

2

d
dt(r̂

•r̂) = 0

Substituting these values into the previous equation, we have:

r̈× L = µ ˙̂r
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3.2. Kepler Law

Now, integrating both sides:

ṙ× L = µr̂ + c

Where c is a constant vector. If we calculate the inner product of the previous equation this with r yields
an interesting result:

r•(ṙ× L) = r•(µr̂ + c) = µr•r̂ + r•c = µr(r̂•r̂) + rc cos(θ) = r(µ+ c cos(θ))

Where θ is the angle between r and c. Solving for r:

r =
r•(ṙ× L)
µ+ c cos(θ) =

(r× ṙ)•L
µ+ c cos(θ) =

|L|2
µ+ c cos(θ)

Finally, we note that

(r, θ)

areeffectively thepolar coordinatesof thevector function. Making the substitutionsp =
|L|2
µ

and e =
c

µ
,
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3. Differentiation of Vector Function

we arrive at the equation
r =

p

1 + e · cos θ (3.5)

The Equation 3.5 is the equation in polar coordinates for a conic section with one focus at the origin.

3.3. Definition of the Derivative of Vector Function

Observe that since we may not divide by vectors, the corresponding definition in higher dimensions in-
volves quotients of norms.

166 Definition
LetA ⊆ Rn be an open set. A function f : A→ Rm is said to be differentiable at a ∈ A if there is a linear
transformation, called the derivative of f at a, Da(f) : Rn → Rm such that

lim
x→a
||f(x)− f(a)−Da(f)(x− a)||

||x− a|| = 0.

If we denote by E(h) the difference (error)

E(h) := f(a + h)− f(a)−Da(f)(a)(h).
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3.3. Definition of the Derivative of Vector Function

Thenmay reformulate the definition of the derivative as

167 Definition
A function f : A→ Rm is said to be differentiable at a ∈ A if there is a linear transformationDa(f) such
that

f(a + h)− f(a) = Da(f)(h) + E(h),

with E(h) a function that satisfies limh→0

∥∥∥E(h)
∥∥∥

∥h∥ = 0.

The condition for differentiability at a is equivalent also to

f(x)− f(a) = Da(f)(x− a) + E(x− a)

with E(x− a) a function that satisfies limh→0

∥∥∥E(x− a)
∥∥∥

∥h∥ = 0.

168 Theorem
The derivative Da(f) is uniquely determined.
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3. Differentiation of Vector Function

Proof. LetL : Rn → Rm be another linear transformation satisfying definition 166. Wemust prove that
∀v ∈ Rn, L(v) = Da(f)(v). SinceA is open, a+h ∈ A for sufficiently small ∥h∥. By definition, we have

f(a + h)− f(a) = Da(f)(h) + E1(h).

with limh→0

∥∥∥E1(h)
∥∥∥

∥h∥ = 0.

and
f(a + h)− f(a) = L(h) + E2(h).

with limh→0

∥∥∥E2(h)
∥∥∥

∥h∥ = 0.

Now, observe that

Da(f)(v)− L(v) = Da(f)(h)− f(a + h) + f(a) + f(a + h)− f(a)− L(h).

By the triangle inequality,

||Da(f)(v)− L(v)|| ≤ ||Da(f)(h)− f(a + h) + f(a)||

+||f(a + h)− f(a)− L(h)||

= E1(h) + E2(h)

= E3(h),
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3.3. Definition of the Derivative of Vector Function

with limh→0

∥∥∥E3(h)
∥∥∥

∥h∥ = limh→0

∥∥∥E1 + E2(h)
∥∥∥

∥h∥ = 0.

This means that
||L(v)−Da(f)(v)|| → 0,

i.e., L(v) = Da(f)(v), completing the proof. ■

169 Example
IfL : Rn → Rm is a linear transformation, then Da(L) = L, for any a ∈ Rn.

Solution: ▶ Since Rn is an open set, we know that Da(L) uniquely determined. Thus if L satisfies
definition 166, then the claim is established. But by linearity

||L(x)− L(a)− L(x− a)|| = ||L(x)− L(a)− L(x) + L(a)|| = ∥0∥ = 0,

whence the claim follows. ◀
170 Example

Let

f :
R3 × R3 → R

(x,y) 7→ x•y
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3. Differentiation of Vector Function

be the usual dot product inR3. Show that f is differentiable and that

D(x,y)f(h,k) = x•k + h•y.

Solution: ▶ We have

f(x + h,y + k)− f(x,y) = (x + h)•(y + k)− x•y

= x•y + x•k + h•y + h•k− x•y

= x•k + h•y + h•k.

Since x•k + h•y is a linear function of (h,k) if we choose E(h) = h•k, we have by the Cauchy-
Buniakovskii-Schwarz inequality, that |h•k| ≤ ∥h∥∥k∥ and

lim
(h,k)→(0,0

∥∥∥E(h)
∥∥∥

∥h∥ ≤ ∥k∥ = 0.

which proves the assertion. ◀
Just like in the one variable case, differentiability at a point, implies continuity at that point.

171 Theorem
SupposeA ⊆ Rn is open and f : A→ Rn is differentiable onA. Then f is continuous onA.
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3.3. Definition of the Derivative of Vector Function

Proof. Given a ∈ A, we must shew that

lim
x→a

f(x) = f(a).

Since f is differentiable at a we have

f(x)− f(a) = Da(f)(x− a) + E(x− a).

Since limh→0

∥∥∥E(h)
∥∥∥

∥h∥ = 0 then limh→0

∥∥∥E(h)
∥∥∥ = 0. and so

f(x)− f(a)→ 0,

as x→ a, proving the theorem. ■

Exercises
172 Problem

LetL : R3 → R3 be a linear transformation and

F :
R3 → R3

x 7→ x × L(x)
.

133



3. Differentiation of Vector Function

Shew that F is differentiable and that

Dx(F )(h) = x × L(h) + h × L(x).

173 Problem
Let f : Rn → R, n ≥ 1, f(x) = ∥x∥ be the usual

norm inRn, with ∥x∥2 = x•x. Prove that

Dx(f)(v) =
x•v
∥x∥ ,

for x ̸= 0, but that f is not differentiable at 0.

3.4. Partial and Directional Derivatives

174 Definition
LetA ⊆ Rn, f : A→ Rm, and put

f(x) =



f1(x1, . . . , xn)

f2(x1, . . . , xn)

...

fm(x1, . . . , xn)


.
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3.4. Partial and Directional Derivatives

Here fi : Rn → R. The partial derivative
∂fi
∂xj

(x) is defined as

∂jfi(x) :=
∂fi
∂xj

(x) := lim
h→0

fi(x1, , . . . , xj + h, . . . , xn)− fi(x1, . . . , xj, . . . , xn)
h

,

whenever this limit exists.

To find partial derivatives with respect to the j-th variable, we simply keep the other variables fixed
and differentiate with respect to the j-th variable.

175 Example
If f : R3 → R, and f(x, y, z) = x+ y2 + z3 + 3xy2z3 then

∂f

∂x
(x, y, z) = 1 + 3y2z3,

∂f

∂y
(x, y, z) = 2y + 6xyz3,

and
∂f

∂z
(x, y, z) = 3z2 + 9xy2z2.

Let f(x) be a vector valued function. Then the derivative of f(x) in the direction u is defined as

Duf(x) := Df(x)[u] =
ñ
d

dα
f(v + α u)

ô
α=0
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3. Differentiation of Vector Function

xi = cte

for all vectors u.

176 Proposition

Ê If f(x) = f1(x) + f2(x) thenDuf(x) = Duf1(x) +Duf2(x)

Ë If f(x) = f1(x)× f2(x) thenDuf(x) =
Ä
Duf1(x)

ä
× f2(x) + f1(v)×

Ä
Duf2(x)

ä
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3.5. The Jacobi Matrix

3.5. The Jacobi Matrix

We now establish a way which simplifies the process of finding the derivative of a function at a given
point.

Since the derivative of a function f : Rn → Rm is a linear transformation, it can be represented by aid
ofmatrices. The following theoremwill allow us to determine thematrix representation forDa(f) under
the standard bases ofRn andRm.

177 Theorem
Let

f(x) =



f1(x1, . . . , xn)

f2(x1, . . . , xn)

...

fm(x1, . . . , xn)


.

SupposeA ⊆ Rn is an open set and f : A → Rm is differentiable. Then each partial derivative
∂fi
∂xj

(x)

exists, and the matrix representation of Dx(f) with respect to the standard bases of Rn and Rm is the

137



3. Differentiation of Vector Function

Jacobi matrix

f′(x) =



∂f1
∂x1

(x) ∂f1
∂x2

(x) . . .
∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . .
∂f2
∂xn

(x)
...

...
...

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . .
∂fm
∂xn

(x)


.

Proof. Let ej, 1 ≤ j ≤ n, be the standard basis for Rn. To obtain the Jacobi matrix, we must compute
Dx(f)(ej), which will give us the j-th column of the Jacobi matrix. Let f′(x) = (Jij), and observe that

Dx(f)(ej) =



J1j

J2j
...

Jmj


.

and put y = x + εej, ε ∈ R. Notice that

||f(y)− f(x)−Dx(f)(y− x)||
||y− x||

=
||f(x1, . . . , xj + h, . . . , xn)− f(x1, . . . , xj, . . . , xn)− εDx(f)(ej)||

|ε|
.
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3.5. The Jacobi Matrix

Since the sinistral side→ 0 as ε→ 0, the so does the i-th component of the numerator, and so,
|fi(x1, . . . , xj + h, . . . , xn)− fi(x1, . . . , xj, . . . , xn)− εJij|

|ε|
→ 0.

This entails that

Jij = lim
ε→0

fi(x1, . . . , xj + ε, . . . , xn)− fi(x1, . . . , xj, . . . , xn)
ε

=
∂fi
∂xj

(x) .

This finishes the proof. ■

Strictly speaking, the Jacobi matrix is not the derivative of a function at a point. It is a ma-
trix representation of the derivative in the standard basis of Rn. We will abuse language,
however, and refer to f′ when wemean the Jacobi matrix of f.

178 Example
Let f : R3 → R2 be given by

f(x, y) = (xy + yz, loge xy).

Compute the Jacobi matrix of f.

Solution: ▶ The Jacobi matrix is the 2× 3matrix

f′(x, y) =

∂xf1(x, y) ∂yf1(x, y) ∂zf1(x, y)

∂xf2(x, y) ∂yf2(x, y) ∂zf2(x, y)

 =

y x+ z y

1

x

1

y
0

 .
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3. Differentiation of Vector Function

◀
179 Example

Let f(ρ, θ, z) = (ρ cos θ, ρ sin θ, z) be the function which changes from cylindrical coordinates to Cartesian
coordinates. We have

f′(ρ, θ, z) =


cos θ −ρ sin θ 0

sin θ ρ cos θ 0

0 0 1

 .

180 Example
Let f(ρ, ϕ, θ) = (ρ cos θ sinϕ, ρ sin θ sinϕ, ρ cosϕ) be the function which changes from spherical coordi-
nates to Cartesian coordinates. We have

f′(ρ, ϕ, θ) =


cos θ sinϕ ρ cos θ cosϕ −ρ sinϕ sin θ

sin θ sinϕ ρ sin θ cosϕ ρ cos θ sinϕ

cosϕ −ρ sinϕ 0

 .

The concept of repeated partial derivatives is akin to the concept of repeated differentiation. Simi-
larlywith theconceptof implicit partial differentiation. The followingexamples shouldbeself-explanatory.
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3.5. The Jacobi Matrix
181 Example

Let f(u, v, w) = euv cosw. Determine
∂2

∂u∂v
f(u, v, w) at (1,−1, π

4
).

Solution: ▶ We have
∂2

∂u∂v
(euv cosw) = ∂

∂u
(eu cosw) = eu cosw,

which is
e
√
2

2
at the desired point. ◀

182 Example
The equation zxy + (xy)z + xy2z3 = 3 defines z as an implicit function of x and y. Find

∂z

∂x
and

∂z

∂y
at

(1, 1, 1).

Solution: ▶ We have
∂

∂x
zxy =

∂

∂x
exy log z

=

Ç
y log z + xy

z

∂z

∂x

å
zxy,

∂

∂x
(xy)z =

∂

∂x
ez logxy

=

Ç
∂z

∂x
logxy + z

x

å
(xy)z,

∂

∂x
xy2z3 = y2z3 + 3xy2z2

∂z

∂x
,
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3. Differentiation of Vector Function

Hence, at (1, 1, 1)we have
∂z

∂x
+ 1 + 1 + 3

∂z

∂x
= 0 =⇒ ∂z

∂x
= −1

2
.

Similarly,
∂

∂y
zxy =

∂

∂y
exy log z

=

(
x log z + xy

z

∂z

∂y

)
zxy,

∂

∂y
(xy)z =

∂

∂y
ez logxy

=

(
∂z

∂y
logxy + z

y

)
(xy)z,

∂

∂y
xy2z3 = 2xyz3 + 3xy2z2

∂z

∂y
,

Hence, at (1, 1, 1)we have
∂z

∂y
+ 1 + 2 + 3

∂z

∂y
= 0 =⇒ ∂z

∂y
= −3

4
.

◀

Exercises
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3.5. The Jacobi Matrix
183 Problem

Let f : [0; +∞[×]0; +∞[→ R, f(r, t) = tne−r2/4t,
where n is a constant. Determine n such that

∂f

∂t
=

1

r2
∂

∂r

Ç
r2
∂f

∂r

å
.

184 Problem
Let

f : R2 → R, f(x, y) = min(x, y2).

Find
∂f(x, y)
∂x

and
∂f(x, y)
∂y

.

185 Problem
Let f : R2 → R2 and g : R3 → R2 be given by

f(x, y) =
Ä
xy2x2y

ä
, g(x, y, z) = (x− y + 2zxy) .

Compute (f ◦ g)′(1, 0, 1), if at all defined. If unde-
fined, explain. Compute (g ◦ f)′(1, 0), if at all de-
fined. If undefined, explain.

186 Problem
Let f(x, y) = (xyx+ y) and g(x, y) =Ä
x− yx2y2x+ y

ä
Find (g ◦ f)′(0, 1).

187 Problem
Assuming that the equation xy2 + 3z = cos z2 de-
fines z implicitly as a function of x and y, find ∂xz.

188 Problem
Ifw = euv and u = r + s, v = rs, determine

∂w

∂r
.

189 Problem
Let z be an implicitly-defined function of x and y
through the equation (x+ z)2 + (y + z)2 = 8. Find
∂z

∂x
at (1, 1, 1).
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3. Differentiation of Vector Function

3.6. Properties of Differentiable Transformations

Just like in the one-variable case, we have the following rules of differentiation.

190 Theorem
Let A ⊆ Rn, B ⊆ Rm be open sets f,g : A → Rm, α ∈ R, be differentiable on A, h : B → Rl be
differentiable onB, and f(A) ⊆ B. Then we have

■ Addition Rule: Dx((f + αg)) = Dx(f) + αDx(g).

■ Chain Rule: Dx((h ◦ f)) =
Ä
Df(x)(h)

ä
◦
Ä
Dx(f)

ä
.

Since composition of linear mappings expressed as matrices is matrix multiplication, the Chain Rule
takes the alternative formwhen applied to the Jacobi matrix.

(h ◦ f)′ = (h′ ◦ f)(f′). (3.6)

191 Example
Let

f(u, v) = (uev, u+ v, uv) ,
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3.6. Properties of Differentiable Transformations

h(x, y) =
Ä
x2 + y, y + z

ä
.

Find (f ◦ h)′(x, y).

Solution: ▶ We have

f′(u, v) =


ev uev

1 1

v u

 ,

and

h′(x, y) =

2x 1 0

0 1 1

 .
Observe also that

f′(h(x, y)) =


ey+z (x2 + y)ey+z

1 1

y + z x2 + y

 .
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3. Differentiation of Vector Function

Hence

(f ◦ h)′(x, y) = f′(h(x, y))h′(x, y)

=



ey+z (x2 + y)ey+z

1 1

y + z x2 + y




2x 1 0

0 1 1



=



2xey+z (1 + x2 + y)ey+z (x2 + y)ey+z

2x 2 1

2xy + 2xz x2 + 2y + z x2 + y


.

◀
192 Example

Let
f : R2 → R, f(u, v) = u2 + ev,

u, v : R3 → R u(x, y) = xz, v(x, y) = y + z.

Put h(x, y) = f
Ä
u(x, y, z), v(x, y, z)

ä
. Find the partial derivatives of h.
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3.6. Properties of Differentiable Transformations

Solution: ▶ Put g : R3 → R2,g(x, y) =
Ä
u(x, y), v(x, y)

ä
= (xz, y + z). Observe that h = f ◦ g. Now,

g′(x, y) =

z 0 x

0 1 1

 ,

f′(u, v) =
ñ
2u ev

ô
,

f′(h(x, y)) =
ñ
2xz ey+z

ô
.

Thus ∂h
∂x

(x, y)
∂h

∂y
(x, y)

∂h

∂z
(x, y)

 = h′(x, y)

= (f′(g(x, y)))(g′(x, y))

=

2xz ey+z



z 0 x

0 1 1


=

2xz2 ey+z 2x2z + ey+z



.

147



3. Differentiation of Vector Function

Equating components, we obtain
∂h

∂x
(x, y) = 2xz2,

∂h

∂y
(x, y) = ey+z,

∂h

∂z
(x, y) = 2x2z + ey+z.

◀

193 Theorem
Let F = (f1, f2, . . . , fm) : Rn → Rm, and suppose that the partial derivatives

∂fi
∂xj

, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (3.7)

exist on a neighborhood of x0 and are continuous at x0. Then F is differentiable at x0.

We say that F is continuously differentiable on a set S if S is contained in an open set on which
the partial derivatives in (3.7) are continuous. The next three lemmas give properties of continuously
differentiable transformations that we will need later.
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194 Lemma

Suppose that F : Rn → Rm is continuously differentiable on a neighborhood N of x0. Then, for every
ϵ > 0, there is a δ > 0 such that

|F(x)− F(y)| < (∥F′(x0)∥+ ϵ)|x− y| if A,y ∈ Bδ(x0). (3.8)

Proof. Consider the auxiliary function

G(x) = F(x)− F′(x0)x. (3.9)

The components of G are

gi(x) = fi(x)−
n∑

j=1

∂fi(x0)∂xj
x j

,

so
∂gi(x)
∂xj

=
∂fi(x)
∂xj

− ∂fi(x0)

∂xj
.

Thus, ∂gi/∂xj is continuous onN and zero at x0. Therefore, there is a δ > 0 such that∣∣∣∣∣∣∂gi(x)∂xj

∣∣∣∣∣∣ < ϵ√
mn

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, if |x− x0| < δ. (3.10)

Now suppose that x, y ∈ Bδ(x0). By Theorem ??,

gi(x)− gi(y) =
n∑

j=1

∂gi(xi)

∂xj
(xj − yj), (3.11)

149



3. Differentiation of Vector Function

where xi is on the line segment from x to y, so xi ∈ Bδ(x0). From (3.10), (3.11), and Schwarz’s inequality,

(gi(x)− gi(y))2 ≤
Ñ

n∑
j=1

[
∂gi(xi)

∂xj

]2é
|x− y|2 < ϵ2

m
|x− y|2.

Summing this from i = 1 to i = m and taking square roots yields

|G(x)−G(y)| < ϵ|x− y| if x,y ∈ Bδ(x0). (3.12)

To complete the proof, we note that

F(x)− F(y) = G(x)−G(y) + F′(x0)(x− y), (3.13)

so (3.12) and the triangle inequality imply (3.8). ■

195 Lemma
Suppose thatF : Rn → Rn is continuouslydifferentiableonaneighborhoodofx0 andF′(x0) is nonsingular.
Let

r =
1

∥(F′(x0))−1∥
. (3.14)

Then, for every ϵ > 0, there is a δ > 0 such that

|F(x)− F(y)| ≥ (r − ϵ)|x− y| if x,y ∈ Bδ(x0). (3.15)
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Proof. Let x and y be arbitrary points inDF and let G be as in (3.9). From (3.13),

|F(x)− F(y)| ≥
∣∣∣|F′(x0)(x− y)| − |G(x)−G(y)|

∣∣∣, (3.16)

Since
x− y = [F′(x0)]

−1F′(x0)(x− y),

(3.14) implies that

|x− y| ≤ 1

r
|F′(x0)(x− y)|,

so
|F′(x0)(x− y)| ≥ r|x− y|. (3.17)

Now choose δ > 0 so that (3.12) holds. Then (3.16) and (3.17) imply (3.15). ■

196 Definition
A function f is said to be continuously differentiable if the derivative f′ exists and is itself a continuous
function.

Continuously differentiable functions are said to be of classC1. A function is of classC2 if the first and
second derivative of the function both exist and are continuous. More generally, a function is said to be of

151



3. Differentiation of Vector Function

class Ck if the first k derivatives exist and are continuous. If derivatives f(n) exist for all positive integers
n, the function is said smooth or equivalently, of classC∞.

3.7. Gradients, Curls and Directional Derivatives

197 Definition
Let

f :
Rn → R

x 7→ f(x)

be a scalar field. The gradient of f is the vector defined and denoted by

∇f(x) := Df(x) :=
Ä
∂1f (x) , ∂2f (x) , . . . , ∂nf (x)

ä
.

The gradient operator is the operator

∇ = (∂1, ∂2, . . . , ∂n) .
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3.7. Gradients, Curls and Directional Derivatives

198 Theorem
Let A ⊆ Rn be open and let f : A → R be a scalar field, and assume that f is differentiable in A. Let
K ∈ R be a constant. Then∇f(x) is orthogonal to the surface implicitly defined by f(x) = K.

Proof. Let

c :
R → Rn

t 7→ c(t)

be a curve lying on this surface. Choose t0 so that c(t0) = x. Then

(f ◦ c)(t0) = f(c(t)) = K,

and using the chain rule
Df(c(t0))Dc(t0) = 0,

which translates to
(∇f(x))•(c′(t0)) = 0.

Since c′(t0) is tangent to the surface and its dot product with∇f(x) is 0, we conclude that∇f(x) is nor-
mal to the surface. ■
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3. Differentiation of Vector Function
199 Remark

Now let c(t) be a curve inRn (not necessarily in the surface).
And let θ be the angle between∇f(x) and c′(t0). Since

|(∇f(x))•(c′(t0))| = ||∇f(x)||||c′(t0)|| cos θ,

∇f(x) is the direction in which f is changing the fastest.

200 Example
Find a unit vector normal to the surface x3 + y3 + z = 4 at the point (1, 1, 2).

Solution: ▶ Here f(x, y, z) = x3 + y3 + z − 4 has gradient

∇f(x, y, z) =
Ä
3x2, 3y2, 1

ä
which at (1, 1, 2) is (3, 3, 1). Normalizing this vector we obtain(

3√
19
,

3√
19
,

1√
19

)
.

◀
201 Example

Find the direction of the greatest rate of increase of f(x, y, z) = xyez at the point (2, 1, 2).
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3.7. Gradients, Curls and Directional Derivatives

Solution: ▶ The direction is that of the gradient vector. Here

∇f(x, y, z) = (yez, xez, xyez)

which at (2, 1, 2) becomes
Ä
e2, 2e2, 2e2

ä
. Normalizing this vector we obtain

1√
5
(1, 2, 2) .

◀
202 Example

Sketch the gradient vector field for f(x, y) = x2 + y2 as well as several contours for this function.

Solution: ▶ The contours for a function are the curves defined by,

f(x, y) = k

for various values of k. So, for our function the contours are defined by the equation,

x2 + y2 = k

and so they are circles centered at the origin with radius
√
k . The gradient vector field for this function

is
∇f(x, y) = 2xi + 2yj

Here is a sketch of several of the contours as well as the gradient vector field. ◀
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203 Example
Let f : R3 → R be given by

f(x, y, z) = x+ y2 − z2.

Find the equation of the tangent plane to f at (1, 2, 3).

Solution: ▶ A vector normal to the plane is∇f(1, 2, 3). Now

∇f(x, y, z) = (1, 2y,−2z)

which is

(1, 4,−6)

156



3.7. Gradients, Curls and Directional Derivatives

at (1, 2, 3). The equation of the tangent plane is thus

1(x− 1) + 4(y − 2)− 6(z − 3) = 0,

or
x+ 4y − 6z = −9.

◀
204 Definition

Let

f :
Rn → Rn

x 7→ f(x)

be a vector field with
f(x) =

Ä
f1(x), f2(x), . . . , fn(x)

ä
.

The divergence of f is defined and denoted by

divf(x) = ∇•f(x) := Tr
Ä
Df(x)

ä
:= ∂1f1 (x) + ∂2f2 (x) + · · ·+ ∂nfn (x) .

205 Example
If f(x, y, z) = (x2, y2, yez

2
) then

divf(x) = 2x+ 2y + 2yzez
2

.
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3. Differentiation of Vector Function

Mean Value Theorem for Scalar Fields Themean value theoremgeneralizes to scalar fields. The trick
is to use parametrization to create a real function of one variable, and then apply the one-variable theo-
rem.

206 Theorem (Mean Value Theorem for Scalar Fields)
Let U be an open connected subset of Rn , and let f : U → R be a differentiable function. Fix points
x,y ∈ U such that the segment connecting x to y lies inU . Then

f(y)− f(x) = ∇f(z) · (y− x)

where z is a point in the open segment connecting x to y.

Proof. Let U be an open connected subset of Rn , and let f : U → R be a differentiable function. Fix
points x,y ∈ U such that the segment connecting x to y lies inU , and define g(t) := f

Å
(1− t)x+ ty

ã
.

Since f is a differentiable function in U the function g is continuous function in [0, 1] and differentiable
in (0, 1). The mean value theorem gives:

g(1)− g(0) = g′(c)

for some c ∈ (0, 1). But since g(0) = f(x) and g(1) = f(y), computing g′(c) explicitly we have:

f(y)− f(x) = ∇f
Å
(1− c)x + cy

ã
· (y− x)
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3.7. Gradients, Curls and Directional Derivatives

or
f(y)− f(x) = ∇f(z) · (y− x)

where z is a point in the open segment connecting x to y ■

By the Cauchy-Schwarz inequality, the equation gives the estimate:∣∣∣∣∣∣∣f(y)− f(x)
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∇f
Å
(1− c)x + cy

ã∣∣∣∣∣∣∣ ∣∣∣∣y− x
∣∣∣∣.

Curl

207 Definition
If F : R3 → R3 is a vector field with components F = (F1, F2, F3), we define the curl of F

∇× F def
=


∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1

 .

This is sometimes also denoted by curl(F).
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3. Differentiation of Vector Function
208 Remark

Amnemonic to remember this formula is to write

∇× F =


∂1

∂2

∂3

×

F1

F2

F3

 ,

and compute the cross product treating both terms as 3-dimensional vectors.

209 Example
If F(x) = x/|x|3, then∇× F = 0.

210 Remark
In the example above, F is proportional to a gravitational force exerted by a body at the origin. We know
from experience that when a ball is pulled towards the earth by gravity alone, it doesn’t start to rotate;
which is consistent with our computation∇× F = 0.

211 Example
If v(x, y, z) = (sin z, 0, 0), then∇× v = (0, cos z, 0).

160



3.7. Gradients, Curls and Directional Derivatives
212 Remark

Think of v above as the velocity field of a fluid between two plates placed at z = 0 and z = π. A small ball
placed closer to the bottomplate experiences a higher velocity near the top than it does at the bottom, and
so should start rotating counter clockwise along the y-axis. This is consistent with our calculation of∇×v.

The definition of the curl operator can be generalized to the n dimensional space.

213 Definition
Let gk : Rn → Rn, 1 ≤ k ≤ n − 2 be vector fields with gi = (gi1, gi2, . . . , gin). Then the curl of
(g1, g2, . . . , gn−2)

curl(g1, g2, . . . , gn−2)(x) = det



e1 e2 . . . en

∂1 ∂2 . . . ∂n

g11(x) g12(x) . . . g1n(x)

g21(x) g22(x) . . . g2n(x)
...

...
...

...

g(n−2)1(x) g(n−2)2(x) . . . g(n−2)n(x)



.
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3. Differentiation of Vector Function
214 Example

If f(x, y, z, w) = (exyz, 0, 0, w2), g(x, y, z, w) = (0, 0, z, 0) then

curl(f, g)(x, y, z, w) = det



e1 e2 e3 e4

∂1 ∂2 ∂3 ∂4

exyz 0 0 w2

0 0 z 0


= (xz2exyz)e4.

215 Definition
Let A ⊆ Rn be open and let f : A → R be a scalar field, and assume that f is differentiable in A. Let
v ∈ Rn \ {0} be such that x + tv ∈ A for sufficiently small t ∈ R. Then the directional derivative of f
in the direction of v at the point x is defined and denoted by

Dvf(x) = lim
t→0

f(x + tv)− f(x)
t

.

Some authors require that the vector v in definition 215 be a unit vector.
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3.7. Gradients, Curls and Directional Derivatives

216 Theorem
Let A ⊆ Rn be open and let f : A → R be a scalar field, and assume that f is differentiable in A. Let
v ∈ Rn \ {0} be such that x + tv ∈ A for sufficiently small t ∈ R. Then the directional derivative of f
in the direction of v at the point x is given by

∇f(x)•v.

217 Example
Find the directional derivative of f(x, y, z) = x3 + y3 − z2 in the direction of (1, 2, 3).

Solution: ▶ We have
∇f(x, y, z) =

Ä
3x2, 3y2,−2z

ä
and so

∇f(x, y, z)•v = 3x2 + 6y2 − 6z.

◀
The following is a collection of useful differentiation formulae inR3.

218 Theorem
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3. Differentiation of Vector Function

Ê ∇•ψu = ψ∇•u + u•∇ψ

Ë ∇× ψu = ψ∇× u +∇ψ × u

Ì ∇•u× v = v•∇× u− u•∇× v

Í ∇× (u× v) = v•∇u− u•∇v + u(∇•v)− v(∇•u)

Î ∇(u•v) = u•∇v + v•∇u + u× (∇× v) + v× (∇× u)

Ï ∇× (∇ψ) = curl (grad ψ) = 0

Ð ∇•(∇× u) = div (curl u) = 0

Ñ ∇•(∇ψ1 ×∇ψ2) = 0

Ò ∇× (∇× u) = curl (curl u) = grad (div u)−∇2u

where

∆f = ∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
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3.7. Gradients, Curls and Directional Derivatives

is the Laplacian operator and

∇2u = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)(uxi + uyj + uzk) = (3.18)

(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)i + (
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

)j + (
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

)k

Finally, for the position vector r the following are valid

Ê ∇•r = 3

Ë ∇× r = 0

Ì u•∇r = u

where u is any vector.

Exercises
219 Problem

The temperatureat apoint in space isT = xy+yz+

zx.

a) Find the direction in which the temperature
changes most rapidly with distance from (1, 1, 1).
What is the maximum rate of change?
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3. Differentiation of Vector Function

b) Find the derivative of T in the direction of the
vector 3i− 4k at (1, 1, 1).

220 Problem
For each of the following vector functions F, deter-
minewhether∇ϕ = Fhasa solutionanddetermine
it if it exists.

a) F = 2xyz3i− (x2z3 + 2y)j + 3x2yz2k
b) F = 2xyi + (x2 + 2yz)j + (y2 + 1)k

221 Problem
Let f(x, y, z) = xeyz. Find

(∇f)(2, 1, 1).

222 Problem
Let f(x, y, z) = (xz, exy, z). Find

(∇× f)(2, 1, 1).

223 Problem
Find the tangent plane to the surface

x2

2
−y2−z2 =

0 at the point (2,−1, 1).

224 Problem
Find the point on the surface

x2 + y2 − 5xy + xz − yz = −3

for which the tangent plane is x− 7y = −6.

225 Problem
Find a vector pointing in the direction in which
f(x, y, z) = 3xy − 9xz2 + y increases most rapidly
at the point (1, 1, 0).

226 Problem
Let Duf(x, y) denote the directional derivative of f
at (x, y) in the direction of the unit vector u. If
∇f(1, 2) = 2i− j, find D

(
3

5
,
4

5
)

f(1, 2).

227 Problem
Use a linear approximation of the function f(x, y) =
ex cos 2y at (0, 0) to estimate f(0.1, 0.2).
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228 Problem

Prove that

∇ • (u × v) = v • (∇× u)− u • (∇× v).

229 Problem
Find the point on the surface

2x2 + xy + y2 + 4x+ 8y − z + 14 = 0

for which the tangent plane is 4x+ y − z = 0.

230 Problem
Let ϕ : R3 → R be a scalar field, and let U,V :

R3 → R3 be vector fields. Prove that

1. ∇•ϕV = ϕ∇•V + V•∇ϕ

2. ∇× ϕV = ϕ∇× V + (∇ϕ)× V

3. ∇× (∇ϕ) = 0

4. ∇•(∇× V) = 0

5. ∇(U•V) = (U•∇)V+(V•∇)U+U× (∇×
V) + +V × (∇× U)

231 Problem
Find the angles made by the gradient of f(x, y) =

x
√
3 + y at the point (1, 1)with the coordinate axes.

3.8. The Geometrical Meaning of Divergence and Curl

In this section we provide some heuristics about the meaning of Divergence and Curl. This interpreta-
tions will be formally proved in the chapters 6 and 7.
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3. Differentiation of Vector Function

3.8. Divergence

Consider a small closed parallelepiped, with sides parallel to the coordinate planes, as shown in Figure
3.4. What is the flux of F out of the parallelepiped?

Consider first the vertical contribution, namely the flux up through the top face plus the flux through
the bottom face. These two sides each have area∆A = ∆x∆y, but the outward normal vectors point
in opposite directions so we get∑

top+bottom
F•∆A ≈ F(z +∆z)•k ∆x∆y − F(z)•k ∆x∆y

≈
Å
Fz(z +∆z)− Fz(z)

ã
∆x∆y

≈ Fz(z +∆z)− Fz(z)

∆z
∆x∆y∆z

≈ ∂Fz

∂z
∆x∆y∆z by Mean Value Theorem

where we have multiplied and divided by∆z to obtain the volume∆V = ∆x∆y∆z in the third step,
and used the definition of the derivative in the final step.

Repeating this argument for the remaining pairs of faces, it follows that the total flux out of the paral-
lelepiped is

total flux =
∑

parallelepiped
F•∆A ≈

(
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

)
∆V
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k

−k

∆z

∆y

∆x

Figure 3.4. Computing the vertical contribution
to the flux.
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3. Differentiation of Vector Function

Since the total flux is proportional to the volume of the parallelepiped, it approaches zero as the volume
of the parallelepiped shrinks down. The interesting quantity is therefore the ratio of the flux to volume;
this ratio is called the divergence.

At any point P , we can define the divergence of a vector field F, written∇•F, to be the flux of F per
unit volume leaving a small parallelepiped around the point P .

Hence, the divergence of F at the point P is the flux per unit volume through a small parallelepiped
around P , which is given in rectangular coordinates by

∇•F =
flux

unit volume
=
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

Analogous computations can be used to determine expressions for the divergence in other coordinate
systems. These computations are presented in chapter 8.

3.8. Curl

Intuitively, curl is the circulation per unit area, circulation density, or rate of rotation (amount of twisting
at a single point).

Consider a small rectangle in the yz-plane, with sides parallel to the coordinate axes, as shown in
Figure 1. What is the circulation of F around this rectangle?
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3.8. The Geometrical Meaning of Divergence and Curl

∆y

∆z

Figure 3.5. Computing the horizontal contribu-
tion to the circulation around a small rectangle.

Consider first the horizontal edges, on each of which dr = ∆y j. However, when computing the circu-
lation ofF around this rectangle, we traverse these two edges in opposite directions. In particular, when
traversing the rectangle in the counterclockwise direction,∆y < 0 on top and∆y > 0 on the bottom.

∑
top+bottom

F•dr ≈ −F(z +∆z)•j ∆y + F(z)•j ∆y (3.19)

≈ −
Å
Fy(z +∆z)− Fy(z)

ã
∆y
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3. Differentiation of Vector Function

≈ −Fy(z +∆z)− Fy(z)

∆z
∆y∆z

≈ −∂Fy

∂z
∆y∆z by Mean Value Theorem

where we have multiplied and divided by ∆z to obtain the surface element ∆A = ∆y∆z in the third
step, and used the definition of the derivative in the final step.

Just as with the divergence, inmaking this argument we are assuming thatF doesn’t changemuch in
the x and y directions, while nonetheless caring about the change in the z direction.

Repeating this argument for the remaining two sides leads to∑
sides

F•dr ≈ F(y +∆y)•k ∆z − F(y)•k ∆z (3.20)

≈
Å
Fz(y +∆y)− Fz(y)

ã
∆z

≈ Fz(y +∆y)− Fz(y)

∆y
∆y∆z

≈ ∂Fz

∂y
∆y∆z

where caremust be takenwith the signs, which are different from those in (3.19). Adding up both expres-
sions, we obtain

total yz-circulation ≈
(
∂Fz

∂y
− ∂Fy

∂z

)
∆x∆y (3.21)
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3.9. Maxwell’s Equations

Since this is proportional to the area of the rectangle, it approaches zero as the area of the rectangle
converges to zero. The interesting quantity is therefore the ratio of the circulation to area.

We are computing the i-component of the curl.

curl(F)•i := yz-circulation
unit area

=
∂Fz

∂y
− ∂Fy

∂z
(3.22)

The rectangular expression for the full curl now follows by cyclic symmetry, yielding

curl(F) =

(
∂Fz

∂y
− ∂Fy

∂z

)
i +
Ç
∂Fx

∂z
− ∂Fz

∂x

å
j +

(
∂Fy

∂x
− ∂Fx

∂y

)
k (3.23)

which is more easily remembered in the form

curl(F) = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.24)

3.9. Maxwell’s Equations

Maxwell’s Equations is a set of four equations that describes the behaviors of electromagnetism. To-
gether with the Lorentz Force Law, these equations describe completely (classical) electromagnetism, i.
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3. Differentiation of Vector Function

Figure 3.6. Consider a small paddlewheel placed
in a vector field of position. If the vy component
is an increasing function of x , this tends to make
the paddle wheel want to spin (positive, counter-
clockwise) about the k̂ -axis. If the vx component
is a decreasing function of y , this tends to make
the paddle wheel want to spin (positive, counter-
clockwise) about the k̂ -axis. The net impulse to
spin around the k̂ -axis is the sum of the two.
Source MIT

e., all other results are simply mathematical consequences of these equations.

To begin with, there are two fields that govern electromagnetism, known as the electric andmagnetic
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3.9. Maxwell’s Equations

field. These are denoted by E(r, t) and B(r, t) respectively.
Tounderstandelectromagnetism,weneed to explain how the electric andmagnetic fields are formed,

and how these fields affect charged particles. The last is rather straightforward, and is described by the
Lorentz force law.

232 Definition (Lorentz force law)
A point charge q experiences a force of

F = q(E + ṙ×B).

The dynamics of the field itself is governed by Maxwell’s Equations. To state the equations, first we
need to introduce twomore concepts.

233 Definition (Charge and current density)

■ ρ(r, t) is the charge density, defined as the charge per unit volume.

■ j(r, t) is the current density, defined as the electric current per unit area of cross section.

Then Maxwell’s equations are
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3. Differentiation of Vector Function

234 Definition (Maxwell’s equations)

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E +
∂B
∂t

= 0

∇×B− µ0ε0
∂E
∂t

= µ0j,

where ε0 is the electric constant (i.e, the permittivity of free space) and µ0 is the magnetic constant (i.e,
the permeability of free space), which are constants.

3.10. Inverse Functions

A function f is said one-to-one if f(x1) and f(x2) are distinct whenever x1 and x2 are distinct points of
Dom(f). In this case, we can define a function g on the image

Im(f) =
¶
u|u = f(x) for some x ∈ Dom(f)

©
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3.10. Inverse Functions

of f by defining g(u) to be the unique point in Dom(f) such that f(u) = u. Then

Dom(g) = Im(f) and Im(g) = Dom(f).

Moreover, g is one-to-one,
g(f(x)) = x, x ∈ Dom(f),

and
f(g(u)) = u, u ∈ Dom(g).

We say that g is the inverse of f, and write g = f−1. The relation between f and g is symmetric; that is, f
is also the inverse of g, and we write f = g−1.

A transformation f may fail to be one-to-one, but be one-to-one on a subset S of Dom(f). By this we
mean that f(x1) and f(x2) are distinct whenever x1 and x2 are distinct points of S. In this case, f is not
invertible, but if f|S is defined on S by

f|S (x) = f(x), x ∈ S,

and left undefined for x ̸∈ S, then f|S is invertible.
We say that f|S is the restriction of f to S, and that f−1

S is the inverse of f restricted to S. The domain
of f−1

S is f(S).
The question of invertibility of an arbitrary transformation f : Rn → Rn is too general to have a

useful answer. However, there is a useful and easily applicable sufficient condition which implies that
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3. Differentiation of Vector Function

one-to-one restrictions of continuously differentiable transformations have continuously differentiable
inverses.

235 Definition
If the function f is one-to-one on a neighborhood of the point x0, we say that f is locally invertible at x0.
If a function is locally invertible for every x0 in a set S, then f is said locally invertible on S.

Tomotivate our study of this question, let us first consider the linear transformation

f(x) = Ax =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

an1 an2 · · · ann





x1

x2
...

xn


.

The function f is invertible if and only if A is nonsingular, in which case Im(f) = Rn and

f−1(u) = A−1u.

Since A and A−1 are the differential matrices of f and f−1, respectively, we can say that a linear trans-
formation is invertible if and only if its differential matrix f′ is nonsingular, in which case the differential
matrix of f−1 is given by

(f−1)′ = (f′)−1.
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3.10. Inverse Functions

Because of this, it is tempting to conjecture that if f : Rn → Rn is continuously differentiable and A′(x)
is nonsingular, or, equivalently, D(f)(x) ̸= 0, for x in a set S, then f is one-to-one on S. However, this is
false. For example, if

f(x, y) = [ex cos y, ex sin y] ,

then

D(f)(x, y) =

∣∣∣∣∣∣∣∣
ex cos y −ex sin y

ex sin y ex cos y

∣∣∣∣∣∣∣∣ = e2x ̸= 0, (3.25)

but f is not one-to-one onR2. The best that can be said in general is that if f is continuously differentiable
andD(f)(x) ̸= 0 in an open setS, then f is locally invertible onS, and the local inverses are continuously
differentiable. This is part of the inverse function theorem, which we will prove presently.

236 Theorem (Inverse Function Theorem)
If f : U → Rn is differentiable at a and Da(f) is invertible, then there exists a domains U ′, V ′ such that
a ∈ U ′ ⊆ U , f(a) ∈ V ′ and f : U ′ → V ′ is bijective. Further, the inverse function g : V ′ → U ′ is
differentiable.

The proof of the Inverse Function Theoremwill be presented in the Section ??.
We note that the condition about the invertibility ofDa(f) is necessary. If f has a differentiable inverse
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3. Differentiation of Vector Function

in a neighborhood of a, then Da(f)must be invertible. To see this differentiate the identity

f(g(x)) = x

3.11. Implicit Functions

Let U ⊆ Rn+1 be a domain and f : U → R be a differentiable function. If x ∈ Rn and y ∈ R, we’ll
concatenate the two vectors and write (x, y) ∈ Rn+1.

237 Theorem (Special Implicit Function Theorem)
Suppose c = f(a, b) and ∂yf(a, b) ̸= 0. Then, there exists a domain U ′ ∋ a and differentiable function
g : U ′ → R such that g(a) = b and f(x, g(x)) = c for all x ∈ U ′.

Further, there exists a domain V ′ ∋ b such that{
(x, y)

∣∣∣ x ∈ U ′, y ∈ V ′, f(x, y) = c
}
=
{
(x, g(x))

∣∣∣ x ∈ U ′
}
.

In other words, for all x ∈ U ′ the equation f(x, y) = c has a unique solution in V ′ and is given by
y = g(x).

238 Remark
To see why ∂yf ̸= 0 is needed, let f(x, y) = αx + βy and consider the equation f(x, y) = c. To express y
as a function of xwe need β ̸= 0which in this case is equivalent to ∂yf ̸= 0.
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3.11. Implicit Functions
239 Remark

If n = 1, one expects f(x, y) = c to some curve in R2. To write this curve in the form y = g(x) using a
differentiable function g, one needs the curve to never be vertical. Since∇f is perpendicular to the curve,
this translates to∇f never being horizontal, or equivalently ∂yf ̸= 0 as assumed in the theorem.

240 Remark
For simplicity we choose y to be the last coordinate above. It could have been any other, just as long as the
corresponding partial was non-zero. Namely if ∂if(a) ̸= 0, then one can locally solve the equation f(x) =
f(a) (uniquely) for the variable xi and express it as a differentiable function of the remaining variables.

241 Example
f(x, y) = x2 + y2 with c = 1.

Proof. [of the Special Implicit Function Theorem] Let f(x, y) = (x, f(x, y)), and observe D(f)(a,b) ̸= 0.
By the inverse function theorem f has a unique local inverse g. Note g must be of the form g(x, y) =

(x, g(x, y)). Also f ◦ g = Id implies (x, y) = f(x, g(x, y)) = (x, f(x, g(x, y)). Hence y = g(x, c) uniquely
solves f(x, y) = c in a small neighbourhood of (a, b). ■

Instead of y ∈ R above, we could have been fancier and allowed y ∈ Rn. In this case f needs to be an
Rn valued function, and we need to replace ∂yf ̸= 0with the assumption that the n × nminor in D(f)

(corresponding to the coordinate positions of y) is invertible. This is the general version of the implicit
function theorem.
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3. Differentiation of Vector Function

242 Theorem (General Implicit Function Theorem)
Let U ⊆ Rm+n be a domain. Suppose f : Rn × Rm → Rm is C1 on an open set containing (a, b) where
a ∈ Rn and b ∈ Rm. Suppose f(a, b) = 0 and that them×mmatrixM = (Dn+jfi(a, b)) is nonsingular.
Then that there is an open setA ⊂ Rn containing a and an open setB ⊂ Rm containing b such that, for
each x ∈ A, there is a unique g(x) ∈ B such that f(x, g(x)) = 0. Furthermore, g is differentiable.

In other words: if the matrix M is invertible, then one can locally solve the equation f(x) = f(a)
(uniquely) for the variables xi1 , …, xim and express them as a differentiable function of the remaining n
variables.

The proof of the General Implicit Function Theoremwill be presented in the Section ??.

243 Example
Consider the equations

(x− 1)2 + y2 + z2 = 5 and (x+ 1)2 + y2 + z2 = 5

for which x = 0, y = 0, z = 2 is one solution. For all other solutions close enough to this point, determine
which of variables x, y, z can be expressed as differentiable functions of the others.
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3.12. Common Differential Operations in Einstein Notation

Solution: ▶ Let a = (0, 0, 1) and

F (x, y, z) =

(x− 1)2 + y2 + z2

(x+ 1)2 + y2 + z2


Observe

DFa =

−2 0 4

2 0 4

 ,
and the 2 × 2minor using the first and last column is invertible. By the implicit function theorem this
means that in a small neighborhood of a, x and z can be (uniquely) expressed in terms of y. ◀

244 Remark
In the above example, one can of course solve explicitly and obtain

x = 0 and z =
»
4− y2,

but in general we won’t be so lucky.

3.12. Common Differential Operations in Einstein Notation

Here we present the most common differential operations as defined by Einstein Notation.
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3. Differentiation of Vector Function

The operator∇ is a spatial partial differential operator defined in Cartesian coordinate systems by:

∇i =
∂

∂xi
(3.26)

The gradient of a differentiable scalar function of position f is a vector given by:

[∇f ]i = ∇if =
∂f

∂xi
= ∂if = f,i (3.27)

The gradient of a differentiable vector function of position A (which is the outer product, as defined
in S 10.3.3, between the∇ operator and the vector) is defined by:

[∇A]ij = ∂iAj (3.28)

The gradient operation is distributive but not commutative or associative:

∇ (f + h) = ∇f +∇h (3.29)

∇f ̸= f∇ (3.30)

(∇f)h ̸= ∇ (fh) (3.31)

where f and h are differentiable scalar functions of position.
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The divergence of a differentiable vector A is a scalar given by:

∇ ·A = δij
∂Ai

∂xj
=
∂Ai

∂xi
= ∇iAi = ∂iAi = Ai,i (3.32)

The divergence of a differentiable A is a vector defined in one of its forms by:

[∇ ·A]i = ∂jAji (3.33)

and in another form by
[∇ ·A]j = ∂iAji (3.34)

These two different forms can be given, respectively, in symbolic notation by:

∇ ·A & ∇ ·AT (3.35)

where AT is the transpose of A.
The divergence operation is distributive but not commutative or associative:

∇ · (A + B) = ∇ ·A +∇ ·B (3.36)

∇ ·A ̸= A · ∇ (3.37)

∇ · (fA) ̸= ∇f ·A (3.38)
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3. Differentiation of Vector Function

where A and B are differentiable vector functions of position.
The curl of a differentiable vector A is a vector given by:

[∇×A]i = ϵijk
∂Ak

∂xj
= ϵijk∇jAk = ϵijk∂jAk = ϵijkAk,j (3.39)

The curl operation is distributive but not commutative or associative:

∇× (A + B) = ∇×A +∇×B (3.40)

∇×A ̸= A×∇ (3.41)

∇× (A×B) ̸= (∇×A)×B (3.42)

The Laplacian scalar operator, also called the harmonic operator, acting on a differentiable scalar f is
given by:

∆f = ∇2f = δij
∂2f

∂xi∂xj
=

∂2f

∂xi∂xi
= ∇iif = ∂iif = f,ii (3.43)

The Laplacian operator acting on adifferentiable vectorA is defined for each component of the vector
similar to the definition of the Laplacian acting on a scalar, that isî

∇2A
ó
i
= ∂jjAi (3.44)

186



3.12. Common Differential Operations in Einstein Notation

The following scalar differential operator is commonly used in science (e.g. in fluid dynamics):

A · ∇ = Ai∇i = Ai
∂

∂xi
= Ai∂i (3.45)

where A is a vector. As indicated earlier, the order ofAi and ∂i should be respected.
The following vector differential operator also has common applications in science:

[A×∇]i = ϵijkAj∂k (3.46)

3.12. Common Identities in Einstein Notation

Here we present some of the widely used identities of vector calculus in the traditional vector notation
and in its equivalent Einstein Notation. In the following bullet points, f and h are differentiable scalar
fields; A, B, C and D are differentiable vector fields; and r = xiei is the position vector.

∇ · r = n

⇕ (3.47)

∂ixi = n

where n is the space dimension.
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3. Differentiation of Vector Function

∇× r = 0
⇕ (3.48)

ϵijk∂jxk = 0

∇ (a · r) = a
⇕ (3.49)

∂i
Ä
ajxj

ä
= ai

where a is a constant vector.

∇ · (∇f) = ∇2f

⇕ (3.50)

∂i (∂if) = ∂iif

∇ · (∇×A) = 0

⇕ (3.51)

ϵijk∂i∂jAk = 0

∇× (∇f) = 0
⇕ (3.52)

ϵijk∂j∂kf = 0
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3.12. Common Differential Operations in Einstein Notation

∇ (fh) = f∇h+ h∇f

⇕ (3.53)

∂i (fh) = f∂ih+ h∂if

∇ · (fA) = f∇ ·A + A · ∇f
⇕ (3.54)

∂i (fAi) = f∂iAi + Ai∂if

∇× (fA) = f∇×A +∇f ×A
⇕ (3.55)

ϵijk∂j (fAk) = fϵijk∂jAk + ϵijk
Ä
∂jf
ä
Ak

A× (∇×B) = (∇B) ·A−A · ∇B
⇕ (3.56)

ϵijkϵklmAj∂lBm = (∂iBm)Am − Al (∂lBi)

∇× (∇×A) = ∇ (∇ ·A)−∇2A
⇕ (3.57)

ϵijkϵklm∂j∂lAm = ∂i (∂mAm)− ∂llAi
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∇ (A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A
⇕ (3.58)

∂i (AmBm) = ϵijkAj (ϵklm∂lBm) + ϵijkBj (ϵklm∂lAm) + (Al∂l)Bi + (Bl∂l)Ai

∇ · (A×B) = B · (∇×A)−A · (∇×B)

⇕ (3.59)

∂i
Ä
ϵijkAjBk

ä
= Bk

Ä
ϵkij∂iAj

ä
− Aj

Ä
ϵjik∂iBk

ä
∇× (A×B) = (B · ∇)A + (∇ ·B)A− (∇ ·A)B− (A · ∇)B

⇕ (3.60)

ϵijkϵklm∂j (AlBm) = (Bm∂m)Ai + (∂mBm)Ai −
Ä
∂jAj

ä
Bi −

Ä
Aj∂j

ä
Bi

(A×B) · (C×D) =

∣∣∣∣∣∣∣∣
A ·C A ·D

B ·C B ·D

∣∣∣∣∣∣∣∣
⇕ (3.61)

ϵijkAjBkϵilmClDm = (AlCl) (BmDm)− (AmDm) (BlCl)
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(A×B)× (C×D) =
î
D · (A×B)

ó
C−

î
C · (A×B)

ó
D

⇕ (3.62)

ϵijkϵjmnAmBnϵkpqCpDq =
Ä
ϵqmnDqAmBn

ä
Ci −

Ä
ϵpmnCpAmBn

ä
Di

In Einstein, the condition for a vector field A to be solenoidal is:

∇ ·A = 0

⇕ (3.63)

∂iAi = 0

In Einstein, the condition for a vector field A to be irrotational is:

∇×A = 0
⇕ (3.64)

ϵijk∂jAk = 0

3.12. Examples of Using Einstein Notation to Prove Identities
245 Example

Show that∇ · r = n:

191



3. Differentiation of Vector Function

Solution: ▶

∇ · r = ∂ixi (Eq. 3.32)

= δii (Eq. 10.36)

= n (Eq. 10.36)

(3.65)

◀
246 Example

Show that∇× r = 0:

Solution: ▶

[∇× r]i = ϵijk∂jxk (Eq. 3.39)

= ϵijkδkj (Eq. 10.35)

= ϵijj (Eq. 10.32)

= 0 (Eq. 10.27)

(3.66)

Since i is a free index the identity is proved for all components.
◀

247 Example
∇ (a · r) = a:
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Solution: ▶ î
∇ (a · r)

ó
i
= ∂i

Ä
ajxj

ä
(Eqs. 3.27 & 1.25)

= aj∂ixj + xj∂iaj (product rule)

= aj∂ixj (aj is constant)

= ajδji (Eq. 10.35)

= ai (Eq. 10.32)

= [a]i (definition of index)

(3.67)

Since i is a free index the identity is proved for all components.

◀
∇ · (∇f) = ∇2f :

∇ · (∇f) = ∂i [∇f ]i (Eq. 3.32)

= ∂i (∂if) (Eq. 3.27)

= ∂i∂if (rules of differentiation)

= ∂iif (definition of 2nd derivative)

= ∇2f (Eq. 3.43)

(3.68)
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∇ · (∇×A) = 0:

∇ · (∇×A) = ∂i [∇×A]i (Eq. 3.32)

= ∂i
Ä
ϵijk∂jAk

ä
(Eq. 3.39)

= ϵijk∂i∂jAk (∂ not acting on ϵ)

= ϵijk∂j∂iAk (continuity condition)

= −ϵjik∂j∂iAk (Eq. 10.40)

= −ϵijk∂i∂jAk (relabeling dummy indices i and j)

= 0 (since ϵijk∂i∂jAk = −ϵijk∂i∂jAk)

(3.69)

This can also be concluded from line three by arguing that: since by the continuity condition ∂i and ∂j
can change their orderwith no change in the value of the termwhile a corresponding changeof the order
of i and j in ϵijk results in a sign change, we see that each term in the sumhas its ownnegative and hence
the terms add up to zero (see Eq. 10.50).
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∇× (∇f) = 0:î
∇× (∇f)

ó
i
= ϵijk∂j [∇f ]k (Eq. 3.39)

= ϵijk∂j (∂kf) (Eq. 3.27)

= ϵijk∂j∂kf (rules of differentiation)

= ϵijk∂k∂jf (continuity condition)

= −ϵikj∂k∂jf (Eq. 10.40)

= −ϵijk∂j∂kf (relabeling dummy indices j and k)

= 0 (since ϵijk∂j∂kf = −ϵijk∂j∂kf )

(3.70)

This can also be concluded from line three by a similar argument to the one given in the previous point.
Because

î
∇× (∇f)

ó
i
is an arbitrary component, then each component is zero.

∇ (fh) = f∇h+ h∇f :î
∇ (fh)

ó
i
= ∂i (fh) (Eq. 3.27)

= f∂ih+ h∂if (product rule)

= [f∇h]i + [h∇f ]i (Eq. 3.27)

= [f∇h+ h∇f ]i (Eq. ??)

(3.71)

Because i is a free index the identity is proved for all components.
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∇ · (fA) = f∇ ·A + A · ∇f :

∇ · (fA) = ∂i [fA]i (Eq. 3.32)

= ∂i (fAi) (definition of index)

= f∂iAi + Ai∂if (product rule)

= f∇ ·A + A · ∇f (Eqs. 3.32 & 3.45)

(3.72)

∇× (fA) = f∇×A +∇f ×A:î
∇× (fA)

ó
i
= ϵijk∂j [fA]k (Eq. 3.39)

= ϵijk∂j (fAk) (definition of index)

= fϵijk∂jAk + ϵijk
Ä
∂jf
ä
Ak (product rule & commutativity)

= fϵijk∂jAk + ϵijk [∇f ]j Ak (Eq. 3.27)

= [f∇×A]i + [∇f ×A]i (Eqs. 3.39 & ??)

= [f∇×A +∇f ×A]i (Eq. ??)

(3.73)

Because i is a free index the identity is proved for all components.
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A× (∇×B) = (∇B) ·A−A · ∇B:

î
A× (∇×B)

ó
i
= ϵijkAj [∇×B]k (Eq. ??)

= ϵijkAjϵklm∂lBm (Eq. 3.39)

= ϵijkϵklmAj∂lBm (commutativity)

= ϵijkϵlmkAj∂lBm (Eq. 10.40)

=
Ä
δilδjm − δimδjl

ä
Aj∂lBm (Eq. 10.58)

= δilδjmAj∂lBm − δimδjlAj∂lBm (distributivity)

= Am∂iBm − Al∂lBi (Eq. 10.32)

= (∂iBm)Am − Al (∂lBi) (commutativity & grouping)

=
î
(∇B) ·A

ó
i
− [A · ∇B]i

=
î
(∇B) ·A−A · ∇B

ó
i

(Eq. ??)

(3.74)

Because i is a free index the identity is proved for all components.
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∇× (∇×A) = ∇ (∇ ·A)−∇2A:î
∇× (∇×A)

ó
i
= ϵijk∂j [∇×A]k (Eq. 3.39)

= ϵijk∂j (ϵklm∂lAm) (Eq. 3.39)

= ϵijkϵklm∂j (∂lAm) (∂ not acting on ϵ)

= ϵijkϵlmk∂j∂lAm (Eq. 10.40 & definition of derivative)

=
Ä
δilδjm − δimδjl

ä
∂j∂lAm (Eq. 10.58)

= δilδjm∂j∂lAm − δimδjl∂j∂lAm (distributivity)

= ∂m∂iAm − ∂l∂lAi (Eq. 10.32)

= ∂i (∂mAm)− ∂llAi (∂ shift, grouping & Eq. ??)

=
î
∇ (∇ ·A)

ó
i
−
î
∇2A

ó
i

(Eqs. 3.32, 3.27 & 3.44)

=
î
∇ (∇ ·A)−∇2A

ó
i

(Eqs. ??)

(3.75)

Because i is a free index the identity is proved for all components. This identity can also be considered
as an instance of the identity before the last one, observing that in the second term on the right hand
side the Laplacian should precede the vector, and hence no independent proof is required.
∇ (A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A:
We start from the right hand side and end with the left hand side[

A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A
]
i
=
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A× (∇×B)

]
i
+
[
B× (∇×A)

]
i
+
[
(A · ∇)B

]
i
+
[
(B · ∇)A

]
i
= (Eq. ??)

ϵijkAj [∇×B]k + ϵijkBj [∇×A]k + (Al∂l)Bi + (Bl∂l)Ai = (Eqs. ??, 3.32 & indexing)

ϵijkAj (ϵklm∂lBm) + ϵijkBj (ϵklm∂lAm) + (Al∂l)Bi + (Bl∂l)Ai = (Eq. 3.39)

ϵijkϵklmAj∂lBm + ϵijkϵklmBj∂lAm + (Al∂l)Bi + (Bl∂l)Ai = (commutativity)

ϵijkϵlmkAj∂lBm + ϵijkϵlmkBj∂lAm + (Al∂l)Bi + (Bl∂l)Ai = (Eq. 10.40)(
δilδjm − δimδjl

)
Aj∂lBm +

(
δilδjm − δimδjl

)
Bj∂lAm + (Al∂l)Bi + (Bl∂l)Ai = (Eq. 10.58) (3.76)(

δilδjmAj∂lBm − δimδjlAj∂lBm

)
+
(
δilδjmBj∂lAm − δimδjlBj∂lAm

)
+ (Al∂l)Bi + (Bl∂l)Ai = (distributivity)

δilδjmAj∂lBm −Al∂lBi + δilδjmBj∂lAm −Bl∂lAi + (Al∂l)Bi + (Bl∂l)Ai = (Eq. 10.32)

δilδjmAj∂lBm − (Al∂l)Bi + δilδjmBj∂lAm − (Bl∂l)Ai + (Al∂l)Bi + (Bl∂l)Ai = (grouping)

δilδjmAj∂lBm + δilδjmBj∂lAm = (cancellation)

Am∂iBm +Bm∂iAm = (Eq. 10.32)

∂i (AmBm) = (product rule)

=
[
∇ (A ·B)

]
i
(Eqs. 3.27 & 3.32)

Because i is a free index the identity is proved for all components.
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3. Differentiation of Vector Function

∇ · (A×B) = B · (∇×A)−A · (∇×B):

∇ · (A×B) = ∂i [A×B]i (Eq. 3.32)

= ∂i
Ä
ϵijkAjBk

ä
(Eq. ??)

= ϵijk∂i
Ä
AjBk

ä
(∂ not acting on ϵ)

= ϵijk
Ä
Bk∂iAj + Aj∂iBk

ä
(product rule)

= ϵijkBk∂iAj + ϵijkAj∂iBk (distributivity)

= ϵkijBk∂iAj − ϵjikAj∂iBk (Eq. 10.40)

= Bk

Ä
ϵkij∂iAj

ä
− Aj

Ä
ϵjik∂iBk

ä
(commutativity & grouping)

= Bk [∇×A]k − Aj [∇×B]j (Eq. 3.39)

= B · (∇×A)−A · (∇×B) (Eq. 1.25)

(3.77)
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3.12. Common Differential Operations in Einstein Notation

∇× (A×B) = (B · ∇)A + (∇ ·B)A− (∇ ·A)B− (A · ∇)B:

î
∇× (A×B)

ó
i
= ϵijk∂j [A×B]k (Eq. 3.39)

= ϵijk∂j (ϵklmAlBm) (Eq. ??)

= ϵijkϵklm∂j (AlBm) (∂ not acting on ϵ)

= ϵijkϵklm
Ä
Bm∂jAl + Al∂jBm

ä
(product rule)

= ϵijkϵlmk

Ä
Bm∂jAl + Al∂jBm

ä
(Eq. 10.40)

=
Ä
δilδjm − δimδjl

ä Ä
Bm∂jAl + Al∂jBm

ä
(Eq. 10.58)

= δilδjmBm∂jAl + δilδjmAl∂jBm − δimδjlBm∂jAl − δimδjlAl∂jBm (distributivity)

= Bm∂mAi + Ai∂mBm −Bi∂jAj − Aj∂jBi (Eq. 10.32)

= (Bm∂m)Ai + (∂mBm)Ai −
Ä
∂jAj

ä
Bi −

Ä
Aj∂j

ä
Bi (grouping)

=
î
(B · ∇)A

ó
i
+
î
(∇ ·B)A

ó
i
−
î
(∇ ·A)B

ó
i
−
î
(A · ∇)B

ó
i

(Eqs. 3.45 & 3.32)

=
î
(B · ∇)A + (∇ ·B)A− (∇ ·A)B− (A · ∇)B

ó
i

(Eq. ??)
(3.78)

Because i is a free index the identity is proved for all components.
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3. Differentiation of Vector Function

(A×B) · (C×D) =

∣∣∣∣∣∣∣∣
A ·C A ·D

B ·C B ·D

∣∣∣∣∣∣∣∣:

(A×B) · (C×D) = [A×B]i [C×D]i (Eq. 1.25)

= ϵijkAjBkϵilmClDm (Eq. ??)

= ϵijkϵilmAjBkClDm (commutativity)

=
Ä
δjlδkm − δjmδkl

ä
AjBkClDm (Eqs. 10.40 & 10.58)

= δjlδkmAjBkClDm − δjmδklAjBkClDm (distributivity)

=
Ä
δjlAjCl

ä
(δkmBkDm)−

Ä
δjmAjDm

ä
(δklBkCl) (commutativity & grouping)

= (AlCl) (BmDm)− (AmDm) (BlCl) (Eq. 10.32)

= (A ·C) (B ·D)− (A ·D) (B ·C) (Eq. 1.25)

=

∣∣∣∣∣∣∣∣
A ·C A ·D

B ·C B ·D

∣∣∣∣∣∣∣∣ (definition of determinant)

(3.79)
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3.12. Common Differential Operations in Einstein Notation

(A×B)× (C×D) =
î
D · (A×B)

ó
C−

î
C · (A×B)

ó
D:î

(A×B)× (C×D)
ó
i
= ϵijk [A×B]j [C×D]k (Eq. ??)

= ϵijkϵjmnAmBnϵkpqCpDq (Eq. ??)

= ϵijkϵkpqϵjmnAmBnCpDq (commutativity)

= ϵijkϵpqkϵjmnAmBnCpDq (Eq. 10.40)

=
Ä
δipδjq − δiqδjp

ä
ϵjmnAmBnCpDq (Eq. 10.58)

=
Ä
δipδjqϵjmn − δiqδjpϵjmn

ä
AmBnCpDq (distributivity)

=
Ä
δipϵqmn − δiqϵpmn

ä
AmBnCpDq (Eq. 10.32)

= δipϵqmnAmBnCpDq − δiqϵpmnAmBnCpDq (distributivity)

= ϵqmnAmBnCiDq − ϵpmnAmBnCpDi (Eq. 10.32)

= ϵqmnDqAmBnCi − ϵpmnCpAmBnDi (commutativity)

=
Ä
ϵqmnDqAmBn

ä
Ci −

Ä
ϵpmnCpAmBn

ä
Di (grouping)

=
î
D · (A×B)

ó
Ci −

î
C · (A×B)

ó
Di (Eq. ??)

=
[î

D · (A×B)
ó
C
]
i
−
[î

C · (A×B)
ó
D
]
i

(definition of index)

=
[î

D · (A×B)
ó
C−

î
C · (A×B)

ó
D
]
i

(Eq. ??)

(3.80)

Because i is a free index the identity is proved for all components.
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4.
Multiple Integrals

In this chapter we develop the theory of integration for scalar functions.

Recall also that the definite integral of a nonnegative function f(x) ≥ 0 represented the area “un-
der” the curve y = f(x). As we will now see, the double integral of a nonnegative real-valued function
f(x, y) ≥ 0 represents the volume “under” the surface z = f(x, y).
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4. Multiple Integrals

4.1. Double Integrals

LetR = [a, b]×[c, d] ⊆ R2 bea rectangle, andf : R→ Rbecontinuous. LetP = {x0, . . . , xM , y0, . . . , yM}
where a = x0 < x1 < · · · < xM = b and c = y0 < y1 < · · · < yM = d. The set P determines a par-
tition of R into a grid of (non-overlapping) rectangles Ri,j = [xi, xi+1] × [yj, yj+1] for 0 ≤ i < M and
0 ≤ j < N . Given P , choose a collection of points M =

¶
ξi,j
©
so that ξi,j ∈ Ri,j for all i, j.

248 Definition
The Riemann sum of f with respect to the partition P and pointsM is defined by

R(f, P,M) def
=

M−1∑
i=0

N−1∑
j=0

f(ξi,j) area(Ri,j) =
M−1∑
i=0

N−1∑
j=0

f(ξi,j)(xi+1 − xi)(yj+1 − yj)

249 Definition
Themesh size of a partition P is defined by

∥P∥ = max
{
xi+1 − xi

∣∣∣ 0 ≤ i < M
}
∪
{
yj+1 − yj

∣∣∣ 0 ≤ j ≤ N
}
.
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4.1. Double Integrals

x

y

z
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4. Multiple Integrals

250 Definition
The Riemann integral of f over the rectangleR is defined by

¨
R

f(x, y) dx dy
def
= lim

∥P∥→0
R(f, P,M),

provided the limit exists and is independent of the choice of the pointsM. A function is said to beRiemann
integrable overR if the Riemann integral exists and is finite.

251 Remark
A few other popular notation conventions used to denote the integral are

¨
R

f dA,

¨
R

f dx dy,

¨
R

f dx1 dx2, and
¨

R

f.

252 Remark
The double integral represents the volume of the region under the graph of f . Alternately, if f(x, y) is the
density of a planar body at point (x, y), the double integral is the total mass.

253 Theorem
Any bounded continuous function is Riemann integrable on a bounded rectangle.
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4.1. Double Integrals
254 Remark

Most bounded functions we will encounter will be Riemann integrable. Bounded functions with reason-
able discontinuities (e.g. finitely many jumps) are usually Riemann integrable on bounded rectangle. An
example of a “badly discontinuous” function that is not Riemann integrable is the function f(x, y) = 1 if
x, y ∈ Q and 0 otherwise.

Now suppose U ⊆ R2 is an nice bounded1 domain, and f : U → R is a function. Find a bounded
rectangle R ⊇ U , and as before let P be a partition of R into a grid of rectangles. Now we define the
Riemann sumbyonly summingover all rectanglesRi,j that are completely contained insideU . Explicitly,
let

χi,j =


1 Ri,j ⊆ U

0 otherwise.

and define

R(f, P,M, U) def
=

M−1∑
i=0

N−1∑
j=0

χi,jf(ξi,j)(xi+1 − xi)(yj+1 − yj).

1We will subsequently always assume U is “nice”. Namely, U is open, connected and the boundary of U is a piecewise
differentiable curve. More precisely, we need to assume that the “area” occupied by the boundary of U is 0. While you
might suspect this should be true for all open sets, it isn’t! There exist open sets of finite areawhose boundary occupies
an infinite area!
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4. Multiple Integrals

255 Definition
The Riemann integral of f over the domainU is defined by

¨
U

f(x, y) dx dy
def
= lim

∥P∥→0
R(f, P,M, U),

provided the limit exists and is independent of the choice of the pointsM. A function is said to beRiemann
integrable overR if the Riemann integral exists and is finite.

256 Theorem
Any bounded continuous function is Riemann integrable on a bounded region.

257 Remark
As before, most reasonable bounded functions we will encounter will be Riemann integrable.

To deal with unbounded functions over unbounded domains, we use a limiting process.

258 Definition
Let U ⊆ R2 be a domain (which is not necessarily bounded) and f : U → R be a (not necessarily
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4.1. Double Integrals

bounded) function. We say f is integrable if

lim
R→∞

¨
U∩B(0,R)

χR|f | dA

exists and is finite. Here χR(x) = 1 if
∣∣∣f(x)∣∣∣ < R and 0 otherwise.

259 Proposition
If f is integrable on the domainU , then

lim
R→∞

¨
U∩B(0,R)

χRf dA

exists and is finite.

260 Remark
If f is integrable, then the above limit is independent of how you expand your domain. Namely, you can
take the limit of the integral overU ∩ [−R,R]2 instead, and you will still get the same answer.
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4. Multiple Integrals

261 Definition
If f is integrable we define ¨

U

f dx dy = lim
R→∞

¨
U∩B(0,R)

χRf dA

4.2. Iterated integrals and Fubini’s theorem

Let f(x, y) be a continuous function such that f(x, y) ≥ 0 for all (x, y) on the rectangle R = {(x, y) :
a ≤ x ≤ b, c ≤ y ≤ d} in R2. We will often write this as R = [a, b] × [c, d]. For any number x∗ in the
interval [a, b], slice the surface z = f(x, y)with the plane x = x∗ parallel to the yz-plane. Then the trace
of the surface in that plane is the curve f(x∗, y), where x∗ is fixed and only y varies. The area A under
that curve (i.e. the area of the region between the curve and the xy-plane) as y varies over the interval
[c, d] then depends only on the value of x∗. So using the variable x instead of x∗, let A(x) be that area
(see Figure 4.1).

ThenA(x) =
ˆ d

c

f(x, y) dy since we are treating x as fixed, and only y varies. This makes sense since

for a fixed x the function f(x, y) is a continuous function of y over the interval [c, d], so we know that the
area under the curve is the definite integral. The area A(x) is a function of x, so by the “slice” or cross-
section method from single-variable calculus we know that the volume V of the solid under the surface
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4.2. Iterated integrals and Fubini’s theorem

y

z

x

0 A(x)

R

a
x

b

c d

z = f(x, y)

Figure 4.1. The areaA(x) varies with x

z = f(x, y) but above the xy-plane over the rectangleR is the integral over [a, b] of that cross-sectional
areaA(x):

V =

ˆ b

a

A(x) dx =

ˆ b

a

ˆ d

c

f(x, y) dy

 dx (4.1)

We will always refer to this volume as “the volume under the surface”. The above expression uses what
are called iterated integrals. First the function f(x, y) is integrated as a function of y, treating the vari-
ablex as a constant (this is called integratingwith respect to y). That iswhat occurs in the “inner” integral
between the square brackets in equation (4.1). This is the first iterated integral. Once that integration is
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4. Multiple Integrals

performed, the result is then an expression involving only x, which can then be integrated with respect
to x. That is what occurs in the “outer” integral above (the second iterated integral). The final result is
then a number (the volume). This process of going through two iterations of integrals is called double
integration, and the last expression in equation (4.1) is called a double integral.

Notice that integrating f(x, y)with respect to y is the inverse operation of taking the partial derivative
of f(x, y)with respect to y. Also, we could just as easily have taken the area of cross-sections under the
surfacewhichwere parallel to the xz-plane, whichwould then depend only on the variable y, so that the
volume V would be

V =

ˆ d

c

ˆ b

a

f(x, y) dx

 dy . (4.2)

It turns out that in general due to Fubini’s Theorem the order of the iterated integrals does not matter.
Also, we will usually discard the brackets and simply write

V =

ˆ d

c

ˆ b

a

f(x, y) dx dy , (4.3)

where it is understood that the fact that dx is written before dy means that the function f(x, y) is first
integratedwith respect toxusing the “inner” limits of integrationaand b, and then the resulting function
is integratedwith respect to y using the “outer” limits of integration c and d. This order of integration can
be changed if it is more convenient.

Let U ⊆ R2 be a domain.
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4.2. Iterated integrals and Fubini’s theorem

262 Definition
For x ∈ R, define

SxU =
{
y
∣∣∣ (x, y) ∈ U} and TyU =

{
x
∣∣∣ (x, y) ∈ U}

263 Example
IfU = [a, b]× [c, d] then

SxU =


[c, d] x ∈ [a, b]

∅ x ̸∈ [a, b]
and TyU =


[a, b] y ∈ [c, d]

∅ y ̸∈ [c, d].

For domains we will consider, SxU and TyU will typically be an interval (or a finite union of inter-
vals).

264 Definition
Given a function f : U → R, we define the two iterated integrals by

ˆ
x∈R

Åˆ
y∈SxU

f(x, y) dy
ã
dx and

ˆ
y∈R

Åˆ
x∈TyU

f(x, y) dx
ã
dy,
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4. Multiple Integrals

with the convention that an integral over the empty set is0. (We included theparenthesis above for clarity;
and will drop them as we becomemore familiar with iterated integrals.)

Suppose f(x, y) represents the density of a planar body at point (x, y). For any x ∈ R,
ˆ
y∈SxU

f(x, y) dy

represents themass of the body contained in the vertical line through the point (x, 0). It’s only natural to
expect that if we integrate this with respect to y, we will get the total mass, which is the double integral.
By the same argument, we should get the same answer if we had sliced it horizontally first and then
vertically. Consequently, we expect both iterated integrals to be equal to the double integral. This is
true, under a finiteness assumption.

265 Theorem (Fubini’s theorem)
Suppose f : U → R is a function such that either

ˆ
x∈R

Åˆ
y∈SxU

∣∣∣f(x, y)∣∣∣ dyã dx <∞ or
ˆ
y∈R

Åˆ
x∈TyU

∣∣∣f(x, y)∣∣∣ dxã dy <∞, (4.4)
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4.2. Iterated integrals and Fubini’s theorem

then f is integrable overU and
¨

U

f dA =

ˆ
x∈R

Åˆ
y∈SxU

f(x, y) dy
ã
dx =

ˆ
y∈R

Åˆ
x∈TyU

f(x, y) dx
ã
dy.

Without the assumption (4.4) the iterated integrals need not be equal, even though both may exist
and be finite.

266 Example
Define

f(x, y) = −∂x∂y tan−1
Äy
x

ä
=

x2 − y2

(x2 + y2)2
.

Then ˆ 1

x=0

ˆ 1

y=0

f(x, y) dy dx =
π

4
and

ˆ 1

y=0

ˆ 1

x=0

f(x, y) dx dy = −π
4

267 Example
Let f(x, y) = (x−y)/(x+y)3 if x, y > 0 and 0 otherwise, andU = (0, 1)2. The iterated integrals of f over
U both exist, but are not equal.
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4. Multiple Integrals
268 Example

Define

f(x, y) =


1 y ∈ (x, x+ 1) and x ≥ 0

−1 y ∈ (x− 1, x) and x ≥ 0

0 otherwise.

Then the iterated integrals of f both exist and are not equal.

269 Example
Find the volume V under the plane z = 8x+ 6y over the rectangleR = [0, 1]× [0, 2].

Solution: ▶ We see that f(x, y) = 8x+ 6y ≥ 0 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, so:

V =

ˆ 2

0

ˆ 1

0

(8x+ 6y) dx dy

=

ˆ 2

0

(
4x2 + 6xy

∣∣∣∣x=1

x=0

)
dy

=

ˆ 2

0

(4 + 6y) dy

= 4y + 3y2
∣∣∣∣2
0

= 20
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4.2. Iterated integrals and Fubini’s theorem

Suppose we had switched the order of integration. We can verify that we still get the same answer:

V =

ˆ 1

0

ˆ 2

0

(8x+ 6y) dy dx

=

ˆ 1

0

(
8xy + 3y2

∣∣∣∣y=2

y=0

)
dx

=

ˆ 1

0

(16x+ 12) dx

= 8x2 + 12x
∣∣∣∣1
0

= 20

◀
270 Example

Find the volume V under the surface z = ex+y over the rectangleR = [2, 3]× [1, 2].

Solution: ▶ We know that f(x, y) = ex+y > 0 for all (x, y), so

V =

ˆ 2

1

ˆ 3

2

ex+y dx dy

=

ˆ 2

1

(
ex+y

∣∣∣∣x=3

x=2

)
dy

221



4. Multiple Integrals

=

ˆ 2

1

(ey+3 − ey+2) dy

= ey+3 − ey+2
∣∣∣∣2
1

= e5 − e4 − (e4 − e3) = e5 − 2e4 + e3

◀
Recall that for a general function f(x), the integral

ˆ b

a

f(x) dx represents the difference of the area

below the curve y = f(x) but above the x-axis when f(x) ≥ 0, and the area above the curve but below
the x-axis when f(x) ≤ 0. Similarly, the double integral of any continuous function f(x, y) represents
the difference of the volume below the surface z = f(x, y) but above the xy-plane when f(x, y) ≥ 0,
and the volumeabove the surfacebut below thexy-planewhen f(x, y) ≤ 0. Thus, ourmethodof double
integration bymeans of iterated integrals can be used to evaluate the double integral of any continuous
function over a rectangle, regardless of whether f(x, y) ≥ 0 or not.

271 Example
Evaluate

ˆ 2π

0

ˆ π

0

sin(x+ y) dx dy.

Solution: ▶ Note thatf(x, y) = sin(x+y) is bothpositiveandnegativeover the rectangle [0, π]×[0, 2π].
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4.2. Iterated integrals and Fubini’s theorem

We can still evaluate the double integral:
ˆ 2π

0

ˆ π

0

sin(x+ y) dx dy =

ˆ 2π

0

Ç
− cos(x+ y)

∣∣∣∣x=π

x=0

å
dy

=

ˆ 2π

0

(− cos(y + π) + cos y) dy

= − sin(y + π) + sin y
∣∣∣∣2π
0

= − sin 3π + sin 2π − (− sinπ + sin 0)

= 0

◀

Exercises

A
For Exercises 1-4, find the volume under the surface z = f(x, y) over the rectangleR.

1. f(x, y) = 4xy,R = [0, 1]× [0, 1] 2. f(x, y) = ex+y,R = [0, 1]× [−1, 1]
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4. Multiple Integrals

3. f(x, y) = x3 + y2,R = [0, 1]× [0, 1] 4. f(x, y) = x4 + xy + y3,R = [1, 2]× [0, 2]

For Exercises 5-12, evaluate the given double integral.

5.
ˆ 1

0

ˆ 2

1

(1− y)x2 dx dy 6.
ˆ 1

0

ˆ 2

0

x(x+ y) dx dy

7.
ˆ 2

0

ˆ 1

0

(x+ 2) dx dy 8.
ˆ 2

−1

ˆ 1

−1

x(xy + sinx) dx dy

9.
ˆ π/2

0

ˆ 1

0

xy cos(x2y) dx dy 10.
ˆ π

0

ˆ π/2

0

sinx cos(y − π) dx dy

11.
ˆ 2

0

ˆ 4

1

xy dx dy 12.
ˆ 1

−1

ˆ 2

−1

1 dx dy

13. LetM be a constant. Show that
ˆ d

c

ˆ b

a

M dxdy =M(d− c)(b− a).

4.3. Double Integrals Over a General Region

In the previous sectionwe got an idea of what a double integral over a rectangle represents. We can now
define the double integral of a real-valued function f(x, y) over more general regions inR2.
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4.3. Double Integrals Over a General Region

Suppose that we have a regionR in the xy-plane that is bounded on the left by the vertical line x = a,
bounded on the right by the vertical line x = b (where a < b), bounded below by a curve y = g1(x),
and bounded above by a curve y = g2(x), as in Figure 4.2(a). We will assume that g1(x) and g2(x) do not
intersect on the open interval (a, b) (they could intersect at the endpoints x = a and x = b, though).

a b

x

y

0

y = g2(x)

y = g1(x)

R

(a) Vertical slice:
ˆ b

a

ˆ g2(x)

g1(x)

f(x, y) dy dx

x

y

0

x = h1(y)

x = h2(y)

R
c

d

(b) Horizontal slice:
ˆ d

c

ˆ h2(y)

h1(y)

f(x, y) dx dy

Figure 4.2. Double integral over a nonrectan-
gular regionR
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4. Multiple Integrals

Then using the slice method from the previous section, the double integral of a real-valued function

f(x, y) over the regionR, denoted by
¨

R

f(x, y) dA, is given by

¨

R

f(x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y) dy

 dx (4.5)

This means that we take vertical slices in the regionR between the curves y = g1(x) and y = g2(x). The
symbol dA is sometimes called an area element or infinitesimal, with the A signifying area. Note that
f(x, y) is first integrated with respect to y, with functions of x as the limits of integration. This makes
sense since the result of the first iterated integral will have to be a function of x alone, which then allows
us to take the second iterated integral with respect to x.

Similarly, if we have a region R in the xy-plane that is bounded on the left by a curve x = h1(y),
bounded on the right by a curve x = h2(y), bounded below by the horizontal line y = c, and bounded
above by the horizontal line y = d (where c < d), as in Figure 4.2(b) (assuming that h1(y) and h2(y) do
not intersect on the open interval (c, d)), then taking horizontal slices gives

¨

R

f(x, y) dA =

ˆ d

c

ˆ h2(y)

h1(y)

f(x, y) dx

 dy (4.6)

Notice that these definitions include the case when the regionR is a rectangle. Also, if f(x, y) ≥ 0 for
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4.3. Double Integrals Over a General Region

all (x, y) in the regionR, then
˜
R

f(x, y) dA is the volume under the surface z = f(x, y) over the region

R.

272 Example
Find the volume V under the plane z = 8x+ 6y over the regionR = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x2}.

x

y

0

y = 2x2

R

1

Figure 4.3.

Solution: ▶ The regionR is shown in Figure 3.2.2. Using vertical slices we get:

V =

¨

R

(8x+ 6y) dA

=

ˆ 1

0

ˆ 2x2

0

(8x+ 6y) dy

 dx
=

ˆ 1

0

Ñ
8xy + 3y2

∣∣∣∣y=2x2

y=0

é
dx

=

ˆ 1

0

(16x3 + 12x4) dx

= 4x4 + 12
5
x5
∣∣∣∣1
0
= 4 + 12

5
= 32

5
= 6.4
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x

y

0

2

x =
»
y/2

R

1

Figure 4.4.

We get the same answer using horizontal slices (see Figure 3.2.3):

V =

¨

R

(8x+ 6y) dA

=

ˆ 2

0

ˆ 1

√
y/2

(8x+ 6y) dx

 dy
=

ˆ 2

0

Ñ
4x2 + 6xy

∣∣∣∣x=1

x=
√

y/2

é
dy

=

ˆ 2

0

(4 + 6y − (2y + 6√
2
y
√
y )) dy =

ˆ 2

0

(4 + 4y − 3
√
2y3/2) dy

= 4y + 2y2 − 6
√
2

5
y5/2

∣∣∣∣2
0
= 8 + 8− 6

√
2
√
32

5
= 16− 48

5
= 32

5
= 6.4

◀

273 Example
Find the volume V of the solid bounded by the three coordinate planes and the plane 2x+ y + 4z = 4.

Solution: ▶ The solid is shown in Figure 4.5(a) with a typical vertical slice. The volume V is given by˜
R

f(x, y) dA, where f(x, y) = z = 1
4
(4 − 2x − y) and the region R, shown in Figure 4.5(b), is R =
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y

z

x

0 (0, 4, 0)

(0, 0, 1)

(2, 0, 0)

2x+ y + 4z = 4

(a)

x

y

0

y = −2x+ 4

R

2

4

(b)

Figure 4.5.

{(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ −2x+ 4}. Using vertical slices inR gives

V =

¨

R

1
4
(4− 2x− y) dA

=

ˆ 2

0

ˆ −2x+4

0

1
4
(4− 2x− y) dy

 dx
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4. Multiple Integrals

=

ˆ 2

0

(
−1

8
(4− 2x− y)2

∣∣∣∣y=−2x+4

y=0

)
dx

=

ˆ 2

0

1
8
(4− 2x)2 dx

= − 1
48
(4− 2x)3

∣∣∣∣2
0
= 64

48
= 4

3

◀
For a general region R, which may not be one of the types of regions we have considered so far, the

double integral
˜
R

f(x, y) dA is definedas follows. Assume thatf(x, y) is anonnegative real-valued func-

tion and that R is a bounded region in R2, so it can be enclosed in some rectangle [a, b] × [c, d]. Then
divide that rectangle into a grid of subrectangles. Only consider the subrectangles that are enclosed
completely within the regionR, as shown by the shaded subrectangles in Figure 4.6(a). In any such sub-
rectangle [xi, xi+1]× [yj, yj+1], pick a point (xi∗, yj∗). Then the volume under the surface z = f(x, y) over
that subrectangle is approximately f(xi∗, yj∗)∆xi ∆yj, where ∆xi = xi+1 − xi, ∆yj = yj+1 − yj, and
f(xi∗, yj∗) is the height and∆xi ∆yj is the base area of a parallelepiped, as shown in Figure 4.6(b). Then
the total volume under the surface is approximately the sum of the volumes of all such parallelepipeds,
namely ∑

j

∑
i

f(xi∗, yj∗)∆xi ∆yj , (4.7)

where the summation occurs over the indices of the subrectangles inside R. If we take smaller and
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4.3. Double Integrals Over a General Region

smaller subrectangles, so that the length of the largest diagonal of the subrectangles goes to 0, then
the subrectangles begin to fill more and more of the region R, and so the above sum approaches the
actual volume under the surface z = f(x, y) over the regionR. We then define

˜
R

f(x, y) dA as the limit

of that double summation (the limit is taken over all subdivisions of the rectangle [a, b] × [c, d] as the
largest diagonal of the subrectangles goes to 0).

A similar definition can bemade for a function f(x, y) that is not necessarily always nonnegative: just
replace each mention of volume by the negative volume in the description above when f(x, y) < 0. In
the case of a region of the type shown in Figure 4.2, using the definition of the Riemann integral from
single-variable calculus, our definition of

˜
R

f(x, y) dA reduces to a sequence of two iterated integrals.

Finally, the region R does not have to be bounded. We can evaluate improper double integrals (i.e.
over an unbounded region, or over a region which contains points where the function f(x, y) is not de-
fined) as a sequence of iterated improper single-variable integrals.

274 Example
Evaluate

ˆ ∞

1

ˆ 1/x2

0

2y dy dx.

Solution: ▶
ˆ ∞

1

ˆ 1/x2

0

2y dy dx =

ˆ ∞

1

Ñ
y2
∣∣∣∣y=1/x2

y=0

é
dx
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=

ˆ ∞

1

x−4 dx = − 1
3
x−3

∣∣∣∣∞
1

= 0− (−1
3
) = 1

3

◀

Exercises

A
For Exercises 1-6, evaluate the given double integral.

1.
ˆ 1

0

ˆ 1

√
x

24x2y dy dx 2.
ˆ π

0

ˆ y

0

sinx dx dy

3.
ˆ 2

1

ˆ lnx

0

4x dy dx 4.
ˆ 2

0

ˆ 2y

0

ey
2

dx dy

5.
ˆ π/2

0

ˆ y

0

cosx sin y dx dy 6.
ˆ ∞

0

ˆ ∞

0

xye−(x2+y2) dx dy

7.
ˆ 2

0

ˆ y

0

1 dx dy 8.
ˆ 1

0

ˆ x2

0

2 dy dx

9. Find the volume V of the solid bounded by the three coordinate planes and the plane x+ y+ z = 1.
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4.4. Triple Integrals

10. Find the volumeV of the solid boundedby the three coordinate planes and the plane 3x+2y+5z =

6.

B

11. Explainwhy thedouble integral
˜
R

1 dAgives theareaof the regionR. For simplicity, you canassume

thatR is a region of the type shown in Figure 4.2(a).

C

b
c

a

Figure 4.7.

12. Prove that the volume of a tetrahedron with mutually perpendicular adjacent
sides of lengths a, b, and c, as in Figure 3.2.6, is abc

6
. (Hint: Mimic Example 273, and

recall from
Section 1.5 how three noncollinear points determine a plane.)

13. Show how Exercise 12 can be used to solve Exercise 10.

4.4. Triple Integrals

Our definition of a double integral of a real-valued function f(x, y) over a regionR inR2 can be extended
to define a triple integral of a real-valued function f(x, y, z) over a solid S in R3. We simply proceed
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4. Multiple Integrals

as before: the solid S can be enclosed in some rectangular parallelepiped, which is then divided into
subparallelepipeds. In each subparallelepiped inside S, with sides of lengths ∆x, ∆y and ∆z, pick a
point (x∗, y∗, z∗). Then define the triple integral of f(x, y, z) over S, denoted by

˝
S

f(x, y, z) dV , by

˚

S

f(x, y, z) dV = lim
∑∑∑

f(x∗, y∗, z∗)∆x∆y∆z , (4.8)

where the limit is over all divisions of the rectangular parallelepiped enclosingS into subparallelepipeds
whose largest diagonal is going to 0, and the triple summation is over all the subparallelepipeds insideS.
It can be shown that this limit does not dependon the choice of the rectangular parallelepiped enclosing
S. The symbol dV is often called the volume element.

Physically, what does the triple integral represent? We saw that a double integral could be thought of
as the volume under a two-dimensional surface. It turns out that the triple integral simply generalizes
this idea: it can be thought of as representing the hypervolume under a three-dimensional hypersurface
w = f(x, y, z) whose graph lies in R4. In general, the word “volume” is often used as a general term to
signify the same concept for any n-dimensional object (e.g. length in R1, area in R2). It may be hard to
get a grasp on the concept of the “volume” of a four-dimensional object, but at least we now know how
to calculate that volume!

In the case where S is a rectangular parallelepiped [x1, x2] × [y1, y2] × [z1, z2], that is, S = {(x, y, z) :
x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2}, the triple integral is a sequence of three iterated integrals,
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4.4. Triple Integrals

namely ˚

S

f(x, y, z) dV =

ˆ z2

z1

ˆ y2

y1

ˆ x2

x1

f(x, y, z) dx dy dz , (4.9)

where the order of integration does not matter. This is the simplest case.
A more complicated case is where S is a solid which is bounded below by a surface z = g1(x, y),

bounded above by a surface z = g2(x, y), y is bounded between two curves h1(x) and h2(x), and x
varies between a and b. Then

˚

S

f(x, y, z) dV =

ˆ b

a

ˆ h2(x)

h1(x)

ˆ g2(x,y)

g1(x,y)

f(x, y, z) dz dy dx . (4.10)

Notice in this case that the first iterated integral will result in a function of x and y (since its limits of
integration are functions of x and y), which then leaves you with a double integral of a type that we
learned how to evaluate in Section 3.2. There are, of course, many variations on this case (for example,
changing the roles of the variables x, y, z), so as you can probably tell, triple integrals can be quite tricky.
At this point, just learning how to evaluate a triple integral, regardless of what it represents, is the most
important thing. We will see some other ways in which triple integrals are used later in the text.

275 Example
Evaluate

ˆ 3

0

ˆ 2

0

ˆ 1

0

(xy + z) dx dy dz.
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Solution: ▶
ˆ 3

0

ˆ 2

0

ˆ 1

0

(xy + z) dx dy dz =

ˆ 3

0

ˆ 2

0

(
1
2
x2y + xz

∣∣∣∣x=1

x=0

)
dy dz

=

ˆ 3

0

ˆ 2

0

Ä
1
2
y + z

ä
dy dz

=

ˆ 3

0

(
1
4
y2 + yz

∣∣∣∣y=2

y=0

)
dz

=

ˆ 3

0

(1 + 2z) dz

= z + z2
∣∣∣∣3
0
= 12

◀
276 Example

Evaluate
ˆ 1

0

ˆ 1−x

0

ˆ 2−x−y

0

(x+ y + z) dz dy dx.

Solution: ▶
ˆ 1

0

ˆ 1−x

0

ˆ 2−x−y

0

(x+ y + z) dz dy dx =

ˆ 1

0

ˆ 1−x

0

(
(x+ y)z + 1

2
z2
∣∣∣∣z=2−x−y

z=0

)
dy dx

=

ˆ 1

0

ˆ 1−x

0

Ä
(x+ y)(2− x− y) + 1

2
(2− x− y)2

ä
dy dx
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=

ˆ 1

0

ˆ 1−x

0

Ä
2− 1

2
x2 − xy − 1

2
y2
ä
dy dx

=

ˆ 1

0

(
2y − 1

2
x2y − xy − 1

2
xy2 − 1

6
y3
∣∣∣∣y=1−x

y=0

)
dx

=

ˆ 1

0

Ä
11
6
− 2x+ 1

6
x3
ä
dx

= 11
6
x− x2 + 1

24
x4
∣∣∣∣1
0
= 7

8

◀ Note that the volume V of a solid inR3 is given by

V =

˚

S

1 dV . (4.11)

Since the function being integrated is the constant 1, then the above triple integral reduces to a double
integral of the types that we considered in the previous section if the solid is bounded above by some
surface z = f(x, y) and bounded below by the xy-plane z = 0. There are many other possibilities.
For example, the solid could be bounded below and above by surfaces z = g1(x, y) and z = g2(x, y),
respectively, with y bounded between two curves h1(x) and h2(x), and x varies between a and b. Then

V =

˚

S

1 dV =

ˆ b

a

ˆ h2(x)

h1(x)

ˆ g2(x,y)

g1(x,y)

1 dz dy dx =

ˆ b

a

ˆ h2(x)

h1(x)

Ä
g2(x, y)− g1(x, y)

ä
dy dx

just like in equation (4.10). See Exercise 10 for an example.
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Exercises

A
For Exercises 1-8, evaluate the given triple integral.

1.
ˆ 3

0

ˆ 2

0

ˆ 1

0

xyz dx dy dz 2.
ˆ 1

0

ˆ x

0

ˆ y

0

xyz dz dy dx

3.
ˆ π

0

ˆ x

0

ˆ xy

0

x2 sin z dz dy dx 4.
ˆ 1

0

ˆ z

0

ˆ y

0

zey
2

dx dy dz

5.
ˆ e

1

ˆ y

0

ˆ 1/y

0

x2z dx dz dy 6.
ˆ 2

1

ˆ y2

0

ˆ z2

0

yz dx dz dy

7.
ˆ 2

1

ˆ 4

2

ˆ 3

0

1 dx dy dz 8.
ˆ 1

0

ˆ 1−x

0

ˆ 1−x−y

0

1 dz dy dx

9. LetM be a constant. Show that
ˆ z2

z1

ˆ y2

y1

ˆ x2

x1

M dxdy dz =M(z2 − z1)(y2 − y1)(x2 − x1).

B

10. Find the volume V of the solid S bounded by the three coordinate planes, bounded above by the
plane x+ y + z = 2, and bounded below by the plane z = x+ y.
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C

11. Show that
ˆ b

a

ˆ z

a

ˆ y

a

f(x) dx dy dz =

ˆ b

a

(b−x)2

2
f(x) dx. (Hint: Think of how changing the order of

integration in the triple integral changes the limits of integration.)

4.5. Change of Variables in Multiple Integrals

Given the difficulty of evaluatingmultiple integrals, the reader may be wondering if it is possible to sim-
plify those integrals using a suitable substitution for the variables. The answer is yes, though it is a bit
more complicated than the substitution method which you learned in single-variable calculus.

Recall that if you are given, for example, the definite integral

ˆ 2

1

x3
√
x2 − 1 dx ,

then you would make the substitution

u = x2 − 1 ⇒ x2 = u+ 1

du = 2x dx

239



4. Multiple Integrals

which changes the limits of integration

x = 1 ⇒ u = 0

x = 2 ⇒ u = 3

so that we get
ˆ 2

1

x3
√
x2 − 1 dx =

ˆ 2

1

1
2
x2 · 2x

√
x2 − 1 dx

=

ˆ 3

0

1
2
(u+ 1)

√
u du

= 1
2

ˆ 3

0

(
u3/2 + u1/2

)
du , which can be easily integrated to give

= 14
√
3

5
.

Let us take a different look at what happened when we did that substitution, which will give some mo-
tivation for how substitution works in multiple integrals. First, we let u = x2 − 1. On the interval of
integration [1, 2], the function x 7→ x2 − 1 is strictly increasing (and maps [1, 2] onto [0, 3]) and hence
has an inverse function (defined on the interval [0, 3]). That is, on [0, 3] we can define x as a function of
u, namely

x = g(u) =
√
u+ 1 .

240



4.5. Change of Variables in Multiple Integrals

Then substituting that expression for x into the function f(x) = x3
√
x2 − 1 gives

f(x) = f(g(u)) = (u+ 1)3/2
√
u ,

and we see that
dx

du
= g ′(u) ⇒ dx = g ′(u) du

dx = 1
2
(u+ 1)−1/2 du ,

so since

g(0) = 1 ⇒ 0 = g−1(1)

g(3) = 2 ⇒ 3 = g−1(2)

then performing the substitution as we did earlier gives
ˆ 2

1

f(x) dx =

ˆ 2

1

x3
√
x2 − 1 dx

=

ˆ 3

0

1
2
(u+ 1)

√
u du , which can be written as

=

ˆ 3

0

(u+ 1)3/2
√
u · 1

2
(u+ 1)−1/2 du , which means
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4. Multiple Integrals
ˆ 2

1

f(x) dx =

ˆ g−1(2)

g−1(1)

f(g(u)) g ′(u) du .

In general, if x = g(u) is a one-to-one, differentiable function from an interval [c, d] (which you can
think of as being on the “u-axis”) onto an interval [a, b] (on the x-axis), which means that g ′(u) ̸= 0 on
the interval (c, d), so that a = g(c) and b = g(d), then c = g−1(a) and d = g−1(b), and

ˆ b

a

f(x) dx =

ˆ g−1(b)

g−1(a)

f(g(u)) g ′(u) du . (4.12)

This is called the change of variable formula for integrals of single-variable functions, and it is what you
were implicitly using when doing integration by substitution. This formula turns out to be a special case
of amore general formulawhich canbeused to evaluatemultiple integrals. Wewill state the formulas for
double and triple integrals involving real-valued functions of two and three variables, respectively. We
will assume that all the functions involvedare continuouslydifferentiable and that the regions and solids
involved all have “reasonable” boundaries. The proof of the following theorem is beyond the scope of
the text.

277 Theorem
Change of Variables Formula for Multiple Integrals
Let x = x(u, v) and y = y(u, v) define a one-to-onemapping of a regionR′ in the uv-plane onto a region
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R in the xy-plane such that the determinant

J(u, v) =

∣∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣∣
(4.13)

is never 0 inR′. Then
¨

R

f(x, y) dA(x, y) =

¨

R′

f(x(u, v), y(u, v))
∣∣∣J(u, v)∣∣∣ dA(u, v) . (4.14)

Weuse thenotationdA(x, y)anddA(u, v) to denote thearea element in the (x, y)and (u, v) coordinates,
respectively.

Similarly, if x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w) define a one-to-one mapping of a solid
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S ′ in uvw-space onto a solid S in xyz-space such that the determinant

J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.15)

is never 0 in S ′, then
˚

S

f(x, y, z) dV (x, y, z) =

˚

S′

f(x(u, v, w), y(u, v, w), z(u, v, w))
∣∣∣J(u, v, w)∣∣∣ dV (u, v, w) . (4.16)

The determinant J(u, v) in formula (4.13) is called the Jacobian ofx and ywith respect tou and v, and
is sometimes written as

J(u, v) =
∂(x, y)

∂(u, v)
. (4.17)

Similarly, the Jacobian J(u, v, w) of three variables is sometimes written as

J(u, v, w) =
∂(x, y, z)

∂(u, v, w)
. (4.18)

Notice that formula (4.14) is saying that dA(x, y) =
∣∣∣J(u, v)∣∣∣ dA(u, v), which you can think of as a two-

variable version of the relation dx = g ′(u) du in the single-variable case.
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The following example shows how the change of variables formula is used.

278 Example
Evaluate

¨

R

e
x−y
x+y dA, whereR = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

Solution: ▶ First, note that evaluating this double integral without using substitution is probably im-
possible, at least in a closed form. By looking at the numerator and denominator of the exponent of e,
we will try the substitution u = x − y and v = x + y. To use the change of variables formula (4.14), we
need towrite bothx and y in terms ofu and v. So solving forx and y givesx = 1

2
(u+v) and y = 1

2
(v−u).

In Figure 4.8 below, we see how the mapping x = x(u, v) = 1
2
(u+ v), y = y(u, v) = 1

2
(v − u)maps the

regionR′ ontoR in a one-to-one manner.
Nowwe see that

J(u, v) =

∣∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1
2

1
2

−1
2

1
2

∣∣∣∣∣∣∣∣∣ =
1

2
⇒

∣∣∣J(u, v)∣∣∣ =

∣∣∣∣∣12
∣∣∣∣∣ =

1

2
,

so using horizontal slices inR′, we have
¨

R

e
x−y
x+y dA =

¨

R′

f(x(u, v), y(u, v))
∣∣∣J(u, v)∣∣∣ dA
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=

ˆ 1

0

ˆ v

−v

e
u
v 1

2
du dv

=

ˆ 1

0

Ç
v
2
e

u
v

∣∣∣∣u=v

u=−v

å
dv

=

ˆ 1

0

v
2
(e− e−1) dv

=
v2

4
(e− e−1)

∣∣∣∣1
0
=

1

4

Ç
e− 1

e

å
=

e2 − 1

4e

◀ The change of variables formula can be used to evaluate double integrals in polar coordinates. Letting

x = x(r, θ) = r cos θ and y = y(r, θ) = r sin θ ,

we have

J(u, v) =

∣∣∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r ⇒
∣∣∣J(u, v)∣∣∣ = |r| = r ,

so we have the following formula:
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Double Integral in Polar Coordinates
¨

R

f(x, y) dx dy =

¨

R′

f(r cos θ, r sin θ) r dr dθ , (4.19)

where the mapping x = r cos θ, y = r sin θmaps the regionR′ in the rθ-plane onto the regionR in
the xy-plane in a one-to-one manner.

279 Example
Find the volume V inside the paraboloid z = x2 + y2 for 0 ≤ z ≤ 1.
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4. Multiple Integrals

y

z

x
0

x2 + y2 = 1
1

Figure 4.9. z = x2 + y2

Solution: Using vertical slices, we see that

V =

¨

R

(1− z) dA =

¨

R

(1− (x2 + y2)) dA ,

where R = {(x, y) : x2 + y2 ≤ 1} is the unit disk in R2 (see Figure
3.5.2). In polar coordinates (r, θ)we know that x2 + y2 = r2 and that
the unit diskR is the setR′ = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. Thus,

V =

ˆ 2π

0

ˆ 1

0

(1− r2) r dr dθ

=

ˆ 2π

0

ˆ 1

0

(r − r3) dr dθ

=

ˆ 2π

0

(
r2

2
− r4

4

∣∣∣∣r=1

r=0

)
dθ

=

ˆ 2π

0

1
4
dθ

=
π

2

280 Example
Find the volume V inside the cone z =

√
x2 + y2 for 0 ≤ z ≤ 1.
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4.5. Change of Variables in Multiple Integrals

y

z

x
0

x2 + y2 = 1
1

Figure 4.10. z =√
x2 + y2

Solution: Using vertical slices, we see that

V =

¨

R

(1− z) dA =

¨

R

Å
1−

»
x2 + y2

ã
dA ,

whereR = {(x, y) : x2 + y2 ≤ 1} is the unit disk inR2

(see Figure 3.5.3). In polar coordinates (r, θ)we know
that
√
x2 + y2 = r and that the unit diskR is the set

R′ = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. Thus,

V =

ˆ 2π

0

ˆ 1

0

(1− r) r dr dθ

=

ˆ 2π

0

ˆ 1

0

(r − r2) dr dθ

=

ˆ 2π

0

(
r2

2
− r3

3

∣∣∣∣r=1

r=0

)
dθ

=

ˆ 2π

0

1
6
dθ

=
π

3

In a similar fashion, it can be shown (see Exercises 5-6) that triple integrals in cylindrical and spherical
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4. Multiple Integrals

coordinates take the following forms:

Triple Integral in Cylindrical Coordinates
˚

S

f(x, y, z) dx dy dz =

˚

S′

f(r cos θ, r sin θ, z) r dr dθ dz , (4.20)

where the mapping x = r cos θ, y = r sin θ, z = zmaps the solid S ′ in rθz-space onto the solid S in
xyz-space in a one-to-one manner.

Triple Integral in Spherical Coordinates
˚

S

f(x, y, z) dx dy dz =

˚

S′

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ dρ dϕ dθ , (4.21)

where the mapping x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕmaps the solid S ′ in ρϕθ-space
onto the solid S in xyz-space in a one-to-one manner.

281 Example
For a > 0, find the volume V inside the sphere S = x2 + y2 + z2 = a2.

Solution: We see that S is the set ρ = a in spherical coordinates, so

V =

˚

S

1 dV =

ˆ 2π

0

ˆ π

0

ˆ a

0

1 ρ2 sinϕ dρ dϕ dθ
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=

ˆ 2π

0

ˆ π

0

(
ρ3

3

∣∣∣∣ρ=a

ρ=0

)
sinϕ dϕ dθ =

ˆ 2π

0

ˆ π

0

a3

3
sinϕ dϕ dθ

=

ˆ 2π

0

(
−a

3

3
cosϕ

∣∣∣∣ϕ=π

ϕ=0

)
dθ =

ˆ 2π

0

2a3

3
dθ =

4πa3

3
.

Exercises

A

1. Find the volume V inside the paraboloid z = x2 + y2 for 0 ≤ z ≤ 4.

2. Find the volume V inside the cone z =
√
x2 + y2 for 0 ≤ z ≤ 3.

B

3. Find the volume V of the solid inside both x2 + y2 + z2 = 4 and x2 + y2 = 1.

4. Find the volume V inside both the sphere x2 + y2 + z2 = 1 and the cone z =
√
x2 + y2.

5. Prove formula (4.20). 6. Prove formula (4.21).

7. Evaluate
˜
R

sin
Ä
x+y
2

ä
cos
Ä
x−y
2

ä
dA, whereR is the trianglewith vertices (0, 0), (2, 0) and (1, 1). (Hint:

Use the change of variables u = (x+ y)/2, v = (x− y)/2.)
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4. Multiple Integrals

8. Find the volume of the solid bounded by z = x2 + y2 and z2 = 4(x2 + y2).

9. Find the volume inside the elliptic cylinder x2

a2
+ y2

b2
= 1 for 0 ≤ z ≤ 2.

C

10. Show that the volume inside the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1 is 4πabc

3
. (Hint: Use the change of variables

x = au, y = bv, z = cw, then consider Example 281.)

11. Show that the Beta function, defined by

B(x, y) =

ˆ 1

0

tx−1(1− t)y−1 dt , for x > 0, y > 0,

satisfies the relationB(y, x) = B(x, y) for x > 0, y > 0.

12. Using the substitution t = u/(u+ 1), show that the Beta function can be written as

B(x, y) =

ˆ ∞

0

ux−1

(u+ 1)x+y
du , for x > 0, y > 0.

4.6. Application: Center of Mass
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4.6. Application: Center of Mass

a b

x

y

0

y = f(x)

R
(x̄, ȳ)

Figure 4.11. Center of mass ofR

Recall from single-variable calculus that for a region R = {(x, y) :

a ≤ x ≤ b, 0 ≤ y ≤ f(x)} inR2 that represents a thin, flat plate (see
Figure 3.6.1), where f(x) is a continuous function on [a, b], the center
of mass ofR has coordinates (x̄, ȳ) given by

x̄ =
My

M
and ȳ =

Mx

M
,

where

Mx =

ˆ b

a

(f(x))2

2
dx , My =

ˆ b

a

xf(x) dx , M =

ˆ b

a

f(x) dx , (4.22)

assuming that R has uniform density, i.e themass of R is uniformly distributed over the region. In this
case the areaM of the region is considered the mass of R (the density is constant, and taken as 1 for
simplicity).

In the general case where the density of a region (or lamina)R is a continuous function δ = δ(x, y) of
the coordinates (x, y) of points insideR (whereR can be any region inR2) the coordinates (x̄, ȳ) of the
center of mass ofR are given by

x̄ =
My

M
and ȳ =

Mx

M
, (4.23)

where
My =

¨

R

xδ(x, y) dA , Mx =

¨

R

yδ(x, y) dA , M =

¨

R

δ(x, y) dA , (4.24)
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4. Multiple Integrals

The quantitiesMx andMy are called the moments (or first moments) of the region R about the x-axis
and y-axis, respectively. The quantityM is the mass of the regionR. To see this, think of taking a small
rectangle insideR with dimensions∆x and∆y close to 0. The mass of that rectangle is approximately
δ(x∗, y∗)∆x∆y, for some point (x∗, y∗) in that rectangle. Then the mass ofR is the limit of the sums of
the masses of all such rectangles inside R as the diagonals of the rectangles approach 0, which is the
double integral

˜
R

δ(x, y) dA.

Note that the formulas in (4.22) represent a special case when δ(x, y) = 1 throughoutR in the formu-
las in (4.24).

282 Example
Find the center of mass of the regionR = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x2}, if the density function at
(x, y) is δ(x, y) = x+ y.
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x

y

0

y = 2x2

R

1

Figure 4.12.

Solution: ▶ The regionR is shown in Figure 3.6.2. We have

M =

¨

R

δ(x, y) dA

=

ˆ 1

0

ˆ 2x2

0

(x+ y) dy dx

=

ˆ 1

0

Ü
xy +

y2

2

∣∣∣∣∣∣∣
y=2x2

y=0

ê
dx

=

ˆ 1

0

(2x3 + 2x4) dx

=
x4

2
+

2x5

5

∣∣∣∣∣∣∣
1

0

=
9

10

and

Mx =

¨

R

yδ(x, y) dA My =

¨

R

xδ(x, y) dA
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4. Multiple Integrals

=

ˆ 1

0

ˆ 2x2

0

y(x+ y) dy dx =

ˆ 1

0

ˆ 2x2

0

x(x+ y) dy dx

=

ˆ 1

0

Ü
xy2

2
+
y3

3

∣∣∣∣∣∣∣
y=2x2

y=0

ê
dx =

ˆ 1

0

Ü
x2y +

xy2

2

∣∣∣∣∣∣∣
y=2x2

y=0

ê
dx

=

ˆ 1

0

(2x5 +
8x6

3
) dx =

ˆ 1

0

(2x4 + 2x5) dx

=
x6

3
+

8x7

21

∣∣∣∣∣∣∣
1

0

=
5

7
=

2x5

5
+
x6

3

∣∣∣∣∣∣∣
1

0

=
11

15
,

so the center of mass (x̄, ȳ) is given by

x̄ =
My

M
=

11/15

9/10
=

22

27
, ȳ =

Mx

M
=

5/7

9/10
=

50

63
.

Note how this center of mass is a little further towards the upper corner of the regionR than when the
density is uniform (it is easy to use the formulas in (4.22) to show that (x̄, ȳ) =

Ä
3
4
, 3
5

ä
in that case). This

makes sense since the density function δ(x, y) = x+y increases as (x, y) approaches that upper corner,
where there is quite a bit of area. ◀

In the special case where the density function δ(x, y) is a constant function on the regionR, the center
of mass (x̄, ȳ) is called the centroid ofR.
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4.6. Application: Center of Mass

The formulas for the center of mass of a region in R2 can be generalized to a solid S in R3. Let S be
a solid with a continuous mass density function δ(x, y, z) at any point (x, y, z) in S. Then the center of
mass of S has coordinates (x̄, ȳ, z̄), where

x̄ =
Myz

M
, ȳ =

Mxz

M
, z̄ =

Mxy

M
, (4.25)

where

Myz =

˚

S

xδ(x, y, z) dV , Mxz =

˚

S

yδ(x, y, z) dV , Mxy =

˚

S

zδ(x, y, z) dV , (4.26)

M =

˚

S

δ(x, y, z) dV . (4.27)

In this case,Myz,Mxz andMxy are called themoments (or first moments) of S around the yz-plane, xz-
plane and xy-plane, respectively. Also,M is the mass of S.

283 Example
Find the center of mass of the solid S = {(x, y, z) : z ≥ 0, x2 + y2 + z2 ≤ a2}, if the density function at
(x, y, z) is δ(x, y, z) = 1.
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y

z

x

0 a

(x̄, ȳ, z̄)

a

Figure 4.13.

Solution: ▶ The solidS is just the upper hemisphere inside the sphere of radius
a centered at the origin (see Figure 3.6.3). So since the density function is a con-
stant and S is symmetric about the z-axis, then it is clear that x̄ = 0 and ȳ = 0,
so we need only find z̄. We have

M =

˚

S

δ(x, y, z) dV =

˚

S

1 dV = V olume(S).

But since the volume of S is half the volume of the sphere of radius a, which we know by Example 281 is
4πa3

3
, thenM = 2πa3

3
. And

Mxy =

˚

S

zδ(x, y, z) dV

=

˚

S

z dV , which in spherical coordinates is

=

ˆ 2π

0

ˆ π/2

0

ˆ a

0

(ρ cosϕ) ρ2 sinϕ dρ dϕ dθ

=

ˆ 2π

0

ˆ π/2

0

sinϕ cosϕ
(ˆ a

0

ρ3 dρ

)
dϕ dθ
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=

ˆ 2π

0

ˆ π/2

0

a4

4
sinϕ cosϕ dϕ dθ

Mxy =

ˆ 2π

0

ˆ π/2

0

a4

8
sin 2ϕ dϕ dθ (since sin 2ϕ = 2 sinϕ cosϕ)

=

ˆ 2π

0

(
−a4

16
cos 2ϕ

∣∣∣∣ϕ=π/2

ϕ=0

)
dθ

=

ˆ 2π

0

a4

8
dθ

=
πa4

4
,

z̄ =
Mxy

M
=

πa4

4
2πa3

3

=
3a

8
.

Thus, the center of mass of S is (x̄, ȳ, z̄) =
Ä
0, 0, 3a

8

ä
. ◀

Exercises

A
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4. Multiple Integrals

For Exercises 1-5, find the center of mass of the region R with the given density
function δ(x, y).

1. R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 }, δ(x, y) = 2y

2. R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}, δ(x, y) = x+ y

3. R = {(x, y) : y ≥ 0, x2 + y2 ≤ a2}, δ(x, y) = 1

4. R = {(x, y) : y ≥ 0, x ≥ 0, 1 ≤ x2 + y2 ≤ 4 }, δ(x, y) =
√
x2 + y2

5. R = {(x, y) : y ≥ 0, x2 + y2 ≤ 1 }, δ(x, y) = y

B
For Exercises 6-10, find the center of mass of the solid S with the given density function δ(x, y, z).

6. S = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 }, δ(x, y, z) = xyz

7. S = {(x, y, z) : z ≥ 0, x2 + y2 + z2 ≤ a2}, δ(x, y, z) = x2 + y2 + z2

8. S = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ a2}, δ(x, y, z) = 1

9. S = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 }, δ(x, y, z) = x2 + y2 + z2

10. S = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1− x− y}, δ(x, y, z) = 1

260



4.7. Application: Probability and Expected Value

4.7. Application: Probability and Expected Value

In this section we will briefly discuss some applications of multiple integrals in the field of probability
theory. In particular we will see ways in which multiple integrals can be used to calculate probabilities
and expected values.

Probability

Suppose that you have a standard six-sided (fair) die, and you let a variable X represent the value
rolled. Then the probability of rolling a 3, written as P (X = 3), is 1

6
, since there are six sides on the die

and each one is equally likely to be rolled, and hence in particular the 3 has a one out of six chance of
being rolled. Likewise the probability of rolling at most a 3, written as P (X ≤ 3), is 3

6
= 1

2
, since of the

six numbers on the die, there are three equally likely numbers (1, 2, and 3) that are less than or equal
to 3. Note that P (X ≤ 3) = P (X = 1) + P (X = 2) + P (X = 3). We call X a discrete random
variable on the sample space (or probability space) Ω consisting of all possible outcomes. In our case,
Ω = {1, 2, 3, 4, 5, 6}. An eventA is a subset of the sample space. For example, in the case of the die, the
eventX ≤ 3 is the set {1, 2, 3}.

Now let X be a variable representing a random real number in the interval (0, 1). Note that the set
of all real numbers between 0 and 1 is not a discrete (or countable) set of values, i.e. it can not be put
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4. Multiple Integrals

into a one-to-one correspondence with the set of positive integers.2 In this case, for any real number x
in (0, 1), it makes no sense to consider P (X = x) since it must be 0 (why?). Instead, we consider the
probability P (X ≤ x), which is given by P (X ≤ x) = x. The reasoning is this: the interval (0, 1) has
length 1, and for x in (0, 1) the interval (0, x) has length x. So sinceX represents a random number in
(0, 1), and hence is uniformly distributed over (0, 1), then

P (X ≤ x) =
length of (0, x)
length of (0, 1)

=
x

1
= x .

We callX a continuous random variable on the sample space Ω = (0, 1). An event A is a subset of the
sample space. For example, in our case the eventX ≤ x is the set (0, x).

In the case of a discrete random variable, we saw how the probability of an event was the sum of the
probabilities of the individual outcomes comprising that event (e.g. P (X ≤ 3) = P (X = 1) + P (X =

2) + P (X = 3) in the die example). For a continuous random variable, the probability of an event will
instead be the integral of a function, which we will now describe.

LetX be a continuous real-valued random variable on a sample spaceΩ inR. For simplicity, letΩ =

(a, b). Define the distribution function F ofX as

F (x) = P (X ≤ x) , for−∞ < x <∞ (4.28)

2For a proof see p. 9-10 in kam.
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=


1, for x ≥ b

P (X ≤ x), for a < x < b

0, for x ≤ a .

(4.29)

Suppose that there is a nonnegative, continuous real-valued function f onR such that

F (x) =

ˆ x

−∞
f(y) dy , for−∞ < x <∞ , (4.30)

and ˆ ∞

−∞
f(x) dx = 1 . (4.31)

Then we call f the probability density function (or p.d.f. for short) forX . We thus have

P (X ≤ x) =

ˆ x

a

f(y) dy , for a < x < b . (4.32)

Also, by the Fundamental Theorem of Calculus, we have

F ′(x) = f(x) , for−∞ < x <∞. (4.33)
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4. Multiple Integrals
284 Example

Let X represent a randomly selected real number in the interval (0, 1). We say that X has the uniform
distribution on (0, 1), with distribution function

F (x) = P (X ≤ x) =


1, for x ≥ 1

x, for 0 < x < 1

0, for x ≤ 0 ,

(4.34)

and probability density function

f(x) = F ′(x) =


1, for 0 < x < 1

0, elsewhere.
(4.35)

In general, ifX represents a randomly selected real number in an interval (a, b), thenX has the uniform
distribution function

F (x) = P (X ≤ x) =


1, for x ≥ b

x
b−a

, for a < x < b

0, for x ≤ a ,

(4.36)
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and probability density function

f(x) = F ′(x) =


1

b−a
, for a < x < b

0, elsewhere.
(4.37)

285 Example
A famous distribution function is given by the standard normal distribution, whose probability density
function f is

f(x) =
1√
2π
e−x2/2 , for−∞ < x <∞. (4.38)

This is often called a “bell curve”, and is used widely in statistics. Since we are claiming that f is a p.d.f., we
should have ˆ ∞

−∞

1√
2π
e−x2/2 dx = 1 (4.39)

by formula (4.31), which is equivalent to

ˆ ∞

−∞
e−x2/2 dx =

√
2π . (4.40)
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We can use a double integral in polar coordinates to verify this integral. First,

ˆ ∞

−∞

ˆ ∞

−∞
e−(x2+y2)/2 dx dy =

ˆ ∞

−∞
e−y2/2

(ˆ ∞

−∞
e−x2/2 dx

)
dy

=

(ˆ ∞

−∞
e−x2/2 dx

) (ˆ ∞

−∞
e−y2/2 dy

)

=

(ˆ ∞

−∞
e−x2/2 dx

)2

since the same function is being integrated twice in the middle equation, just with different variables. But
using polar coordinates, we see that

ˆ ∞

−∞

ˆ ∞

−∞
e−(x2+y2)/2 dx dy =

ˆ 2π

0

ˆ ∞

0

e−r2/2 r dr dθ

=

ˆ 2π

0

Ö
−e−r2/2

∣∣∣∣∣∣∣
r=∞

r=0

è
dθ

=

ˆ 2π

0

(0− (−e0)) dθ =
ˆ 2π

0

1 dθ = 2π ,
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and so (ˆ ∞

−∞
e−x2/2 dx

)2

= 2π , and hence

ˆ ∞

−∞
e−x2/2 dx =

√
2π .

In addition to individual randomvariables,we can consider jointly distributed randomvariables. For this,
we will letX , Y and Z be three real-valued continuous random variables defined on the same sample
space Ω in R (the discussion for two random variables is similar). Then the joint distribution function F
ofX , Y andZ is given by

F (x, y, z) = P (X ≤ x, Y ≤ y, Z ≤ z) , for−∞ < x, y, z <∞. (4.41)

If there is a nonnegative, continuous real-valued function f onR3 such that

F (x, y, z) =

ˆ z

−∞

ˆ y

−∞

ˆ x

−∞
f(u, v, w) du dv dw , for−∞ < x, y, z <∞ (4.42)

and ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
f(x, y, z) dx dy dz = 1 , (4.43)
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then we call f the joint probability density function (or joint p.d.f. for short) forX , Y and Z. In general,
for a1 < b1, a2 < b2, a3 < b3, we have

P (a1 < X ≤ b1, a2 < Y ≤ b2, a3 < Z ≤ b3) =

ˆ b3

a3

ˆ b2

a2

ˆ b1

a1

f(x, y, z) dx dy dz , (4.44)

with the ≤ and < symbols interchangeable in any combination. A triple integral, then, can be thought
of as representing a probability (for a function f which is a p.d.f.).

286 Example
Let a, b, and c be real numbers selected randomly from the interval (0, 1). What is the probability that the
equation ax2 + bx+ c = 0 has at least one real solution x?
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a

c

0

c = 1
4a

1

11
4

R1 R2

Figure 4.14. Region
R = R1 ∪R2

Solution: ▶ We know by the quadratic formula that there is at least one real
solution if b2 − 4ac ≥ 0. So we need to calculate P (b2 − 4ac ≥ 0). We will use
three jointly distributed random variables to do this. First, since 0 < a, b, c < 1,
we have

b2 − 4ac ≥ 0 ⇔ 0 < 4ac ≤ b2 < 1 ⇔ 0 < 2
√
a
√
c ≤ b < 1 ,

where the last relation holds for all 0 < a, c < 1 such that

0 < 4ac < 1 ⇔ 0 < c <
1

4a
.

Considering a, b and c as real variables, the region R in the ac-plane where the above relation holds is
given byR = {(a, c) : 0 < a < 1, 0 < c < 1, 0 < c < 1

4a
}, which we can see is a union of two regionsR1

andR2, as in Figure 3.7.1 above.
Now let X , Y and Z be continuous random variables, each representing a randomly selected real

number from the interval (0, 1) (think ofX , Y andZ representing a, b and c, respectively). Then, similar
to how we showed that f(x) = 1 is the p.d.f. of the uniform distribution on (0, 1), it can be shown that
f(x, y, z) = 1 for x, y, z in (0, 1)
(0 elsewhere) is the joint p.d.f. ofX , Y andZ. Now,

P (b2 − 4ac ≥ 0) = P ((a, c) ∈ R, 2
√
a
√
c ≤ b < 1) ,
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so this probability is the triple integral of f(a, b, c) = 1 as b varies from 2
√
a
√
c to 1 and as (a, c) varies

over the region R. Since R can be divided into two regions R1 and R2, then the required triple integral
can be split into a sum of two triple integrals, using vertical slices inR:

P (b2 − 4ac ≥ 0) =

ˆ 1/4

0

ˆ 1

0︸ ︷︷ ︸
R1

ˆ 1

2
√
a
√
c

1 db dc da +

ˆ 1

1/4

ˆ 1/4a

0︸ ︷︷ ︸
R2

ˆ 1

2
√
a
√
c

1 db dc da

=

ˆ 1/4

0

ˆ 1

0

(1− 2
√
a
√
c) dc da +

ˆ 1

1/4

ˆ 1/4a

0

(1− 2
√
a
√
c) dc da

=

ˆ 1/4

0

(
c− 4

3

√
a c3/2

∣∣∣∣c=1

c=0

)
da +

ˆ 1

1/4

(
c− 4

3

√
a c3/2

∣∣∣∣c=1/4a

c=0

)
da

=

ˆ 1/4

0

Ä
1− 4

3

√
a
ä
da +

ˆ 1

1/4

1
12a

da

= a− 8

9
a3/2

∣∣∣∣∣∣∣
1/4

0

+
1

12
ln a

∣∣∣∣∣∣∣
1

1/4

=

Ç
1

4
− 1

9

å
+

Ç
0− 1

12
ln 1

4

å
=

5

36
+

1

12
ln 4

P (b2 − 4ac ≥ 0) =
5 + 3 ln 4

36
≈ 0.2544

In other words, the equation ax2 + bx+ c = 0 has about a 25% chance of being solved! ◀
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Expected Value
The expected value EX of a random variable X can be thought of as the “average” value of X as it

varies over its sample space. IfX is a discrete random variable, then

EX =
∑
x

xP (X = x) , (4.45)

with the sum being taken over all elements x of the sample space. For example, if X represents the
number rolled on a six-sided die, then

EX =
6∑

x=1

xP (X = x) =
6∑

x=1

x
1

6
= 3.5 (4.46)

is the expected value ofX , which is the average of the integers 1− 6.
IfX is a real-valued continuous random variable with p.d.f. f , then

EX =

ˆ ∞

−∞
x f(x) dx . (4.47)

For example, ifX has the uniform distribution on the interval (0, 1), then its p.d.f. is

f(x) =


1, for 0 < x < 1

0, elsewhere,
(4.48)
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and so

EX =

ˆ ∞

−∞
x f(x) dx =

ˆ 1

0

x dx =
1

2
. (4.49)

For a pair of jointly distributed, real-valued continuous random variables X and Y with joint p.d.f.
f(x, y), the expected values ofX and Y are given by

EX =

ˆ ∞

−∞

ˆ ∞

−∞
x f(x, y) dx dy and EY =

ˆ ∞

−∞

ˆ ∞

−∞
y f(x, y) dx dy , (4.50)

respectively.

287 Example
If you were to pick n > 2 random real numbers from the interval (0, 1), what are the expected values for
the smallest and largest of those numbers?

Solution: ▶ Let U1, . . . , Un be n continuous random variables, each representing a randomly selected
real number from (0, 1), i.e. each has the uniform distribution on (0, 1). Define random variablesX and
Y by

X = min(U1, . . . , Un) and Y = max(U1, . . . , Un) .
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Then it can be shown3 that the joint p.d.f. ofX and Y is

f(x, y) =


n(n− 1)(y − x)n−2, for 0 ≤ x ≤ y ≤ 1

0, elsewhere.
(4.51)

Thus, the expected value ofX is

EX =

ˆ 1

0

ˆ 1

x

n(n− 1)x(y − x)n−2 dy dx

=

ˆ 1

0

(
nx(y − x)n−1

∣∣∣∣y=1

y=x

)
dx

=

ˆ 1

0

nx(1− x)n−1 dx , so integration by parts yields

= − x(1− x)n − 1

n+ 1
(1− x)n+1

∣∣∣∣1
0

EX =
1

n+ 1
,

and similarly (see Exercise 3) it can be shown that

EY =

ˆ 1

0

ˆ y

0

n(n− 1)y(y − x)n−2 dx dy =
n

n+ 1
.

3See Ch. 6 in [34].
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So, for example, if you were to repeatedly take samples of n = 3 random real numbers from (0, 1), and
each time store the minimum and maximum values in the sample, then the average of the minimums
would approach 1

4
and the averageof themaximumswould approach 3

4
as thenumber of samples grows.

It would be relatively simple (see Exercise 4) to write a computer program to test this. ◀

Exercises

B

1. Evaluate the integral
ˆ ∞

−∞
e−x2

dx using anything you have learned so far.

2. For σ > 0 and µ > 0, evaluate
ˆ ∞

−∞

1

σ
√
2π
e−(x−µ)2/2σ2

dx.

3. Show thatEY = n
n+1

in Example 287

C

4. Write a computer program (in the language of your choice) that verifies the results in Example 287 for
the case n = 3 by taking large numbers of samples.

5. Repeat Exercise 4 for the case when n = 4.
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6. For continuous random variables X , Y with joint p.d.f. f(x, y), define the second moments E(X2)

andE(Y 2) by

E(X2) =

ˆ ∞

−∞

ˆ ∞

−∞
x2 f(x, y) dx dy and E(Y 2) =

ˆ ∞

−∞

ˆ ∞

−∞
y2 f(x, y) dx dy ,

and the variances Var(X) and Var(Y ) by

Var(X) = E(X2)− (EX)2 and Var(Y ) = E(Y 2)− (EY )2 .

Find Var(X) and Var(Y ) forX and Y as in Example 287.

7. Continuing Exercise 6, the correlation ρ betweenX and Y is defined as

ρ =
E(XY )− (EX)(EY )»

Var(X) Var(Y )
,

whereE(XY ) =

ˆ ∞

−∞

ˆ ∞

−∞
xy f(x, y) dx dy. Find ρ forX and Y as in Example 287.

(Note: The quantityE(XY )− (EX)(EY ) is called the covariance ofX and Y .)

8. In Example 286 would the answer change if the interval (0, 100) is used instead of (0, 1)? Explain.
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a bxi xi+1

x

y

0

d

c

yj

yj+1

(xi∗, yj∗)

(a) Subrectangles inside the regionR

y

z

x

0

R

xi
xi+1

yj yj+1

z = f(x, y)
∆yj

∆xi

(xi∗, yj∗)

f(xi∗, yj∗)

(b) Parallelepiped over a subrectangle, with volume
f(xi∗, yj∗)∆xi ∆yj

Figure 4.6. Double integral over a general re-
gionR
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x

y

0

x+ y = 1

1

1

R u

v

0

1

−1 1

R′

u = vu = −v

x = 1
2(u+ v)

y = 1
2(v − u)

Figure 4.8. The regionsR andR′
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5.
Curves and Surfaces

5.1. Parametric Curves

There aremanyways we can described a curve. We can, say, describe it by a equation that the points on
the curve satisfy. For example, a circle can be described by x2 + y2 = 1. However, this is not a good way
to do so, as it is rather difficult to work with. It is also often difficult to find a closed form like this for a
curve.

Instead, we can imagine the curve to be specified by a particle moving along the path. So it is rep-
resented by a function f : R → Rn, and the curve itself is the image of the function. This is known as
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5. Curves and Surfaces

a parametrization of a curve. In addition to simplified notation, this also has the benefit of giving the
curve an orientation.

288 Definition
We say Γ ⊆ Rn is a differentiable curve if exists a differentiable function γ : I = [a, b] → Rn such that
Γ = γ([a, b]).

The function γ is said a parametrization of the curve γ. And the function γ : I = [a, b] → Rn is said a
parametric curve.

Sometimes Γ = γ[I] ⊆ Rn is called the image of the parametric curve. We note that a curve Rn can
be the image of several distinct parametric curves.

289 Remark
Usually we will denote the image of the curve and its parametrization by the same letter and we will talk
about the curve γ with parametrization γ(t).

290 Definition
A parametrization γ(t) : I → Rn is regular if γ′(t) ̸= 0 for all t ∈ I .

The parametrization provide the curvewith an orientation. Since γ = γ([a, b]), we can think the curve
as the trace of a motion that starts at γ(a) and ends on γ(b).
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5.1. Parametric Curves

Figure 5.1. Orientation of a Curve

291 Example
The curve x2 + y2 = 1 can be parametrized by γ(t) = (cos t, sin t) for t ∈ [0, 2π]

Given a parametric curve γ : I = [a, b]→ Rn

■ The curve is said to be simple if γ is injective, i.e. if for allx, y in (a, b), we have γ(x) = γ(y) implies
x = y.

■ If γ(x) = γ(y) for some x ̸= y in (a, b), then γ(x) is called amultiple point of the curve.

■ A curve γ is said to be closed if γ(a) = γ(b).

■ A simple closed curve is a closed curve which does not intersect itself.

Note that any closed curve can be regarded as a union of simple closed curves (think of the loops in a
figure eight)

281



5. Curves and Surfaces

a t b

R y

z

x
0

(x(a), y(a), z(a))

(x(t), y(t), z(t))

(x(b), y(b), z(b))r(t)
Cx = x(t)

y = y(t)
z = z(t)

Figure 5.2. Parametrization of a curveC inR3

292 Theorem (Jordan Curve Theorem)
Let γ be a simple closed curve in the planeR2. Then its complement,R2 \ γ, consists of exactly two con-
nected components. One of these components is bounded (the interior) and the other is unbounded (the
exterior), and the curve γ is the boundary of each component.

The JordanCurve Theoremasserts that every simple closed curve in the plane curve divides the plane
into an ”interior” region bounded by the curve and an ”exterior” region. While the statement of this
theorem is intuitively obvious, it’s demonstration is intricate.

293 Example
Find a parametric representation for the curve resulting by the intersection of the plane 3x+ y + z = 1
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▶

◀
C

t = a t = b

(a) Closed

▶

◀
C

t = a

t = b

(b) Not closed

Figure 5.3. Closed vs non-closed curves

and the cylinder x2 + 2y2 = 1 inR3.

Solution: ▶ The projection of the intersection of the plane 3x+y+z = 1 and the cylinder is the ellipse
x2 + 2y2 = 1, on the xy-plane. This ellipse can be parametrized as

x = cos t, y =

√
2

2
sin t, 0 ≤ t ≤ 2π.

From the equation of the plane,

z = 1− 3x− y = 1− 3 cos t−
√
2

2
sin t.
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Thus wemay take the parametrization

r(t) =
Ä
x(t), y(t), z(t)

ä
=

Ñ
cos t,

√
2

2
sin t, 1− 3 cos t−

√
2

2
sin t

é
.

◀

294 Proposition
Let f : Rn+1 → Rn is differentiable, c ∈ Rn and γ =

{
x ∈ Rn+1

∣∣∣ f(x) = c
}
be the level set of f . If at every

point in γ, the matrix Df has rank n then γ is a curve.

Proof. Let a ∈ γ. Since rank(D(f)a) = d, there must be d linearly independent columns in the ma-
trix D(f)a. For simplicity assume these are the first d ones. The implicit function theorem applies and
guarantees that the equation f(x) = c can be solved for x1, . . . , xn, and each xi can be expressed as a
differentiable function of xn+1 (close to a). That is, there exist open sets U ′ ⊆ Rn, V ′ ⊆ R and a differ-
entiable function g such that a ∈ U ′ × V ′ and γ ∩(U ′ × V ′) =

{
(g(xn+1), xn+1)

∣∣∣ xn+1 ∈ V ′
}
. ■

295 Remark
A curve can have many parametrizations. For example, δ(t) = (cos t, sin(−t)) also parametrizes the unit
circle, but runs clockwise instead of counter clockwise. Choosing a parametrization requires choosing the
direction of traversal through the curve.
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5.1. Parametric Curves

We can change parametrization of r by taking an invertible smooth function u 7→ ũ, and have a new
parametrization r(ũ) = r(ũ(u)). Then by the chain rule,

dr
du =

dr
dũ ·

dũ
du

dr
dũ =

dr
du/

dũ
du

296 Proposition
Let γ be a regular curve and γ be a parametrization, a = γ(t0) ∈ γ. Then the tangent line through a is{
γ(t0) + tγ′(t0)

∣∣∣ t ∈ R
}
.

If we think of γ(t) as the position of a particle at time t, then the above says that the tangent space is
spanned by the velocity of the particle.

That is, the velocity of the particle is always tangent to the curve it traces out. However, the acceler-
ation of the particle (defined to be γ′′) need not be tangent to the curve! In fact if the magnitude of the
velocity|γ′| is constant, then the acceleration will be perpendicular to the curve!

So far we have always insisted all curves and parametrizations are differentiable orC1. We now relax
this requirement and subsequently only assume that all curves (and parametrizations) are piecewise
differentiable, or piecewiseC1.
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297 Definition
A function f : [a, b] → Rn is called piecewiseC1 if there exists a finite set F ⊆ [a, b] such that f isC1 on
[a, b]− F , and further both left and right limits of f and f ′ exist at all points in F .

−1 −0.5 0.5 1

0.5

1

x

y

Figure 5.4. PiecewiseC1 function

298 Definition
A (connected) curve γ is piecewiseC1 if it has a parametrization which is continuous and piecewiseC1.
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Figure 5.5. The boundary of a square is a piece-
wiseC1 curve, but not a differentiable curve.

299 Remark
A piecewiseC1 function need not be continuous. But curves are always assumed to be at least continuous;
so for notational convenience,wedefine apiecewiseC1 curve to be onewhich has aparametrizationwhich
is both continuous and piecewiseC1.

5.2. Surfaces

We have seen that a space curve C can be parametrized by a vector function r = r(u) where u ranges
over some interval I of the u-axis. In an analogousmanner we can parametrize a surface S in space by a
vector function r = r(u, v)where (u, v) ranges over some regionΩ of the uv-plane.
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u

v

Ω

R2

(u, v)
y

z

x

0

S

r(u, v)

x = x(u, v)
y = y(u, v)
z = z(u, v)

Figure 5.6. Parametrization of a surfaceS inR3

300 Definition
A parametrized surface is given by a one-to-one transformation r : Ω→ Rn, whereΩ is a domain in the
planeR2. The transformation is then given by

r(u, v) = (x1(u, v), . . . , xn(u, v)).

301 Example
(The graph of a function) The graph of a function

y = f(x), x ∈ [a, b]
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can be parametrized by setting
r(u) = ui + f(u)j, u ∈ [a, b].

In the same vein the graph of a function

z = f(x, y), (x, y) ∈ Ω

can be parametrized by setting

r(u, v) = ui + vj + f(u, v)k, (u, v) ∈ Ω.

As (u, v) ranges overΩ, the tip of r(u, v) traces out the graph of f .
302 Example (Plane)

If two vectors a and b are not parallel, then the set of all linear combinations ua + vb generate a plane p0
that passes through the origin. We can parametrize this plane by setting

r(u, v) = ua + vb, (u, v) ∈ R× R.

The plane p that is parallel to p0 and passes through the tip of c can be parametrized by setting

r(u, v) = ua + vb + c, (u, v) ∈ R× R.

Note that the plane contains the lines

l1 : r(u, 0) = ua + c and l2 : r(0, v) = vb + c.

289



5. Curves and Surfaces

303 Example (Sphere)
The sphere of radius a centered at the origin can be parametrized by

r(u, v) = a cos u cos vi + a sin u cos vj + a sin vk

with (u, v) ranging over the rectangleR : 0 ≤ u ≤ 2π,−π
2
≤ v ≤ π

2
.

Derive this parametrization. Thepoints of latitudev formacircle of radiusa cos v on thehorizontal plane
z = a sin v. This circle can be parametrized by

R(u) = a cos v(cosui + sinuj) + a sin vk, u ∈ [0, 2π].

This expands to give

R(u, v) = a cos u cos vi + a sin u cos vj + a sin vk, u ∈ [0, 2π].

Letting v range from−π
2
to
π

2
, we obtain the entire sphere. The xyz-equation for this same sphere is x2 +

y2 + z2 = a2. It is easy to verify that the parametrization satisfies this equation:

x2 + y2 + z2 = a2 cos 2u cos 2v + a2 sin 2u cos 2v + a2 sin 2v

= a2
Ä
cos 2u+ sin 2u

ä
cos 2v + a2 sin 2v

= a2
Ä
cos 2v + sin 2v

ä
= a2.
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304 Example (Cone)
Considers a cone with apex semiangle α and slant height s. The points of slant height v form a circle of
radius v sin α on the horizontal plane z = v cos a. This circle can be parametrized by

C(u) = v sin α(cos ui + sin uj) + v cos αk

= v cos u sin αi + v sin u sin αj + v cos αk, u ∈ [0, 2π].

Since we can obtain the entire cone by letting v range from 0 to s, the cone is parametrized by

r(u, v) = v cos u sin αi + v sin u sin αj + v cos αk,

with 0 ≤ u ≤ 2π, 0 ≤ v ≤ s.

305 Example (Spiral Ramp)
A rod of length l initially resting on the x-axis and attached at one end to the z-axis sweeps out a surface
by rotating about the z-axis at constant rate ω while climbing at a constant rate b.

To parametrize this surface wemark the point of the rod at a distance u from the z-axis (0 ≤ u ≤ l) and
ask for the position of this point at time v. At time v the rod will have climbed a distance bv and rotated
through an angle ωv. Thus the point will be found at the tip of the vector

u(cosωvi + sin ωvj) + bvk = u cosωv i + u sinωvj + bvk.

The entire surface can be parametrized by

r(u, v) = u cosωvi + u sin ωvj + bvk with 0 ≤ u ≤ l, 0 ≤ v.
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306 Definition
A regular parametrized surface is a smooth mapping φ : U → Rn, where U is an open subset ofR2, of
maximal rank. This is equivalent to saying that the rank ofφ is 2

Let (u, v) be coordinates inR2, (x1, . . . , xn) be coordinates inRn. Then

φ(u, v) = (x1(u, v), . . . , xn(u, v)),

where xi(u, v) admit partial derivatives and the Jacobian matrix has rank two.

5.2. Implicit Surface

An implicit surface is the set of zeros of a function of three variables, i.e, an implicit surface is a surface
in Euclidean space defined by an equation

F (x, y, z) = 0.

Let F : U → R be a differentiable function. A regular point is a point p ∈ U for which the differential
dFp is surjective.

We say that q is a regular value, if for every point p in F−1(q), p is a regular value.
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307 Theorem (Regular Value Theorem)
LetU ⊂ R3 be open andF : U → R be differentiable. If q is a regular value of f thenF−1(q) is a regular
surface

308 Example
Show that the circular cylinder x2 + y2 = 1 is a regular surface.

Solution: ▶ Define the function F (x, y, z) = x2 + y2 + z2 − 1. Then the cylinder is the set f−1(0).
Observe that ∂f

∂x
= 2x, ∂f

∂y
= 2y, ∂f

∂z
= 2z.

It is clear that all partial derivatives are zero if and only if x = y = z = 0. Further checking shows that
f(0, 0, 0) ̸= 0, which means that (0, 0, 0) does not belong to f−1(0). Hence for all u ∈ f−1(0), not all of
partial derivatives at u are zero. By Theorem 307, the circular cylinder is a regular surface.

◀

5.3. Classical Examples of Surfaces

In this sectionwe consider various surfaces that we shall periodically encounter in subsequent sections.
Let us start with the plane. Recall that if a, b, c are real numbers, not all zero, then the Cartesian equa-

tion of a plane with normal vector (a, b, c) and passing through the point (x0, y0, z0) is

a(x− x0) + b(y − y0) + c(z − z0) = 0.

293



5. Curves and Surfaces

If we know that the vectors u and v are on the plane (parallel to the plane) then with the parameters
p, qthe equation of the plane is

x− x0 = pu1 + qv1,

y − y0 = pu2 + qv2,

z − z0 = pu3 + qv3.

309 Definition
A surface S consisting of all lines parallel to a given line∆ and passing through a given curve γ is called
a cylinder. The line∆ is called the directrix of the cylinder.

To recognise whether a given surface is a cylinder we look at its Cartesian equation. If it is
of the form f(A,B) = 0, whereA,B are secant planes, then the curve is a cylinder. Under
these conditions, the lines generatingS will be parallel to the line of equationA = 0, B = 0.

In practice, if one of the variables x, y, or z is missing, then the surface is a cylinder, whose
directrix will be the axis of the missing coordinate.
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Figure 5.7. Circular cylinder x2 + y2 = 1. Figure 5.8. The parabolic cylinder z = y2.

310 Example
Figure 5.7 shews the cylinder with Cartesian equation x2 + y2 = 1. One starts with the circle x2 + y2 = 1

on the xy-plane andmoves it up and down the z-axis. A parametrization for this cylinder is the following:

x = cos v, y = sin v, z = u, u ∈ R, v ∈ [0; 2π].

311 Example
Figure 5.8 shews the parabolic cylinder with Cartesian equation z = y2. One starts with the parabola
z = y2 on the yz-plane andmoves it up and down the x-axis. A parametrization for this parabolic cylinder
is the following:

x = u, y = v, z = v2, u ∈ R, v ∈ R.
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312 Example

Figure 5.9 shews thehyperbolic cylinderwithCartesianequationx2−y2 = 1. One startswith thehyperbola
x2− y2 on the xy-plane andmoves it up and down the z-axis. A parametrization for this parabolic cylinder
is the following:

x = ± cosh v, y = sinh v, z = u, u ∈ R, v ∈ R.

We need a choice of sign for each of the portions. We have used the fact that cosh2 v − sinh2 v = 1.

313 Definition
GivenapointΩ ∈ R3 (called theapex) anda curveγ (called the generating curve), the surfaceS obtained
by drawing rays fromΩ and passing through γ is called a cone.

In practice, if the Cartesian equation of a surface can be put into the form f(
A

C
,
B

C
) = 0,

where A,B,C, are planes secant at exactly one point, then the surface is a cone, and its
apex is given byA = 0, B = 0, C = 0.

314 Example
The surface inR3 implicitly given by

z2 = x2 + y2

is a cone, as its equation can be put in the form
Åx
z

ã2
+
Åy
z

ã2
− 1 = 0. Considering the planes x = 0, y =

0, z = 0, the apex is located at (0, 0, 0). The graph is shewn in figure 5.11.
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5.3. Classical Examples of Surfaces

315 Definition
A surface S obtained by making a curve γ turn around a line ∆ is called a surface of revolution. We
then say that∆ is the axis of revolution. The intersection of S with a half-plane bounded by∆ is called a
meridian.

If the Cartesian equation of S can be put in the form f(A, S) = 0, where A is a plane and
S is a sphere, then the surface is of revolution. The axis of S is the line passing through the
centre of S and perpendicular to the planeA.

Figure 5.9. The hyperbolic cylinder x2 − y2 = 1.
Figure 5.10. The torus.

Figure 5.11. Cone
x2

a2
+

y2

b2
=

z2

c2
.
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316 Example

Find the equation of the surface of revolution generated by revolving the hyperbola

x2 − 4z2 = 1

about the z-axis.

Solution: ▶ Let (x, y, z)beapoint onS. If this pointwereon thexz plane, itwouldbeon thehyperbola,
and its distance to the axis of rotation would be |x| =

√
1 + 4z2. Anywhere else, the distance of (x, y, z)

to the axis of rotation is the same as the distance of (x, y, z) to (0, 0, z), that is
√
x2 + y2. Wemust have»

x2 + y2 =
√
1 + 4z2,

which is to say
x2 + y2 − 4z2 = 1.

This surface is called a hyperboloid of one sheet. See figure 5.15. Observe that when z = 0, x2+ y2 = 1

is a circle on the xy plane. When x = 0, y2 − 4z2 = 1 is a hyperbola on the yz plane. When y = 0,
x2 − 4z2 = 1 is a hyperbola on the xz plane.

A parametrization for this hyperboloid is

x =
√
1 + 4u2 cos v, y =

√
1 + 4u2 sin v, z = u, u ∈ R, v ∈ [0; 2π].

◀
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5.3. Classical Examples of Surfaces
317 Example

The circle (y− a)2+ z2 = r2, on the yz plane (a, r are positive real numbers) is revolved around the z-axis,
forming a torus T . Find the equation of this torus.

Solution: ▶ Let (x, y, z) be a point on T . If this point were on the yz plane, it would be on the circle,
and the of the distance to the axis of rotationwould be y = a+ sgn (y − a)

√
r2 − z2, where sgn (t) (with

sgn (t) = −1 if t < 0, sgn (t) = 1 if t > 0, and sgn (0) = 0) is the sign of t. Anywhere else, the distance
from (x, y, z) to the z-axis is the distance of this point to the point (x, y, z) :

√
x2 + y2. Wemust have

x2 + y2 = (a+ sgn (y − a)
√
r2 − z2)2 = a2 + 2asgn (y − a)

√
r2 − z2 + r2 − z2.

Rearranging
x2 + y2 + z2 − a2 − r2 = 2asgn (y − a)

√
r2 − z2,

or
(x2 + y2 + z2 − (a2 + r2))2 = 4a2r2 − 4a2z2

since (sgn (y − a))2 = 1, (it could not be 0, why?). Rearranging again,

(x2 + y2 + z2)2 − 2(a2 + r2)(x2 + y2) + 2(a2 − r2)z2 + (a2 − r2)2 = 0.

The equation of the torus thus, is of fourth degree, and its graph appears in figure 7.4.
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5. Curves and Surfaces

A parametrization for the torus generated by revolving the circle (y − a)2 + z2 = r2 around the z-axis
is

x = a cos θ + r cos θ cosα, y = a sin θ + r sin θ cosα, z = r sinα,

with (θ, α) ∈ [−π; π]2.
◀

Figure 5.12. Paraboloid

z =
x2

a2
+

y2

b2
.

Figure 5.13. Hyperbolic paraboloid

z =
x2

a2
− y2

b2

Figure 5.14. Two-sheet hyperboloid
z2

c2
=

x2

a2
+

y2

b2
+ 1.

318 Example
The surface z = x2+y2 is called an elliptic paraboloid. The equation clearly requires that z ≥ 0. For fixed
z = c, c > 0, x2+ y2 = c is a circle. When y = 0, z = x2 is a parabola on the xz plane. When x = 0, z = y2
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is a parabola on the yz plane. See figure 5.12. The following is a parametrization of this paraboloid:

x =
√
u cos v, y =

√
u sin v, z = u, u ∈ [0; +∞[, v ∈ [0; 2π].

319 Example
The surface z = x2− y2 is called a hyperbolic paraboloid or saddle. If z = 0, x2− y2 = 0 is a pair of lines
in the xy plane. When y = 0, z = x2 is a parabola on the xz plane. When x = 0, z = −y2 is a parabola on
the yz plane. See figure 5.13. The following is a parametrization of this hyperbolic paraboloid:

x = u, y = v, z = u2 − v2, u ∈ R, v ∈ R.

320 Example
The surface z2 = x2 + y2 + 1 is called an hyperboloid of two sheets. For z2 − 1 < 0, x2 + y2 < 0 is
impossible, and hence there is no graphwhen−1 < z < 1. When y = 0, z2 − x2 = 1 is a hyperbola on the
xz plane. When x = 0, z2 − y2 = 1 is a hyperbola on the yz plane. When z = c is a constant c > 1, then
the x2 + y2 = c2 − 1 are circles. See figure 5.14. The following is a parametrization for the top sheet of this
hyperboloid of two sheets

x = u cos v, y = u sin v, z = u2 + 1, u ∈ R, v ∈ [0; 2π]

and the following parametrizes the bottom sheet,

x = u cos v, y = u sin v, z = −u2 − 1, u ∈ R, v ∈ [0; 2π],
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321 Example

The surface z2 = x2 + y2− 1 is called an hyperboloid of one sheet. For x2 + y2 < 1, z2 < 0 is impossible,
and hence there is no graph when x2 + y2 < 1. When y = 0, z2 − x2 = −1 is a hyperbola on the xz
plane. When x = 0, z2 − y2 = −1 is a hyperbola on the yz plane. When z = c is a constant, then the
x2 + y2 = c2 + 1 are circles See figure 5.15. The following is a parametrization for this hyperboloid of one
sheet

x =
√
u2 + 1 cos v, y =

√
u2 + 1 sin v, z = u, u ∈ R, v ∈ [0; 2π],

Figure 5.15. One-sheet hyperboloid
z2

c2
=

x2

a2
+

y2

b2
− 1.

Figure 5.16. Ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.
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322 Example

Let a, b, c be strictly positive real numbers. The surface
x2

a2
+
y2

b2
+
z2

c2
= 1 is called an ellipsoid. For z = 0,

x2

a2
+
y2

b2
1 is an ellipse on the xy plane.When y = 0,

x2

a2
+
z2

c2
= 1 is an ellipse on the xz plane. When x = 0,

z2

c2
+
y2

b2
= 1 is an ellipse on the yz plane. See figure 5.16. Wemay parametrize the ellipsoid using spherical

coordinates:

x = a cos θ sinϕ, y = b sin θ sinϕ, z = c cosϕ, θ ∈ [0; 2π], ϕ ∈ [0; π].

Exercises
323 Problem

Find the equation of the surface of revolutionS gen-
erated by revolving the ellipse 4x2 + z2 = 1 about
the z-axis.

324 Problem
Find the equation of the surface of revolution gen-
erated by revolving the line 3x+ 4y = 1 about the
y-axis .

325 Problem
Describe the surface parametrized by φ(u, v) 7→
(v cosu, v sinu, au), (u, v) ∈ (0, 2π)× (0, 1), a >
0.

326 Problem
Describe the surface parametrized by φ(u, v) =

(au cos v, bu sin v, u2), (u, v) ∈ (1,+∞) ×
(0, 2π), a, b > 0.
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327 Problem

Consider the spherical cap defined by

S = {(x, y, z) ∈ R3 : x2+y2+z2 = 1, z ≥ 1/
√
2}.

ParametriseS usingCartesian, Spherical, andCylin-
drical coordinates.

328 Problem
Demonstrate that the surface inR3

S : ex
2+y2+z2 − (x+ z)e−2xz = 0,

implicitly defined, is a cylinder.

329 Problem
Shew that the surface inR3 implicitly defined by

x4 + y4 + z4 − 4xyz(x+ y + z) = 1

is a surface of revolution, and find its axis of revolu-
tion.

330 Problem
Shew that the surface S inR3 given implicitly by the
equation

1

x− y
+

1

y − z
+

1

z − x
= 1

is a cylinder and find the direction of its directrix.

331 Problem
Shew that the surface S inR3 implicitly defined as

xy + yz + zx+ x+ y + z + 1 = 0

is of revolution and find its axis.

332 Problem
Demonstrate that the surface in R3 given implicitly
by

z2 − xy = 2z − 1

is a cone
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333 Problem (Putnam Exam 1970)
Determine, with proof, the radius of the largest circle
which can lie on the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1, a > b > c > 0.

334 Problem
The hyperboloid of one sheet in figure 5.17 has the
property that if it is cut by planes at z = ±2, its
projection on the xy plane produces the ellipse x2 +
y2

4
= 1, and if it is cut by a plane at z = 0, its projec-

tion on the xy plane produces the ellipse 4x2+ y2 =

1. Find its equation.

x y

z

z = −2, x2 + y2

4
= 1

z = 2, x2 +
y2

4
= 1

z = 0, 4x2 + y2 = 1

Figure 5.17. Problem 334.

5.4. ⋆Manifolds

335 Definition
We sayM ⊆ Rn is a d-dimensional (differentiable) manifold if for every a ∈ M there exists domains
U ⊆ Rn, V ⊆ Rn and a differentiable function f : V → U such that rank(D(f)) = d at every point in V
andU ∩M = f(V ).
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336 Remark

For d = 1 this is just a curve, and for d = 2 this is a surface.

337 Remark
If d = 1 and γ is a connected, then there exists an interval U and an injective differentiable function γ :

U → Rn such that Dγ ̸= 0 on U and γ(U) = γ. If d > 1 this is no longer true: even though near every
point the surface is a differentiable image of a rectangle, the entire surface need not be one.

As before d-dimensionalmanifolds can be obtained as level sets of functions f : Rn+d → Rn provided
we have rank(D(f)) = d on the entire level set.

338 Proposition
Let f : Rn+d → Rn is differentiable, c ∈ Rn and γ =

{
x ∈ Rn+1

∣∣∣ f(x) = c
}
be the level set of f . If at

every point in γ, the matrix D(f) has rank d then γ is a d-dimensional manifold.

The results from the previous section about tangent spaces of implicitly definedmanifolds generalize
naturally in this context.

339 Definition
LetU ⊆ Rn, f : U → R be a differentiable function, andM =

{
(x, f(x)) ∈ Rn+1

∣∣∣ x ∈ U} be the graph
of f . (NoteM is a d-dimensional manifold inRn+1.) Let (a, f(a)) ∈M .
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5.5. Constrained optimization.

■ The tangent “plane” at the point (a, f(a)) is defined by{
(x, y) ∈ Rn+1

∣∣∣ y = f(a) + Dfa(x− a)
}

■ The tangent space at the point (a, f(a)) (denoted by TM(a,f(a))) is the subspace defined by

TM(a,f(a)) =
{
(x, y) ∈ Rn+1

∣∣∣ y = Dfax
}
.

340 Remark
When d = 2 the tangent plane is really a plane. For d = 1 it is a line (the tangent line), and for other values
it is a d-dimensional hyper-plane.

341 Proposition
Suppose f : Rn+d → Rn is differentiable, and the level setγ =

{
x
∣∣∣ f(x) = c

}
is ad-dimensionalmanifold.

Suppose further that D(f)a has rank n for all a ∈ γ. Then the tangent space at a is precisely the kernel of
D(f)a, and the vectors∇f1,…∇fn aren linearly independent vectors that arenormal to the tangent space.

5.5. Constrained optimization.

Consider an implicitly defined surface S = {g = c}, for some g : R3 → R. Our aim is to maximise or
minimise a function f on this surface.
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5. Curves and Surfaces

342 Definition
Wesaya functionf attainsa localmaximumataon thesurfaceS, if thereexists ϵ > 0 such that|x− a| < ϵ

and x ∈ S imply f(a) ≥ f(x).

343 Remark
This is sometimes called constrained local maximum, or local maximum subject to the constraint g = c.

344 Proposition
If f attains a local maximum at a on the surface S, then ∃λ ∈ R such that∇f(a) = λ∇g(a).

Proof. [Intuition] If∇f(a) ̸= 0, then S ′ def
=
¶
f = f(a)

©
is a surface. If f attains a constrained maximum

at a then S ′ must be tangent to S at the point a. This forces∇f(a) and∇g(a) to be parallel. ■

345 Proposition (Multiple constraints)
Let f, g1, …, gn : Rd → R be : Rd → R be differentiable. If f attains a local maximum at a subject to the
constraints g1 = c1, g2 = c2, …gn = cn then ∃λ1, . . . λn ∈ R such that∇f(a) = ∑n

1 λi∇gi(a).

To explicitly find constrained local maxima inRn with n constraints we do the following:
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5.5. Constrained optimization.

■ Simultaneously solve the system of equations

∇f(x) = λ1∇g1(x) + · · ·λn∇gn(x)

g1(x) = c1,

. . .

gn(x) = cn.

■ The unknowns are the d-coordinates of x, and the Lagrange multipliers λ1, …, λn. This is n + d

variables.

■ The first equation above is a vector equation where both sides have d coordinates. The remaining
are scalar equations. So the above system is a system of n+ d equations with n+ d variables.

■ The typical situation will yield a finite number of solutions.

■ There is a test involving the bordered Hessian for whether these points are constrained local min-
ima / maxima or neither. These are quite complicated, and are usually more trouble than they
are worth, so one usually uses some ad-hoc method to decide whether the solution you found is
a local maximum or not.

346 Example
Find necessary conditions for f(x, y) = y to attain a local maxima/minima of subject to the constraint
y = g(x).
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5. Curves and Surfaces

Of course, from one variable calculus, we know that the local maxima / minima must occur at points
where g′ = 0. Let’s revisit it using the constrained optimization technique above. Proof. [Solution] Note
our constraint is of the form y − g(x) = 0. So at a local maximumwemust have0

1

 = ∇f = λ∇(y − g(x)) =

−g′(x)
1

 and y = g(x).

This forces λ = 1 and hence g′(x) = 0, as expected. ■

347 Example
Maximise xy subject to the constraint

x2

a2
+
y2

b2
= 1.

Proof. [Solution] At a local maximum,y
x

 = ∇(xy) = λ∇
Åx2
a2

+
y2

b2

ã
= λ

2x/a2
2y/b2.


which forces y2 = x2b2/a2. Substituting this in the constraint gives x = ±a/

√
2 and y = ±b/

√
2. This

gives fourpossibilities forxy to attain amaximum. Directly checking shows that thepoints (a/
√
2, b/
√
2)

and (−a/
√
2,−b/

√
2) both correspond to a local maximum, and the maximum value is ab/2. ■
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348 Proposition (Cauchy-Schwartz)
If x, y ∈ Rn then|x · y| ≤|x||y|.

Proof. Maximise x · y subject to the constraint|x| = a and|y| = b. ■

349 Proposition (Inequality of themeans)
If xi ≥ 0, then

1

n

n∑
1

xi ≥
Å n∏

1

xi

ã1/n
.

350 Proposition (Young’s inequality)
If p, q > 1 and 1/p+ 1/q = 1 then

|xy| ≤ |x|
p

p
+
|y|q

q
.
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6.
Line Integrals

6.1. Line Integrals of Vector Fields

We start with somemotivation. With this objective we remember the definition of the work:

351 Definition
If a constant force f acting on a body produces an displacement∆x, then the work done by the force is
f•∆x.
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We want to generalize this definition to the case in which the force is not constant. For this purpose
let γ ⊆ Rn be a curve, with a given direction of traversal, and f : Rn → Rn be a vector function.

Here f represents the force that acts on a body and pushes it along the curve γ. The work done by the
force can be approximated by

W ≈
N−1∑
i=0

f(xi)•(xi+1 − xi) =
N−1∑
i=0

f(xi)•∆xi

where x0, x1, …, xN−1 areN points on γ, chosen along the direction of traversal. The limit as the largest
distance between neighbors approaches 0 is the work done:

W = lim
∥P∥→0

N−1∑
i=0

f(xi)•∆xi

This motivates the following definition:

352 Definition
Let γ ⊆ Rn be a curve with a given direction of traversal, and f : γ → Rn be a (vector) function. The line
integral of f over γ is defined to be

ˆ
γ

f• dℓ = lim
∥P∥→0

N−1∑
i=0

f(x∗
i )•(xi+1 − xi)
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= lim
∥P∥→0

N−1∑
i=0

f(x∗
i )•∆xi.

if the above limit exists. Here P = {x0,x1, . . . ,xN−1}, the points xi are chosen along the direction of
traversal, and ∥P∥ = max|xi+1 − xi|.

353 Remark
If f = (f1, . . . , fn), where fi : γ → Rare functions, then one oftenwrites the line integral in thedifferential
form notation as ˆ

γ

f• dℓ =
ˆ
γ

f1 dx1 + · · ·+ fn dxn

The following result provides a explicit way of calculating line integrals using a parametrization of the
curve.

354 Theorem
If γ : [a, b]→ Rn is a parametrization of γ (in the direction of traversal), then

ˆ
γ

f• dℓ =
ˆ b

a

f ◦ γ(t)•γ′(t) dt (6.1)

Proof.
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6. Line Integrals

Let a = t0 < t1 < · · · < tn = b be a partition of a, b and let xi = γ(ti).
The line integral of f over γ is defined to beˆ

γ

f• dℓ = lim
∥P∥→0

N−1∑
i=0

f(xi)•∆xi

= lim
∥P∥→0

N−1∑
i=0

n∑
j=1

fj(xi) · (∆xi)j

By the Mean Value Theorem, we have (∆xi)j =
Ä
x′∗i
ä
j
∆ti

n∑
j=1

N−1∑
i=0

fj(xi) · (∆xi)j =
n∑

j=1

N−1∑
i=0

fj(xi) ·
Ä
x′

∗
i

ä
j
∆ti

=
n∑

j=1

ˆ
fj(γ(x)) · γ′j(t) dt =

ˆ b

a

f ◦ γ(t)•γ′(t) dt

■

In the differential form notation (when d = 2) say

f = (f, g) and γ(t) =
Ä
x(t), y(t)

ä
,

where f, g : γ → R are functions. Then Proposition 354 saysˆ
γ

f• dℓ =
ˆ
γ

f dx+ g dy =

ˆ
γ

î
f(x(t), y(t))x′(t) + g(x(t), y(t)) y′(t)

ó
dt
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355 Remark

Sometimes (6.1) is used as the definition of the line integral. In this case, one needs to verify that this defi-
nition is independent of the parametrization. Since this is a good exercise, we’ll do it anyway a little later.

356 Example
Take F(r) = (xey, z2, xy) and we want to find the line integral from a = (0, 0, 0) to b = (1, 1, 1).

a

b

C1

C2

We first integrate along the curve C1 : r(u) = (u, u2, u3). Then r′(u) = (1, 2u, 3u2), and F(r(u)) =

(ueu
2
, u6, u3). So

ˆ
C1

F•dr =

ˆ 1

0

F•r′(u) du

=

ˆ 1

0

ueu
2

+ 2u7 + 3u5 du

=
e

2
− 1

2
+

1

4
+

1

2

=
e

2
+

1

4
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Nowwe try to integrate along another curveC2 : r(t) = (t, t, t). So r′(t) = (1, 1, 1).
ˆ
C2

F•dℓ =
ˆ

F•r′(t)dt

=

ˆ 1

0

tet + 2t2 dt

=
5

3
.

We see that the line integral depends on the curveC in general, not just a,b.

357 Example
Suppose a body of massM is placed at the origin. The force experienced by a body of massm at the point

x ∈ R3 is given by f(x) = −GMx

|x|3
, whereG is the gravitational constant. Compute the work done when

the body is moved from a to b along a straight line.

Solution: ▶ Let γ be the straight line joining a and b. Clearly γ : [0, 1]→ γ definedby γ(t) = a+t(b−a)
is a parametrization of γ. Now

W =

ˆ
γ

f• dℓ = −GMm

ˆ 1

0

γ(t)∣∣∣γ(t)∣∣∣3 •γ′(t) dt = GMm

|b|
− GMm

|a|
.■

◀
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6.2. Parametrization Invariance and Others Properties of Line Integrals
358 Remark

If the line joining through a and b passes through the origin, then some care has to be takenwhen doing the
above computation. We will see later that gravity is a conservative force, and that the above line integral
only depends on the endpoints and not the actual path taken.

6.2. Parametrization Invariance and Others Properties of Line Integrals

Since line integrals can be defined in terms of ordinary integrals, they share many of the properties of
ordinary integrals.

359 Definition
The curve γ is said to be the union of two curves γ1 and γ2 if γ is defined onan interval [a, b], and the curves
γ1 and γ2 are the restriction γ|[a,d] and γ|[d,b].

360 Proposition

■ linearity property with respect to the integrand,
ˆ
γ

(αf + βG) • dℓ = α

ˆ
γ

f• dℓ+ β

ˆ
γ

G• dℓ
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■ additive property with respect to the path of integration: where the union of the two curves γ1 and
γ2 is the curve γ. ˆ

γ

f• dℓ =
ˆ
γ1

f• dℓ+
ˆ
γ2

f• dℓ

The proofs of these properties follows immediately from the definition of the line integral.

361 Definition
Leth : I → I1 be aC1 real-valued function that is a one-to-onemapof an interval I = [a, b] onto another
interval I = [a1, b1]. Let γ : I1 → Rn be a piecewiseC1 path. Then we call the composition

γ2 = γ1 ◦ h : I → Rn

a reparametrization of γ.

It is implicit in the definition that hmust carry endpoints to endpoints; that is, either h(a) = a1 and
h(b) = b1, or h(a) = b1 and h(b) = a1. We distinguish these two types of reparametrizations.

■ In the first case, the reparametrization is said to be orientation-preserving, and a particle tracing
the path γ1◦moves in the same direction as a particle tracing γ1.

■ In the second case, the reparametrization is described as orientation-reversing, and a particle
tracing the path γ1◦moves in the opposite direction to that of a particle tracing γ1
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6.3. Line Integral of Scalar Fields

362 Proposition (Parametrization invariance)
If γ1 : [a1, b1]→ γ and γ2 : [a2, b2]→ γ are twoparametrizations of γ that traverse it in the samedirection,
then ˆ b1

a1

f ◦ γ1(t)•γ′1(t) dt =
ˆ b2

a2

f ◦ γ2(t)•γ′2(t) dt.

Proof. Let φ : [a1, b1] → [a2, b2] be defined by φ = γ−1
2 ◦ γ1. Since γ1 and γ2 traverse the curve in the

same direction, φmust be increasing. One can also show (using the inverse function theorem) that φ is
continuous and piecewiseC1. Now

ˆ b2

a2

f ◦ γ2(t)•γ′2(t) dt =
ˆ b2

a2

f(γ1(φ(t)))•γ′1(φ(t))φ′(t) dt.

Making the substitution s = φ(t) finishes the proof. ■

6.3. Line Integral of Scalar Fields
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363 Definition
If γ ⊆ Rn is a piecewiseC1 curve, then

length(γ) =
ˆ
γ

f |dℓ| = lim
∥P∥→0

N∑
i=0

|xi+1 − xi| ,

where as before P = {x0, . . . , xN−1}.

More generally:

364 Definition
If f : γ → R is any scalar function, we definea

ˆ
γ

f |dℓ| def
= lim

∥P∥→0

N∑
i=0

f(x∗i ) |xi+1 − xi| ,

aUnfortunately
ˆ
γ

f |dℓ| is also called the line integral. To avoid confusion, we will call this the line integral with respect

to arc-length instead.
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6.3. Line Integral of Scalar Fields

The integral
ˆ
γ

f |dℓ| is also denoted by

ˆ
γ

f ds =
ˆ
γ

f |dℓ|

365 Theorem
Let γ ⊆ Rn be a piecewise C1 curve, γ : [a, b] → R be any parametrization (in the given direction of
traversal), f : γ → R be a scalar function. Then

ˆ
γ

f |dℓ| =
ˆ b

a

f(γ(t))
∣∣∣γ′(t)∣∣∣ dt,

and consequently

length(γ) =
ˆ
γ

1 |dℓ| =
ˆ b

a

∣∣∣γ′(t)∣∣∣ dt.

366 Example
Compute the circumference of a circle of radius r.

367 Example
The trace of

r(t) = i cos t+ j sin t+ kt
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6. Line Integrals

is known as a cylindrical helix. To find the length of the helix as t traverses the interval [0; 2π], first observe
that

∥dℓ∥ =
∥∥∥(sin t)2 + (− cos t)2 + 1

∥∥∥dt = √2dt,

and thus the length is ˆ 2π

0

√
2dt = 2π

√
2.

6.3. Area above a Curve

If γ is a curve in the xy-plane and f(x, y) is a nonnegative continuous function defined on the curve γ,
then the integral ˆ

γ

f(x, y)|dℓ|

can be interpreted as the area A of the curtain that obtained by the union of all vertical line segment that
extends upward from the point (x, y) to a height of f(x, y), i.e, the area bounded by the curve γ and the
graph of f

This fact come from the approximation by rectangles:

area = lim
∥P∥→0

N∑
i=0

f(x, y)|xi+1 − xi| ,
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6.3. Line Integral of Scalar Fields

f

γ

368 Example
Use a line integral to show that the lateral surface areaA of a right circular cylinder of radius r and height
h is 2πrh.

Solution: ▶ We will use the right circular cylinder with base circle C given by x2 + y2 = r2 and with
height h in the positive z direction (see Figure 4.1.3). ParametrizeC as follows:

x = x(t) = r cos t , y = y(t) = r sin t , 0 ≤ t ≤ 2π

Let f(x, y) = h for all (x, y). Then

A =

ˆ
C

f(x, y) ds =

ˆ b

a

f(x(t), y(t))
»
x ′(t)2 + y ′(t)2 dt

=

ˆ 2π

0

h
»
(−r sin t)2 + (r cos t)2 dt
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6. Line Integrals

Figure 6.1. Right circular cylinder of radius r and
height h

= h

ˆ 2π

0

r
»

sin2 t+ cos2 t dt

= rh

ˆ 2π

0

1 dt = 2πrh

◀
369 Example

Find the area of the surface extending upward from the circle x2 + y2 = 1 in the xy-plane to the parabolic
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6.3. Line Integral of Scalar Fields

cylinder z = 1− y2

Solution: ▶ The circle circleC given by x2 + y2 = 1 can be parametrized as as follows:

x = x(t) = cos t , y = y(t) = sin t , 0 ≤ t ≤ 2π

Let f(x, y) = 1− y2 for all (x, y). Above the circle he have f(θ) = 1− sin2 t Then

A =

ˆ
C

f(x, y) ds =

ˆ b

a

f(x(t), y(t))
»
x ′(t)2 + y ′(t)2 dt

=

ˆ 2π

0

(1− sin2 t)
»
(− sin t)2 + (cos t)2 dt

=

ˆ 2π

0

1− sin2 t dt = π

◀
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6.4. The First Fundamental Theorem

370 Definition
SupposeU ⊆ Rn is a domain. A vector field F is a gradient field inU if exists anC1 function φ : U → R
such that

F = ∇φ.

The function φ is called the potential of the vector field F.

In

371 Definition
SupposeU ⊆ Rn is a domain. A vector field f : U → Rn is a path-independent vector field if the integral
of f over a piecewiseC1 curve is dependent only on end points, for all piecewiseC1 curve inU .

372 Theorem (First Fundamental theorem for line integrals)
Suppose U ⊆ Rn is a domain, φ : U → R is C1 and γ ⊆ Rn is any differentiable curve that starts at a,
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6.4. The First Fundamental Theorem

ends at b and is completely contained inU . Then
ˆ
γ

∇φ• dℓ = φ(b)− φ(a).

Proof. Let γ : [0, 1]→ γ be a parametrization of γ. Note
ˆ
γ

∇φ• dℓ =
ˆ 1

0

∇φ(γ(t))•γ′(t) dt =
ˆ 1

0

d
dtφ(γ(t)) dt = φ(b)− φ(a).

■

The above theorem can be restated as: a gradient vector field is a path-independent vector field.
If γ is a closed curve, then line integrals over γ are denoted by

˛
γ

f• dℓ.

373 Corollary
If γ ⊆ Rn is a closed curve, and φ : γ → R isC1, then

˛
γ

∇φ• dℓ = 0.
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374 Definition
Let U ⊆ Rn, and f : U → Rn be a vector function. We say f is a conservative force (or conservative
vector field) if ˛

f• dℓ = 0,

for all closed curves γ which are completely contained insideU .

Clearly if f = −∇ϕ for someC1 function V : U → R, then f is conservative. The converse is also true
provided U is simply connected, which we’ll return to later. For conservative vector field:ˆ

γ

F• dℓ =
ˆ
γ

∇ϕ• dℓ

= [ϕ]ba

= ϕ(b)− ϕ(a)

We note that the result is independent of the path γ joining a to b.

B

A

γ1

γ2

330



6.5. Test for a Gradient Field
375 Example

If φ fails to beC1 even at one point, the above can fail quite badly. Let φ(x, y) = tan−1(y/x), extended to
R2 −

{
(x, y)

∣∣∣ x ≤ 0
}
in the usual way. Then

∇φ =
1

x2 + y2

−y
x


which is defined onR2 − (0, 0). In particular, if γ =

{
(x, y)

∣∣∣ x2 + y2 = 1
}
, then∇φ is defined on all of γ.

However, you can easily compute ˛
γ

∇φ• dℓ = 2π ̸= 0.

The reason this doesn’t contradict the previous corollary is that Corollary 373 requiresφ itself to be defined
on all of γ, and not just∇φ! This example leads into something called thewinding numberwhich we will
return to later.

6.5. Test for a Gradient Field

If a vector field F is a gradient field, and the potential φ has continuous second derivatives, then the
second-order mixed partial derivatives must be equal:
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6. Line Integrals
∂Fi

∂xj
(x) = ∂Fj

∂xi
(x) for all i, j

So ifF = (F1, . . . , Fn) is a gradient field and the components ofFhave continuous partial derivatives,
then wemust have

∂Fi

∂xj
(x) = ∂Fj

∂xi
(x) for all i, j

If these partial derivatives do not agree, then the vector field cannot be a gradient field.
This gives us an easy way to determine that a vector field is not a gradient field.

376 Example
The vector field (−y, x,−yx) is not a gradient field because partial2f1 = −1 is not equal to ∂1f2 = 1.

When F is defined on simple connected domain and has continuous partial derivatives, the check
works the other way as well. If F = (F1, . . . , Fn) is field and the components of F have continuous
partial derivatives, satisfying

∂Fi

∂xj
(x) = ∂Fj

∂xi
(x) for all i, j

thenF is a gradient field (i.e., there is a potential function f such thatF = ∇f ). This gives us a very nice
way of checking if a vector field is a gradient field.
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6.5. Test for a Gradient Field
377 Example

The vector field F = (x, z, y) is a gradient field because F is defined on all of R3, each component has
continuous partial derivatives, and My = 0 = Nx, Mz = 0 = Px, and Nz = 1 = Py. Notice that
f = x2/2 + yz gives∇f = ⟨x, z, y⟩ = F.

6.5. Irrotational Vector Fields

In this section we restrict our attention to three dimensional space .

378 Definition
Let f : U → R3 be a C1 vector field defined in the open set U . Then the vector f is called irrotational if
and only if its curl is 0 everywhere inU , i.e., if

∇× f ≡ 0.

For anyC2 scalar field φ on U , we have

∇× (∇φ) ≡ 0.

so everyC1 gradiente vector field on U is also an irrotational vector field on U .
Provided that U is simply connected, the converse of this is also true:
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379 Theorem
LetU ⊂ R3 be a simply connected domain and let f be aC1 vector field inU . Then are equivalents

■ f is a irrotational vector field;

■ f is a gradiente vector field onU

■ f is a conservative vector field onU

The proof of this theorem is presented in the Section 7.7.1.
The above statement is not true in general ifU is not simply connected as we have already seen in the

example 375.

6.5. Work and potential energy

380 Definition (Work and potential energy)
If F(r) is a force, then

ˆ
C

F•dℓ is thework done by the force along the curve C. It is the limit of a sum of

terms F(r)•δr, ie. the force along the direction of δr.

Consider a point particle moving under F(r) according to Newton’s second law: F(r) = mr̈.
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6.5. Test for a Gradient Field

Since the kinetic energy is defined as

T (t) =
1

2
mṙ2,

the rate of change of energy is
d
dtT (t) = mṙ•r̈ = F•ṙ.

Suppose the path of particle is a curveC from a = r(α) to b = r(β), Then

T (β)− T (α) =
ˆ β

α

dT
dt dt =

ˆ β

α

F•ṙ dt =
ˆ
C

F•dℓ.

So the work done on the particle is the change in kinetic energy.

381 Definition (Potential energy)
Given a conservative force F = −∇V , V (x) is the potential energy. Then

ˆ
C

F•dℓ = V (a)− V (b).

Therefore, for a conservative force, we have F = ∇V , where V (r) is the potential energy.
So the work done (gain in kinetic energy) is the loss in potential energy. So the total energy T + V is

conserved, ie. constant during motion.
We see that energy is conserved for conservative forces. In fact, the converse is true — the energy is

conserved only for conservative forces.
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6.6. The Second Fundamental Theorem

The gradient theorem states that if the vector field f is the gradient of some scalar-valued function, then
f is a path-independent vector field. This theorem has a powerful converse:

382 Theorem
SupposeU ⊆ Rn is a domain ofRn. IfF is a path-independent vector field inU , thenF is the gradient of
some scalar-valued function.

It is straightforward to show that a vector field is path-independent if and only if the integral of the
vector field over every closed loop in its domain is zero. Thus the converse can alternatively be stated as
follows: If the integral of f over every closed loop in the domain of f is zero, then f is the gradient of some
scalar-valued function.
Proof.

Suppose U is an open, path-connected subset of Rn, and F : U → Rn is a continuous and path-
independent vector field. Fix some point a of U , and define f : U → R by

f(x) :=
ˆ
γ[a,x]

F(u)•dℓ

Here γ[a,x] is any differentiable curve in U originating at a and terminating at x. We know that f is
well-defined because f is path-independent.
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6.6. The Second Fundamental Theorem

Let v be any nonzero vector inRn. By the definition of the directional derivative,
∂f

∂v(x) = lim
t→0

f(x + tv)− f(x)
t

(6.2)

= lim
t→0

ˆ
γ[a,x+tv]

F(u)•dℓ−
ˆ
γ[a,x]

F(u)•dℓ

t
(6.3)

= lim
t→0

1

t

ˆ
γ[x,x+tv]

F(u)•dℓ (6.4)

To calculate the integral within the final limit, we must parametrize γ[x,x + tv]. Since f is path-
independent, U is open, and t is approaching zero, we may assume that this path is a straight line, and
parametrize it as u(s) = x + sv for 0 < s < t. Now, since u′(s) = v, the limit becomes

lim
t→0

1

t

ˆ t

0

F(u(s))•u′(s) ds = d

dt

ˆ t

0

F(x + sv)•v ds
∣∣∣∣∣
t=0

= F(x)•v

Thus we have a formula for ∂vf , where v is arbitrary.. Let x = (x1, x2, . . . , xn)

∇f(x) =
(
∂f(x)
∂x1

,
∂f(x)
∂x2

, ...,
∂f(x)
∂xn

)
= F(x)

Thus we have found a scalar-valued function f whose gradient is the path-independent vector field f,
as desired.

■
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6.7. Constructing Potentials Functions

If f is a conservative field on an open connected set U , the line integral of f is independent of the path
in U . Therefore we can find a potential simply by integrating f from some fixed point a to an arbitrary
point x in U , using any piecewise smooth path lying in U . The scalar field so obtained depends on the
choice of the initial point a. If we start from another initial point, say b, we obtain a new potential. But,
because of the additive property of line integrals, and can differ only by a constant, this constant being
the integral of f from a to b.

Construction of a potential on an open rectangle. If f is a conservative vector field on an open rect-
angle inRn, a potential f can be constructed by integrating froma fixed point to an arbitrary point along
a set of line segments parallel to the coordinate axes.

We will simplify the deduction, assuming that n = 2. In this case we can integrate first from (a, b) to
(x, b) along a horizontal segment, then from (x, b) to (x,y) along a vertical segment. Along the horizontal
segment we use the parametric representation

γ(t) = ti + bj, a <, t <, x,

and along the vertical segment we use the parametrization

γ2(t) = xi + tj, b < t < y.
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6.7. Constructing Potentials Functions

(a, b) (x, b)

(a, y) (x, y)

If F (x, y) = F1(x, y)i + F2(x, y)j, the resulting formula for a potential f(x, y) is

f(x, y) =

ˆ b

a

F1(t, b) dt+
ˆ y

b

F2(x, t) dt.

We could also integrate first from (a, b) to (a, y) along a vertical segment and then from (a, y) to (x, y)

along a horizontal segment as indicated by the dotted lines in Figure. This gives us another formula for
f(x, y),

f(x, y) =

ˆ y

b

F2(a, t) dt+
ˆ x

a

F2(t, y) dt.

Both formulas give the same value for f(x, y) because the line integral of a gradient is independent of
the path.
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Construction of a potential using anti-derivatives But there’s another way to find a potential of a

conservative vector field: you use the fact that
∂V

∂x
= Fx to conclude that V (x, y)must be of the formˆ x

a

Fx(u, y)du+G(y), and similarly
∂V

∂y
= Fy implies that V (x, y)must be of the form

ˆ y

b

Fy(x, v)du+

H(x). So you find functionsG(y) andH(x) such that
ˆ x

a

Fx(u, y)du+G(y) =

ˆ y

b

Fy(x, v)du+H(x)

383 Example
Show that

F = (ex cos y + yz)i + (xz − ex sin y)j + (xy + z)k

is conservative over its natural domain and find a potential function for it.

Solution: ▶
The natural domain of F is all of space, which is connected and simply connected. Let’s define the

following:

M = ex cos y + yz

N = xz − ex sin y

P = xy + z
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and calculate
∂P

∂x
= y =

∂M

∂z

∂P

∂y
= x =

∂N

∂z

∂N

∂x
= −ex sin y =

∂M

∂y

Because the partial derivatives are continuous, F is conservative. Now that we know there exists a func-
tion f where the gradient is equal to F, let’s find f.

∂f

∂x
= ex cos y + yz

∂f

∂y
= xz − ex sin y

∂f

∂z
= xy + z

If we integrate the first of the three equations with respect to x, we find that

f(x, y, z) =

ˆ
(ex cos y + yz)dx = ex cos y + xyz + g(y, z)

where g(y,z) is a constant dependant on y and z variables. We then calculate the partial derivativewith
respect to y from this equation andmatch it with the equation of above.
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∂

∂y
(f(x, y, z)) = −ex sin y + xz +

∂g

∂y
= xz − ex sin y

This means that the partial derivative of g with respect to y is 0, thus eliminating y from g entirely and
leaving at as a function of z alone.

f(x, y, z) = ex cos y + xyz + h(z)

We then repeat the process with the partial derivative with respect to z.

∂

∂z
(f(x, y, z)) = xy +

dh
dz = xy + z

which means that
dh
dz = z

so we can find h(z) by integrating:

h(z) =
z2

2
+ C

Therefore,

f(x, y, z) = ex cos y + xyz +
z2

2
+ C

We still have infinitely many potential functions for F, one at each value ofC. ◀
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6.8. Green’s Theorem in the Plane

384 Definition
A positively oriented curve is a planar simple closed curve such that when travelling on it one always
has the curve interior to the left. If in the previous definition one interchanges left and right, one obtains
a negatively oriented curve.

γ1◀

▶

(a) positively oriented curve

γ1

γ2γ3

▶ ▶
◀ ◀

◀

▶

(b) positively oriented curve

γ1◀

▶

(c) negatively oriented curve

Figure 6.2. Orientations of Curves

We will now see a way of evaluating the line integral of a smooth vector field around a simple closed
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curve. A vector field f(x, y) = P (x, y) i + Q(x, y) j is smooth if its component functions P (x, y) and
Q(x, y) are smooth. We will use Green’s Theorem (sometimes called Green’s Theorem in the plane) to
relate the line integral around a closed curve with a double integral over the region inside the curve:

385 Theorem (Green’s Theorem - Simple Regions)
Let Ω be a region in R2 whose boundary is a positively oriented curve γ which is piecewise smooth. Let
f(x, y) = P (x, y) i +Q(x, y) j be a smooth vector field defined on bothΩ and γ. Then

˛
γ

f•dℓ =

¨

Ω

(
∂Q

∂x
− ∂P

∂y

)
dA , (6.5)

where γ is traversed so thatΩ is always on the left side of γ.

Proof. Wewill prove the theorem in the case for a simple regionΩ, that is, where the boundary curve γ
can be written asC = γ1 ∪ γ2 in two distinct ways:

γ1 = the curve y = y1(x) from the pointX1 to the pointX2 (6.6)

γ2 = the curve y = y2(x) from the pointX2 to the pointX1, (6.7)
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6.8. Green’s Theorem in the Plane

whereX1 andX2 are the points onC farthest to the left and right, respectively; and

γ1 = the curve x = x1(y) from the point Y2 to the point Y1 (6.8)

γ2 = the curve x = x2(y) from the point Y1 to the point Y2, (6.9)

where Y1 and Y2 are the lowest and highest points, respectively, on γ. See Figure

a b

x

y

◀

▶

y = y2(x)

y = y1(x)

x = x2(y)

x = x1(y)

Y2

Y1

X2

X1 Ω

γ

d

c

IntegrateP (x, y) around γ using the representation γ = γ1 ∪ γ2 Since y = y1(x) along γ1 (as x goes from
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a to b) and y = y2(x) along γ2 (as x goes from b to a), as we see from Figure, then we have

˛
γ

P (x, y) dx =

ˆ
γ1

P (x, y) dx +

ˆ
γ2

P (x, y) dx

=

ˆ b

a

P (x, y1(x)) dx +

ˆ a

b

P (x, y2(x)) dx

=

ˆ b

a

P (x, y1(x)) dx −
ˆ b

a

P (x, y2(x)) dx

= −
ˆ b

a

Ä
P (x, y2(x)) − P (x, y1(x))

ä
dx

= −
ˆ b

a

(
P (x, y)

∣∣∣∣y=y2(x)

y=y1(x)

)
dx

= −
ˆ b

a

ˆ y2(x)

y1(x)

∂P (x, y)

∂y
dy dx (by the Fundamental Theorem of Calculus)

= −
¨

Ω

∂P

∂y
dA .

Likewise, integrateQ(x, y) around γ using the representation γ = γ1 ∪ γ2. Since x = x1(y) along γ1 (as
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y goes from d to c) and x = x2(y) along γ2 (as y goes from c to d), as we see from Figure , then we have

˛
γ

Q(x, y) dy =

ˆ
γ1

Q(x, y) dy +

ˆ
γ2

Q(x, y) dy

=

ˆ c

d

Q(x1(y), y) dy +

ˆ d

c

Q(x2(y), y) dy

= −
ˆ d

c

Q(x1(y), y) dy +

ˆ d

c

Q(x2(y), y) dy

=

ˆ d

c

Ä
Q(x2(y), y) − Q(x1(y), y)

ä
dy

=

ˆ d

c

(
Q(x, y)

∣∣∣∣x=x2(y)

x=x1(y)

)
dy

=

ˆ d

c

ˆ x2(y)

x1(y)

∂Q(x, y)

∂x
dx dy (by the Fundamental Theorem of Calculus)

=

¨

Ω

∂Q

∂x
dA , and so

˛
γ

f•dr =

˛
γ

P (x, y) dx+

˛
γ

Q(x, y) dy
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= −
¨

Ω

∂P

∂y
dA+

¨

Ω

∂Q

∂x
dA

=

¨

Ω

(
∂Q

∂x
− ∂P

∂y

)
dA .

■

386 Remark
Note, Green’s theorem requires that Ω is bounded and f (or P andQ) is C1 on all of Ω. If this fails at even
one point, Green’s theorem need not apply anymore!

387 Example
Evaluate

˛
C

(x2 + y2) dx + 2xy dy, where C is the boundary traversed counterclockwise of the region

R = { (x, y) : 0 ≤ x ≤ 1, 2x2 ≤ y ≤ 2x }.
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x

y

0

(1, 2)
2

1

C

Solution: ▶ R is the shaded region in Figure above. By Green’s Theorem, for P (x, y) = x2 + y2 and
Q(x, y) = 2xy, we have

˛
C

(x2 + y2) dx+ 2xy dy =

¨

Ω

(
∂Q

∂x
− ∂P

∂y

)
dA

=

¨

Ω

(2y − 2y) dA =

¨

Ω

0 dA = 0 .

There is another way to see that the answer is zero. The vector field f(x, y) = (x2 + y2) i + 2xy j has a
potential function F (x, y) =

1

3
x3 + xy2, and so

˛
C

f•dr = 0. ◀
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388 Example

Let f(x, y) = P (x, y) i +Q(x, y) j, where

P (x, y) =
−y

x2 + y2
and Q(x, y) =

x

x2 + y2
,

and letR = { (x, y) : 0 < x2 + y2 ≤ 1 }. For the boundary curveC : x2 + y2 = 1, traversed counterclock-

wise, it was shown in Exercise 9(b) in Section 4.2 that
˛
C

f•dr = 2π. But

∂Q

∂x
=

y2 − x2

(x2 + y2)2
=

∂P

∂y
⇒
¨

Ω

(
∂Q

∂x
− ∂P

∂y

)
dA =

¨

Ω

0 dA = 0 .

This would seem to contradict Green’s Theorem. However, note thatR is not the entire region enclosed
byC, since the point (0, 0) is not contained inR. That is,R has a “hole” at the origin, so Green’s Theorem
does not apply.

389 Example
Calculate the work done by the force

f(x, y) = (sinx− y3) i + (ey + x3) j

to move a particle around the unit circle x2 + y2 = 1 in the counterclockwise direction.
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6.8. Green’s Theorem in the Plane

Solution: ▶

W =

˛
C

f•dℓ (6.10)

=

˛
C

(sinx− y3) dx+ (ey + x3) dy (6.11)

=

ˆ ˆ
R

[
∂

∂x
(ey + x3)− ∂

∂y
(sinx− y3)

]
dA (6.12)

Green’s Theorem

(6.13)

= 3

ˆ ˆ
R

(x2 + y2)dA (6.14)

= 3

ˆ 2π

0

ˆ 2

r

rdrdθ = 3π

2
(6.15)

using polar coordinates

(6.16)

◀
The Green Theorem can be generalized:
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6. Line Integrals

390 Theorem (Green’s Theorem - Regions with Holes)
LetΩ ⊆ R2 be a bounded domain whose exterior boundary is a piecewiseC1 curve γ. IfΩ has holes, let
γ1, …, γN be the interior boundaries. If f : Ω̄→ R2 isC1, then

¨
Ω

[∂1F2 − ∂2F1] dA =

˛
γ

f• dℓ+
N∑
i=1

˛
γi

f• dℓ,

where all line integrals above are computed by traversing the exterior boundary counter clockwise, and
every interior boundary clockwise, i.e., such that the boundary is a positively oriented curve.

391 Remark
A common convention is to denote the boundary ofΩ by ∂Ω and write

∂Ω = γ ∪

 N∪
i=1

γi

 .
Then Theorem 390 becomes ¨

Ω

[∂1F2 − ∂2F1] dA =

˛
∂Ω

f• dℓ,

where again the exterior boundary is oriented counter clockwise and the interior boundaries are all ori-
ented clockwise.
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392 Remark

In the differential form notation, Green’s theorem is stated as

¨
Ω

î
∂xQ− ∂yP

ó
dA =

ˆ
∂Ω

P dx+Q dy,

P,Q : Ω̄→ RareC1 functions. (Weuse the sameassumptionsasbeforeon thedomainΩ, andorientations
of the line integrals on the boundary.)

Proof. The full proof is a little cumbersome. But the main idea can be seen by first proving it whenΩ is
a square. Indeed, suppose firstΩ = (0, 1)2.

x

y

a b

c

d

Then the fundamental theorem of calculus gives
¨

Ω

[∂1F2 − ∂2F1] dA =

ˆ 1

y=0

î
F2(1, y)− F2(0, y)

ó
dy −

ˆ 1

x=0

î
F1(x, 1)− F1(x, 0)

ó
dx
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The first integral is the line integral of f on the two vertical sides of the square, and the second one is line
integral of f on the two horizontal sides of the square. This proves Theorem 390 in the case whenΩ is a
square.

For line integrals, when adding two rectangles with a common edge the common edges are traversed
in opposite directions so the sum is just the line integral over the outside boundary.

=

Similarly when adding a lot of rectangles: everything cancels except the outside boundary. This ex-
tends Green’s Theorem on a rectangle to Green’s Theorem on a sum of rectangles. Since any region can
be approximated as closely as we want by a sum of rectangles, Green’s Theoremmust hold on arbitrary
regions.

393 Example
Evaluate

˛
C

y3dx − x3dy where γ are the two circles of radius 2 and radius 1 centered at the origin with

positive orientation.

Solution: ▶
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6.9. Application of Green’s Theorem: Area˛
γ

y3dx− x3dy = −3
ˆ ˆ

D

(x2 + y2)dA (6.17)

= −3
ˆ 2pi

0

ˆ 2

1

r3drdθ (6.18)

= −45π

2
(6.19)

◀
■

≈

6.9. Application of Green’s Theorem: Area

Green’s theorem can be used to compute area by line integral. LetC be a positively oriented, piecewise
smooth, simple closed curve in a plane, and let U be the region bounded by C The area of domain U is
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6. Line Integrals

given byA =

¨
U

dA.

Then if we choose P andM such that
∂Q

∂x
− ∂P

∂y
= 1, the area is given by

A =

˛
C

(P dx+Q dy).

Possible formulas for the area of U include:

A =

˛
C

x dy = −
˛
C

y dx =
1

2

˛
C

(−y dx+ x dy).

394 Corollary
LetΩ ⊆ R2 be bounded set with aC1 boundary ∂Ω, then

area (Ω) =
1

2

ˆ
∂Ω

[−y dx+ x dy] =
ˆ
∂Ω

−y dx =

ˆ
∂Ω

x dy

395 Example
Use Green’s Theorem to calculate the area of the diskD of radius r.

Solution: ▶ The boundary ofD is the circle of radius r:

C(t) = (r cos t, r sin t), 0 ≤ t ≤ 2π.
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Then

C ′(t) = (−r sin t, r cos t),

and, by Corollary 394,

area ofD =

¨
dA

=
1

2

ˆ
C

x dy − y dx

=
1

2

ˆ 2π

0

[(r cos t)(r cos t)− (r sin t)(−r sin t)]dt

=
1

2

ˆ 2π

0

r2(sin2 t+ cos2 t)dt = r2

2

ˆ 2π

0

dt = πr2.

◀
396 Example

Use the Green’s theorem for computing the area of the region bounded by the x -axis and the arch of the
cycloid:

x = t− sin(t), y = 1− cos(t), 0 ≤ t ≤ 2π

Solution: ▶
Area(D) =

¨

D

dA =

˛

C

−ydx.
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Along the x-axis, you have y = 0, so you only need to compute the integral over the arch of the cycloid.
Note that your parametrizationof the arch is a clockwiseparametrization, so in the following calculation,
the answer will be the minus of the area:

ˆ 2π

0

(cos(t)− 1)(1− cos(t))dt = −
ˆ 2π

0

1− 2 cos(t) + cos2(t)dt = −3π.

◀

397 Corollary (Surveyor’s Formula)
Let P ⊆ R2 be a (not necessarily convex) polygon whose vertices, ordered counter clockwise, are (x1, y1),
…, (xN , yN). Then

area (P ) =
(x1y2 − x2y1) + (x2y3 − x3y2) + · · ·+ (xNy1 − x1yN)

2
.

Proof. Let P be the set of points belonging to the polygon. We have that

A =

¨
P

dx dy.

Using the Corollary 394 we have
¨

P

dxdy =

ˆ
∂P

x dy

2
− y dx

2
.
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6.10. Vector forms of Green’s Theorem

We can write ∂P =
∪n

i=1 L(i), where L(i) is the line segment from (xi, yi) to (xi+1, yi+1). With this nota-
tion, wemay write

ˆ
∂P

x dy

2
− y dx

2
=

n∑
i=1

ˆ
A(i)

x dy

2
− y dx

2
=

1

2

n∑
i=1

ˆ
A(i)

x dy − y dx.

Parameterizing the line segment, we can write the integrals as

1

2

n∑
i=1

ˆ 1

0

(xi + (xi+1 − xi)t)(yi+1 − yi)− (yi + (yi+1 − yi)t)(xi+1 − xi) dt.

Integrating we get
1

2

n∑
i=1

1

2
[(xi + xi+1)(yi+1 − yi)− (yi + yi+1)(xi+1 − xi)].

simplifying yields the result

area (P ) =
1

2

n∑
i=1

(xiyi+1 − xi+1yi).

■

6.10. Vector forms of Green’s Theorem
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398 Theorem (Stokes’ Theorem in the Plane)
Let F = Li +M j. Then

˛
γ

F · dℓ =
¨

Ω

∇× F · dS

Proof.
∇× F =

(
∂M

∂x
− ∂L

∂y

)
k̂

Over the regionRwe can write dx dy = dS and dS = k̂ dS. Thus using Green’s Theorem:
˛
γ

F · dℓ =
¨

Ω

k̂ · ∇ × F dS

=

¨
Ω

∇× F · dS

■
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399 Theorem (Divergence Theorem in the Plane)
. Let F =M i− Lj Then ˆ

R

∇•F dx dy =

˛
γ

F · n̂ ds

Proof.

∇• F =
∂M

∂x
− ∂L

∂y

and so Green’s theorem can be rewritten as¨
Ω

∇• F dx dy =

˛
γ

F1 dy − F2 dx

Now it can be shown that
n̂ ds = (dyi− dxj)

here s is arclength alongC, and n̂ is the unit normal toC. Therefore we can rewrite Green’s theorem as
ˆ
R

∇•F dx dy =

˛
γ

F · n̂ ds

■
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400 Theorem (Green’s identities in the Plane)
Let ϕ(x, y) and ψ(x, y) be two scalar functions C2, defined in the open setΩ ⊂ R2.

˛
γ

ϕ
∂ψ

∂n
ds =

¨
Ω

ϕ∇2ψ + (∂ϕ) · (∂ψ)] dx dy

and ˛
γ

ñ
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

ô
ds =

¨
Ω

(ϕ∇2ψ − ψ∇2ϕ) dx dy

Proof. If we use the divergence theorem:ˆ
S

∇• F dx dy =

˛
γ

F · n̂ ds

then we can calculate down the corresponding Green identities. These are˛
γ

ϕ
∂ψ

∂n
ds =

¨
Ω

ϕ∇2ψ + (∂ϕ) · (∂ψ)] dx dy

and ˛
γ

ñ
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

ô
ds =

¨
Ω

(ϕ∇2ψ − ψ∇2ϕ) dx dy

■
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7.
Surface Integrals

In this chapter we restrict our study to the case of surfaces in three-dimensional space. Similar results
for manifolds in the n-dimensional space are presented in the chapter 13.

7.1. The Fundamental Vector Product

401 Definition
A parametrized surface is given by a one-to-one transformation r : Ω→ Rn, whereΩ is a domain in the
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7. Surface Integrals

planeR2. This amounts to being given three scalar functions, x = x(u, v), y = y(u, v) and z = z(u, v) of
two variables, u and v, say. The transformation is then given by

r(u, v) = (x(u, v), y(u, v), z(u, v)).

and is called the parametrization of the surface.

u

v

Ω

R2

(u, v)
y

z

x

0

S

r(u, v)

x = x(u, v)
y = y(u, v)
z = z(u, v)

Figure 7.1. Parametrization of a surface S inR3
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7.1. The Fundamental Vector Product

402 Definition

■ A parametrization is said regular at the point (u0, v0) inΩ if

∂ur(u0, v0)× ∂vr(u0, v0) ̸= 0.

■ The parametrization is regular if its regular for all points inΩ.

■ A surface that admits a regular parametrization is said regular parametrized surface.

Henceforth, we will assume that all surfaces are regular parametrized surface.
Nowwe consider two curves in S. The first oneC1 is given by the vector function

r1(u) = r(u, v0), u ∈ (a, b)

obtained keeping the variable v fixed at v0. The second curveC2 is given by the vector function

r2(u) = r(u0, v), v ∈ (c, d)

this time we are keeping the variable u fixed at u0).
Both curves pass through the point r(u0, v0) :
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7. Surface Integrals

■ The curveC1 has tangent vector r′1(u0) = ∂ur(u0, v0)

■ The curveC2 has tangent vector r′2(v0) = ∂vr(u0, v0).

The cross product n(u0, v0) = ∂ur(u0, v0)× ∂vr′(u0, v0),which we have assumed to be different from
zero, is thus perpendicular to both curves at the point r(u0, v0) and can be taken as a normal vector to
the surface at that point.

We record the result as follows:

403 Definition
If S is a regular surface given by a differentiable function r = r(u, v), then the cross product

n(u, v) = ∂ur× ∂vr

is called the fundamental vector product of the surface.

404 Example
For the plane r(u, v) = ua + vb + c we have
∂ur(u, v) = a, ∂vr(u, v) = b and therefore n̂(u, v) = a× b. The vector a× b is normal to the plane.

405 Example
We parametrized the sphere x2 + y2 + z2 = a2 by setting

r(u, v) = a cos u sin vi + a sin u sin vj + a cos vk,
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u

v

Ω

R2

(u, v)

∆u

∆v

S

ru∆u
rv∆v

r(u, v)

r(u, v)

Figure 7.2. Parametrization of a surfaceS inR3

with 0 ≤ u ≤ 2π, 0 ≤ v ≤ π. In this case

∂ur(u, v) = −a sinu sin vi + a cosu sin vj

and

∂vr(u, v) = a cos u cos vi + a sinu cos vj− a sin vk.
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7. Surface Integrals

Thus

n(u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

−a sinu cos v a cosu cos v 0

a cos u cos v a sinu cos v −a sin v

∣∣∣∣∣∣∣∣∣∣∣∣
= −a sin v (a cos u sin vi + a sin u sin vj + a cos vk, )

= −a sin v r(u, v).

As was to be expected, the fundamental vector product of a sphere is parallel to the radius vector r(u, v).

406 Definition (Boundary)
A surfaceS can have aboundary ∂S. We are interested in the casewhere the boundary consist of a piece-
wise smooth curve or in a union of piecewise smooth curves.

A surface is bounded if it can be contained in a solid sphere of radiusR, and is called unbounded oth-
erwise. A bounded surface with no boundary is called closed.

407 Example
The boundary of a hemisphere is a circle (drawn in red).
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7.2. The Area of a Parametrized Surface

408 Example
The sphere and the torus are examples of closed surfaces. Both are bounded and without boundaries.

7.2. The Area of a Parametrized Surface

Wewill now learn how to perform integration over a surface inR3.
Similar to how we used a parametrization of a curve to define the line integral along the curve, we

will use a parametrization of a surface to define a surface integral. We will use two variables, u and v, to
parametrize a surfaceS inR3: x = x(u, v), y = y(u, v), z = z(u, v), for (u, v) in some regionΩ inR2 (see
Figure 7.3).

In this case, the position vector of a point on the surface S is given by the vector-valued function

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k for (u, v) inΩ.

The parametrization of S can be thought of as “transforming” a region in R2 (in the uv-plane) into a
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u

v

Ω

R2

(u, v)

∆u

∆v

S

ru∆u
rv∆v

r(u, v)

r(u, v)

Figure 7.3. Parametrization of a surfaceS inR3

2-dimensional surface in R3. This parametrization of the surface is sometimes called a patch, based on
the idea of “patching” the regionΩ onto S in the grid-like manner shown in Figure 7.3.

In fact, those gridlines in Ω lead us to how we will define a surface integral over S. Along the vertical
gridlines in Ω, the variable u is constant. So those lines get mapped to curves on S, and the variable u
is constant along the position vector r(u, v). Thus, the tangent vector to those curves at a point (u, v) is
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7.2. The Area of a Parametrized Surface
∂r
∂v

. Similarly, the horizontal gridlines inΩ get mapped to curves on S whose tangent vectors are
∂r
∂u

.

(u, v)

(u, v +∆v)

(u+∆u, v)

(u+∆u, v +∆v)

r(u, v)

r(u, v +∆v))

r(u+∆u, v))

Now take a point (u, v) inΩ as, say, the lower left corner of one of the rectangular grid sections inΩ, as
shown in Figure 7.3. Suppose that this rectanglehas a smallwidth andheight of∆uand∆v, respectively.
The corner points of that rectangle are (u, v), (u+∆u, v), (u+∆u, v+∆v) and (u, v+∆v). So the area
of that rectangle isA = ∆u∆v.

Then that rectangle gets mapped by the parametrization onto some section of the surface S which,
for ∆u and ∆v small enough, will have a surface area (call it dS) that is very close to the area of the
parallelogramwhich has adjacent sides r(u+∆u, v)− r(u, v) (corresponding to the line segment from
(u, v) to (u + ∆u, v) in Ω) and r(u, v + ∆v) − r(u, v) (corresponding to the line segment from (u, v) to
(u, v +∆v) inΩ). But by combining our usual notion of a partial derivative with that of the derivative of
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a vector-valued function applied to a function of two variables, we have

∂r
∂u
≈ r(u+∆u, v)− r(u, v)

∆u
, and

∂r
∂v
≈ r(u, v +∆v)− r(u, v)

∆v
,

and so the surface area element dS is approximately

∥∥∥(r(u+∆u, v)− r(u, v))×(r(u, v +∆v)− r(u, v))
∥∥∥ ≈ ∥∥∥(∆u∂r

∂u
)×(∆v ∂r

∂v
)
∥∥∥ = ∥∥∥ ∂r

∂u
×∂r
∂v

∥∥∥∆u∆v
Thus, the total surface area S of S is approximately the sum of all the quantities

∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥∆u∆v,
summed over the rectangles inΩ.

Taking the limit of that sum as the diagonal of the largest rectangle goes to 0 gives

S =

¨

Ω

∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥ du dv . (7.1)

We will write the double integral on the right using the special notation

¨

S

dS =

¨

Ω

∥∥∥∥∥∥∥
∂r
∂u
×∂r
∂v

∥∥∥∥∥∥∥ du dv . (7.2)
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7.2. The Area of a Parametrized Surface

This is a special case of a surface integral over the surface S, where the surface area element dS can be
thought of as 1 dS. Replacing 1 by a general real-valued function f(x, y, z) defined in R3, we have the
following:

409 Definition
Let S be a surface inR3 parametrized by

x = x(u, v), y = y(u, v), z = z(u, v),

for (u, v) in some region Ω in R2. Let r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k be the position vector for
any point on S. The surface area S of S is defined as

S =

¨

S

1 dS =

¨

Ω

∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥ du dv (7.3)

410 Example
A torus T is a surface obtained by revolving a circle of radius a in the yz-plane around the z-axis, where the
circle’s center is at a distance b from the z-axis (0 < a < b), as in Figure 7.4. Find the surface area of T .

Solution: ▶
For any point on the circle, the line segment from the center of the circle to that point makes an angle

u with the y-axis in the positive y direction (see Figure 7.4(a)). And as the circle revolves around the z-

373



7. Surface Integrals

y

z

0

a

(y − b)2 + z2 = a2

u

b

(a) Circle in the yz-plane

x

y

z

v
a

(x,y,z)

(b) Torus T

Figure 7.4.

axis, the line segment from the origin to the center of that circle sweeps out an angle v with the positive
x-axis (see Figure 7.4(b)). Thus, the torus can be parametrized as:

x = (b+ a cosu) cos v , y = (b+ a cosu) sin v , z = a sinu , 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π

So for the position vector

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k
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7.2. The Area of a Parametrized Surface

= (b+ a cosu) cos v i + (b+ a cosu) sin v j + a sinuk

we see that

∂r
∂u

= − a sinu cos v i − a sinu sin v j + a cosuk

∂r
∂v

= − (b+ a cosu) sin v i + (b+ a cosu) cos v j + 0k ,

and so computing the cross product gives

∂r
∂u
×∂r
∂v

= − a(b+ a cosu) cos v cosu i − a(b+ a cosu) sin v cosu j − a(b+ a cosu) sinuk ,

which has magnitude ∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥ = a(b+ a cosu) .

Thus, the surface area of T is

S =

¨

S

1 dS

=

ˆ 2π

0

ˆ 2π

0

∥∥∥∥∥∥∥
∂r
∂u
×∂r
∂v

∥∥∥∥∥∥∥ du dv
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=

ˆ 2π

0

ˆ 2π

0

a(b+ a cosu) du dv

=

ˆ 2π

0

(
abu+ a2 sinu

∣∣∣∣u=2π

u=0

)
dv

=

ˆ 2π

0

2πab dv

= 4π2ab

◀

y

z

x

0

411 Example
[The surface area of a sphere] The function

r(u, v) = a cos u sin vi + a sin u sin vj + a cos vk,
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7.2. The Area of a Parametrized Surface

with (u, v) ranging over the set 0 ≤ u ≤ 2π, 0 ≤ v ≤ π

2
parametrizes a sphere of radius a. For this

parametrization

n(u, v) = a sin v r(u, v) and
∥∥∥n(u, v)∥∥∥ = a2 |sin v| = a2 sin v.

So,

area of the sphere=
¨

Ω

a2 sin v du dv

=

ˆ 2π

0

(ˆ π

0

a2 sin v dv
)
du = 2πa2

ˆ π

0

sin v dv = 4πa2,

which is known to be correct.

412 Example (The area of a region of the plane)
If S is a plane regionΩ, then S can be parametrized by setting

r(u, v) = ui+ vj, (u, v) ∈ Ω.

Here n(u, v) = ∂ur(u, v)× ∂vr(u, v) = i× j = k and
∥∥∥n(u, v)∥∥∥ = 1. In this case we reobtain the familiar

formula

A =

¨
Ω

du dv.
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413 Example (The area of a surface of revolution)
Let S be the surface generated by revolving the graph of a function

y = f(x), x ∈ [a, b]

about the x-axis. We will assume that f is positive and continuously differentiable.
We can parametrize S by setting

r(u, v) = vi+ f(v) cos u j + f(v) sin u k

with (u, v) ranging over the setΩ : 0 ≤ u ≤ 2π, a ≤ v ≤ b. In this case

n(u, v) = ∂ur(u, v)× ∂vr(u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

0 −f(v) sin u f(v) cos u

1 f ′(v) cos u f ′(v) sin u

∣∣∣∣∣∣∣∣∣∣∣∣
= −f(v)f ′(v)i+ f(v) cos u j + f(v) sin u k.

Therefore
∥∥∥n(u, v)∥∥∥ = f(v)

√î
f ′(v)

ó2
+ 1 and

area (S) =
¨

Ω

f(v)

…î
f ′(v)

ó2
+ 1 du dv

ˆ 2π

0

Ñˆ b

a

f(v)

…î
f ′(v)

ó2
+ 1 dv

é
du =

ˆ b

a

2πf(v)

…î
f ′(v)

ó2
+ 1 dv.
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7.2. The Area of a Parametrized Surface

414 Example ( Spiral ramp)
One turn of the spiral ramp of Example 5 is the surface

S : r(u, v) = u cosωv i + u sin ωv j + bv k

with (u, v) ranging over the setΩ :0 ≤ u ≤ l, 0 ≤ v ≤ 2π/ω. In this case

∂ur(u, v) = cosωv i + sin ωv j, ∂vr′(u, v) = −ωu sin ωv i + ωu cos ωv j + bk.

Therefore

n(u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

cosωv sin ωv 0

−ωu sin ωv ωu cos ωv b

∣∣∣∣∣∣∣∣∣∣∣∣
= b sin ωv i− b cosωv j + ωuk

and ∥∥∥n(u, v)∥∥∥ = √b2 + ω2u2.

Thus
area of S =

¨
Ω

√
b2 + ω2u2 du dv

=

ˆ 2π/ω

0

Ñˆ l

0

√
b2 + ω2u2du

é
dv =

2π

ω

ˆ l

0

√
b2 + ω2u2du.

The integral can be evaluated by setting u = (b/ω) tan x.
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7.2. The Area of a Graph of a Function

Let S be the surface of a function f(x, y) :

z = f(x, y), (x, y) ∈ Ω.

We are to show that if f is continuously differentiable, then

area (S) =
¨

Ω

…î
f ′
x(x, y)

ó2
+
î
f ′
y(x, y)

ó2
+ 1 dx dy.

We can parametrize S by setting

r(u, v) = ui + vj + f(u, v)k, (u, v) ∈ Ω.

Wemay just as well use x and y and write

r(x, y) = xi + yj + f(x, y)k, (x, y) ∈ Ω.

Clearly
rx(x, y) = i + fx(x, y)k and ry(x, y) = j + fy(x, y)k.

Thus

n(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

1 0 fx(x, y)

0 1 fy(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣
= −fx(x, y) i− fy(x, y) j + k.
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7.2. The Area of a Parametrized Surface

Therefore
∥∥∥n(x, y)∥∥∥ = √î

f ′
x(x, y)

ó2
+
î
f ′
y(x, y)

ó2
+ 1 and the formula is verified.

415 Example
Find the surface area of that part of the parabolic cylinder z = y2 that lies over the triangle with vertices
(0, 0), (0, 1), (1, 1) in the xy-plane.

Solution: ▶
Here f(x, y) = y2 so that

fx(x, y) = 0, fy(x, y) = 2y.

The base triangle can be expressed by writing

Ω : 0 ≤ y ≤ 1, 0 ≤ x ≤ y.

The surface has area
area =

¨
Ω

…î
f ′
x(x, y)

ó2
+
î
f ′
y(x, y)

ó2
+ 1 dx dy

=

ˆ 1

0

ˆ y

0

»
4y2 + 1 dx dy

=

ˆ 1

0

y
»
4y2 + 1 dy =

5
√
5− 1

12
.

◀
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7. Surface Integrals
416 Example

Find the surface area of that part of the hyperbolic paraboloid z = xy that lies inside the cylinderx2+y2 =
a2.

Solution: ▶ Let f(x, y) = xy so that

fx(x, y) = y, fy(x, y) = x.

The formula gives

A =

¨
Ω

»
x2 + y2 + 1 dx dy.

In polar coordinates the base region takes the form

0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

Thus we have

A =

¨
Ω

√
r2 + 1 rdrdθ =

ˆ 2π

0

ˆ a

0

√
r2 + 1 rdrdθ

=
2

3
π[(a2 + 1)3/2 − 1].

There is an elegant versionof this last area formula that is geometrically vivid. Weknow that the vector

rx(x, y)× ry(x, y) = −fx(x, y)i− fy(x, y)j + k
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7.2. The Area of a Parametrized Surface

is normal to the surface at the point (x, y, f(x, y)). The unit vector in that direction, the vector

n(x, y) = −fx(x, y)i− fy(x, y)j + k√î
fx(x, y)

ó2
+
î
fy(x, y)

ó2
+ 1

,

is called the upper unit normal (It is the unit normal with a nonnegative k-component.)
Now let γ(x, y) be the angle between n(x, y) and k. Since n(x, y) and k are both unit vectors,

cos[γ(x, y)] = n(x, y)•k =
1√î

f ′
x(x, y)

ó2
+
î
f ′
y(x, y)

ó2
+ 1

.

Taking reciprocals we have

sec[γ(x, y)] =
…î
f ′
x(x, y)

ó2
+
î
f ′
y(x, y)

ó2
+ 1.

The area formula can therefore be written

A =

¨
Ω

sec[γ(x, y)] dx dy.

◀

7.2. Pappus Theorem
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417 Theorem
Let γ be a curve in the plane. The area of the surface obtainedwhen γ is revolved around an external axis
is equal to the product of the arc length of γ and the distance traveled by the centroid of γ

Proof. If
Ä
x(t), z(t)

ä
, a ≤ t ≤ b, parametrizes a smooth plane curve C in the half-plane x > 0, the

surface S obtained by revolvingC about the z-axis may be parametrized by

γ(s, t) =
Ä
x(t) cos s, x(t) sin s, z(t)

ä
, a ≤ t ≤ b, 0 ≤ s ≤ 2π.

The partial derivatives are

∂γ

∂s
=
Ä
−x(t) sin s, x(t) cos s, 0

ä
,

∂γ

∂t
=
Ä
x′(t) cos s, x′(t) sin s, z′(t)

ä
;

Their cross product is
∂γ

∂s
× ∂γ

∂t
= −x(t)

Ä
z′(t) cos s, z′(t) sin s, x′(t)

ä
;

the fundamental vector is ∥∥∥∥∥∂γ∂s × ∂γ

∂t

∥∥∥∥∥ ds dt = x(t)
»
z′(t)2 + x′(t)2 ds dt.
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7.3. Surface Integrals of Scalar Functions

The surface area of S is
ˆ b

a

ˆ 2π

0

x(t)
»
z′(t)2 + x′(t)2 ds dt = 2π

ˆ b

a

x(t)
»
z′(t)2 + x′(t)2 dt.

If

ℓ =

ˆ b

a

»
z′(t)2 + x′(t)2 dt

denotes the arc length ofC, the area of S becomes

2π

ˆ b

a

x(t)
»
z′(t)2 + x′(t)2 dt = 2π ℓ

Ñ
1

ℓ

ˆ b

a

x(t)
»
z′(t)2 + x′(t)2 dt

é
= ℓ (2π x̄),

the length ofC times the circumference of the circle swept by the centroid ofC.
■

7.3. Surface Integrals of Scalar Functions
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418 Definition
Let S be a surface inR3 parametrized by

x = x(u, v), y = y(u, v), z = z(u, v),

for (u, v) in some region Ω in R2. Let r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k be the position vector for
any point on S. And let f : S → R be a continuous function.

The integral of f over S is defined as as

S =

¨

S

1 dS =

¨

Ω

f(u, v)
∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥ du dv (7.4)

419 Remark
Other common notation for the surface integral is¨

S

f dS =

¨
S

f dS =

¨
Ω

f dS =

¨
Ω

f dA

420 Remark
If the surface cannot be parametrized by a unique function, the integral can be computed by breaking up
S into finitely many pieces which can be parametrized.

The formula above will yield an answer that is independent of the chosen parametrization and how you
break up the surface (if necessary).
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7.3. Surface Integrals of Scalar Functions
421 Example

Evaluate ¨
S

zdS

where S is the upper half of a sphere of radius 2.

Solution: ▶ As we already computed n =◀

422 Example
Integrate the function g(x, y, z) = yz over the surface of the wedge in the first octant bounded by the
coordinate planes and the planes x = 2 and y + z = 1.

Solution: ▶ If a surface consists of many different pieces, then a surface integral over such a surface is
the sum of the integrals over each of the surfaces.

The portions are S1: x = 0 for 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y; S2: x = 2 for 0 ≤ y ≤ 1,≤ z ≤ 1 − y; S3:
y = 0 for 0 ≤ x ≤ 2, 0 ≤ z ≤ 1; S4: z = 0 for 0 ≤ x ≤ 2, 0 ≤ y ≤ 1; and S5: z = 1 − y for 0 ≤ x ≤ 2,

0 ≤ y ≤ 1. Hence, to find
¨

S

gdS, wemust evaluate all 5 integrals. We compute dS1 =
√
1 + 0 + 0dzdy,

dS2 =
√
1 + 0 + 0dzdy, dS3 =

√
0 + 1 + 0dzdx, dS4 =

√
0 + 0 + 1dydx, dS5 =

»
0 + (−1)2 + 1dydx,
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7. Surface Integrals

and so¨
S1

gdS +

¨
S2

gdS +

¨
S3

gdS +

¨
S4

gdS +

¨
S5

gdS

=

ˆ 1

0

ˆ 1−y

0

yzdzdy +

ˆ 1

0

ˆ 1−y

0

yzdzdy +

ˆ 2

0

ˆ 1

0

(0)zdzdx +

ˆ 2

0

ˆ 1

0

y(0)dydx +

ˆ 2

0

ˆ 1

0

y(1− y)
√
2dydx

=

ˆ 1

0

ˆ 1−y

0

yzdzdy +

ˆ 1

0

ˆ 1−y

0

yzdzdy +0 +0 +

ˆ 2

0

ˆ 1

0

y(1− y)
√
2dydx

= 1/24 +1/24 +0 +0 +
√
2/3

◀
423 Example

The temperature at each point in space on the surface of a sphere of radius 3 is given by T (x, y, z) =

sin(xy + z). Calculate the average temperature.

Solution: ▶
The average temperature on the sphere is given by the surface integral

AV =
1

S

¨
S

fdS

A parametrization of the surface is

r(θ, ϕ) = ⟨3cosθ sinϕ, 3 sin θ sinϕ, 3 cosϕ⟩
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7.3. Surface Integrals of Scalar Functions

for 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π. We have

T (θ, ϕ) = sin((3 cos θ sinϕ)(3 sin θ sinϕ) + 3 cosϕ),

and the surface area differential is dS = |rθ × rϕ| = 9 sinϕ.
The surface area is

σ =

ˆ 2π

0

ˆ π

0

9 sinϕdϕdθ

and the average temperature on the surface is

AV =
1

σ

ˆ 2π

0

ˆ π

0

sin((3 cos θ sinϕ)(3 sin θ sinϕ) + 3 cosϕ)9 sinϕdϕdθ.

◀
424 Example

Consider the surface which is the upper hemisphere of radius 3 with density δ(x, y, z) = z2. Calculate its
surface, the mass and the center of mass

Solution: ▶
A parametrization of the surface is

r(θ, ϕ) = ⟨3 cos θ sinϕ, 3 sin θ sinϕ, 3 cosϕ⟩
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7. Surface Integrals

for 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π/2. The surface area differential is

dS = |rθ × rϕ|dθdϕ = 9 sinϕdθdϕ.

The surface area is

S =

ˆ 2π

0

ˆ π/2

0

9 sinϕdϕdθ.

If the density is δ(x, y, z) = z2, then we have

ȳ =

¨
S

yδdS
¨

S

δdS
=

ˆ 2π

0

ˆ π/2

0

(3 sin θ sinϕ)(3 cosϕ)2(9 sinϕ)dϕdθ
ˆ 2π

0

ˆ π/2

0

(3 cosϕ)2(9 sinϕ)dϕdθ

◀

7.4. Surface Integrals of Vector Functions

7.4. Orientation

Like curves,wecanparametrize a surface in twodifferent orientations. Theorientationof a curve is given
by the unit tangent vector n; the orientation of a surface is given by the unit normal vector n. Unless we
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7.4. Surface Integrals of Vector Functions

are dealing with an unusual surface, a surface has two sides. We can pick the normal vector to point out
one side of the surface, or we can pick the normal vector to point out the other side of the surface. Our
choice of normal vector specifies the orientation of the surface. We call the side of the surface with the
normal vector the positive side of the surface.

425 Definition
We say (S, n̂) is an oriented surface if S ⊆ R3 is aC1 surface, n̂ : S → R3 is a continuous function such
that for every x ∈ S, the vector n̂(x) is normal to the surface S at the point x, and

∥∥∥n̂(x)∥∥∥ = 1.

426 Example
Let S =

{
x ∈ R3

∣∣∣ ∥x∥ = 1
}
, and choose n̂(x) = x/∥x∥.

427 Remark
At any point x ∈ S there are exactly two possible choices of n̂(x). An oriented surface simply provides a
consistent choice of one of these in a continuous way on the entire surface. Surprisingly this isn’t always
possible! If S is the surface of a Möbius strip, for instance, cannot be oriented.

428 Example
If S is the graph of a function, we orient S by chosing n̂ to always be the unit normal vector with a positive
z coordinate.

429 Example
IfS is a closed surface, thenwewill typically orientS by letting n̂ to be theoutwardpointingnormal vector.
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y

z

x

0

Recall that normal vectors to aplane canpoint in twoopposite directions. By anoutwardunit normal
vector to a surface S, we will mean the unit vector that is normal to S and points to the “outer” part of
the surface.

430 Example
If S is the surface of a Möbius strip, for instance, cannot be oriented.

7.4. Flux

If S is some oriented surface with unit normal n̂, then the amount of fluid flowing through S per unit
time is exactly ¨

S

f•n̂ dS.

392



7.4. Surface Integrals of Vector Functions

Figure 7.5. The Moebius Strip is an example of a
surface that is not orientable

Note, both f and n̂ above are vector functions, and f•n̂ : S → R is a scalar function. The surface integral
of this was defined in the previous section.

431 Definition
Let (S, n̂) be an oriented surface, and f : S → R3 be aC1 vector field. The surface integral of f over S is
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7. Surface Integrals

Figure 7.6. Möbius Strip II - M.C. Escher

defined to be ¨
S

f•n̂ dS.

432 Remark
Other common notation for the surface integral is

¨
S

f•n̂ dS =

¨
S

f•dS =

¨
S

f•dA
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433 Example

Evaluate the surface integral
¨

S

f•dS, where f(x, y, z) = yzi + xzj + xyk and S is the part of the plane

x + y + z = 1 with x ≥ 0, y ≥ 0, and z ≥ 0, with the outward unit normal n pointing in the positive z
direction.

y

z

x

0
1

1

1

S

x+ y + z = 1

n

Solution: ▶
Since the vector v = (1, 1, 1) is normal to the plane x+ y+ z = 1 (why?), then dividing v by its length

yields the outward unit normal vector n =

(
1√
3
,
1√
3
,
1√
3

)
. We now need to parametrize S. As we can

see from Figure projecting S onto the xy-plane yields a triangular regionR = { (x, y) : 0 ≤ x ≤ 1, 0 ≤
y ≤ 1− x }. Thus, using (u, v) instead of (x, y), we see that

x = u, y = v, z = 1− (u+ v), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u
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is a parametrization of S overΩ (since z = 1− (x+ y) on S). So on S,

f•n = (yz, xz, xy)•

(
1√
3
,
1√
3
,
1√
3

)
=

1√
3
(yz + xz + xy)

=
1√
3
((x+ y)z + xy) =

1√
3
((u+ v)(1− (u+ v)) + uv)

=
1√
3
((u+ v)− (u+ v)2 + uv)

for (u, v) inΩ, and for r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k = ui + vj + (1− (u+ v))k we have

∂r
∂u
×∂r
∂v

= (1, 0,−1)×(0, 1,−1) = (1, 1, 1) ⇒
∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥ = √3 .
Thus, integrating overΩ using vertical slices (e.g. as indicated by the dashed line in Figure 4.4.5) gives

¨

S

f•dS =

¨

S

f•n dS

=

¨

Ω

(f(x(u, v), y(u, v), z(u, v))•n)
∥∥∥ ∂r
∂u
×∂r
∂v

∥∥∥ dv du

=

ˆ 1

0

ˆ 1−u

0

1√
3
((u+ v)− (u+ v)2 + uv)

√
3 dv du
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=

ˆ 1

0

Ü
(u+ v)2

2
− (u+ v)3

3
+
uv2

2

∣∣∣∣∣∣∣
v=1−u

v=0

ê
du

=

ˆ 1

0

(
1

6
+
u

2
− 3u2

2
+

5u3

6

)
du

=
u

6
+
u2

4
− u3

2
+

5u4

24

∣∣∣∣∣∣∣
1

0

=
1

8
.

◀
434 Proposition

Let r : Ω→ S be a parametrization of the oriented surface (S, n̂). Then either

n̂ ◦ r =
∂ur× ∂vr
∥∂ur× ∂vr∥

(7.5)

on all of S, or

n̂ ◦ r = − ∂ur× ∂vr
∥∂ur× ∂vr∥

(7.6)

on all of S. Consequently, in the case (7.5) holds, we have¨
S

F•n̂ dS =

¨
Ω

(F ◦ r)•(∂ur× ∂vr) dudv. (7.7)

397



7. Surface Integrals

Proof. The vector ∂ur× ∂vr is normal to S and hence parallel to n̂. Thus

n̂•
∂ur× ∂vr
∥∂ur× ∂vr∥

must be a function that only takes on the values±1. Since s is also continuous, it must either be identi-
cally 1 or identically−1, finishing the proof. ■

435 Example
Gauss’s law sates that the total charge enclosed by a surface S is given by

Q = ϵ0

¨
S

E•dS,

where ϵ0 thepermittivity of free space, andE is the electric field. By convention, thenormal vector is chosen
to be pointing outward.

IfE(x) = e3, compute the charge enclosed by the top half of the hemisphere bounded by ∥x∥ = 1 and
x3 = 0.

7.5. Kelvin-Stokes Theorem

Given a surface S ⊂ R3 with boundary ∂S you are free to chose the orientation of S, i.e., the direction
of the normal, but you have to orient S and ∂S coherently. This means that if you are an ”observer”
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7.5. Kelvin-Stokes Theorem

walking along the boundary of the surface with the normal as your upright direction; you are moving in
the positive direction if onto the surface the boundary the interior of S is on to the left of ∂S.

436 Example
Consider the annulus

A := {(x, y, 0) | a2 ≤ x2 + y2 ≤ b2}

in the (x, y)-plane, and from the two possible normal unit vectors (0, 0,±1) choose n̂ := (0, 0, 1). If you
are an ”observer” walking along the boundary of the surface with the normal as n̂ means that the outer
boundary circle ofA should be oriented counterclockwise. Staring at the figure you can convince yourself
that the inner boundary circle has to be oriented clockwise to make the interior of A lie to the left of ∂A.
Onemight write

∂A = ∂Db − ∂Da ,

whereDr is the disk of radius r centered at the origin, and its boundary circle ∂Dr is oriented counterclock-
wise.
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7. Surface Integrals

∂Db−∂Da

▶

◀

◀

▶

437 Theorem (Kelvin–Stokes Theorem)
Let U ⊆ R3 be a domain, (S, n̂) ⊆ U be a bounded, oriented, piecewise C1, surface whose boundary is
the (piecewiseC1) curve γ. If f : U → R3 is aC1 vector field, then

ˆ
S

∇× f•n̂ dS =

˛
γ

f•dℓ.

Here γ is traversed in the counter clockwise direction when viewed by an observer standing with his feet
on the surface and head in the direction of the normal vector.
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7.5. Kelvin-Stokes Theorem

γ

n̂

S

∇× f

Proof. Let f = f1i + f2j + f3k. Consider

∇× (f1i) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂x ∂y ∂z

f1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= j∂f1

∂z
− k∂f1

∂y

Then we have ¨
S

[∇× (f1i)] · dS =

¨
S

(n̂ · ∇ × (f1i) dS

=

¨
S

∂f1
∂z

(j · n̂)− ∂f1
∂y

(k · n̂) dS
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We prove the theorem in the case S is a graph of a function, i.e., S is parametrized as

r = xi + yj + g(x, y)k

where g(x, y) : Ω → R. In this case the boundary γ of S is given by the image of the curve C boundary
ofΩ:

x
y

z
S

Ω

n̂

γ

C

Let the equation of S be z = g(x, y). Then we have

n̂ =
−∂g/∂xi− ∂g/∂yj + k

((∂g/∂x)2 + (∂g/∂y)2 + 1)1/2

Therefore onΩ:
j · n̂ = −∂g

∂y
(k · n̂) = −∂z

∂y
(k · n̂)
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7.5. Kelvin-Stokes Theorem

Thus
¨

S

[∇× (f1i)] · dS =

¨
S

Ñ
− ∂f1

∂y

∣∣∣∣∣
z,x

− ∂f1
∂z

∣∣∣∣∣
y,x

∂z

∂y

∣∣∣∣∣
x

é
(k · n̂) dS

Using the chain rule for partial derivatives

= −
¨

S

∂

∂y

∣∣∣∣∣
x

f1(x, y, z)(k · n̂) dS

Then:

= −
ˆ
Ω

∂

∂y
f1(x, y, g) dx dy

=

˛
C

f1(x, y, f(x, y))

with the last line following by using Green’s theorem. However on γ we have z = g and
˛
C

f1(x, y, g) dx =

˛
γ

f1(x, y, z) dx

We have therefore established that ¨
S

(∇× f1i) · df =
˛
γ

f1 dx
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7. Surface Integrals

In a similar way we can show that
¨

S

(∇× A2j) · df =
˛
γ

A2 dy

and ¨
S

(∇× A3k) · df =
˛
γ

A3 dz

and so the theorem is proved by adding all three results together. ■

438 Example
Verify Stokes’ Theorem for f(x, y, z) = z i+x j+ y kwhenS is the paraboloid z = x2+ y2 such that z ≤ 1

.
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7.5. Kelvin-Stokes Theorem

y

z

x
0

n
C

S

1

Figure 7.7. z = x2 + y2

Solution: ▶ The positive unit normal vector to the surface
z = z(x, y) = x2 + y2 is

n =
−∂z
∂x

i− ∂z

∂y
j + kÃ

1 +

Ç
∂z

∂x

å2

+

(
∂z

∂y

)2
=
−2x i− 2y j + k√
1 + 4x2 + 4y2

,

and∇× f = (1− 0) i + (1− 0) j + (1− 0)k = i + j + k, so

(∇× f )•n = (−2x− 2y + 1)/
»
1 + 4x2 + 4y2 .

Since S can be parametrized as r(x, y) = x i + y j + (x2 + y2)k for (x, y) in the regionD = { (x, y) :
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7. Surface Integrals

x2 + y2 ≤ 1 }, then

¨

S

(∇× f )•n dS =

¨

D

(∇× f )•n
∥∥∥ ∂r
∂x
×∂r
∂y

∥∥∥ dxdy

=

¨

D

−2x− 2y + 1√
1 + 4x2 + 4y2

»
1 + 4x2 + 4y2 dxdy

=

¨

D

(−2x− 2y + 1) dxdy , so switching to polar coordinates gives

=

ˆ 2π

0

ˆ 1

0

(−2r cos θ − 2r sin θ + 1)r dr dθ

=

ˆ 2π

0

ˆ 1

0

(−2r2 cos θ − 2r2 sin θ + r) dr dθ

=

ˆ 2π

0

(
−2r3

3
cos θ − 2r3

3
sin θ + r2

2

∣∣∣∣r=1

r=0

)
dθ

=

ˆ 2π

0

Ç
−2

3
cos θ − 2

3
sin θ + 1

2

å
dθ

= − 2

3
sin θ + 2

3
cos θ + 1

2
θ
∣∣∣∣2π
0

= π .

The boundary curve C is the unit circle x2 + y2 = 1 laying in the plane z = 1 (see Figure), which can
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7.5. Kelvin-Stokes Theorem

be parametrized as x = cos t, y = sin t, z = 1 for 0 ≤ t ≤ 2π. So
˛
C

f•dr =

ˆ 2π

0

((1)(− sin t) + (cos t)(cos t) + (sin t)(0)) dt

=

ˆ 2π

0

Ç
− sin t+ 1 + cos 2t

2

å
dt

Ç
here we used cos2 t = 1 + cos 2t

2

å
= cos t+ t

2
+

sin 2t

4

∣∣∣∣2π
0

= π .

So we see that
˛
C

f•dr =

¨

S

(∇× f )•n dS, as predicted by Stokes’ Theorem. ◀

The line integral in the preceding example was far simpler to calculate than the surface integral, but
this will not always be the case.

439 Example
Let S be the section of a sphere of radius awith 0 ≤ θ ≤ α. In spherical coordinates,

dS = a2 sin θer dθ dφ.

Let F = (0, xz, 0). Then∇× F = (−x, 0, z). Then
¨

S

∇× F•dS = πa3 cosα sin2 α.
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7. Surface Integrals

Our boundary ∂C is
r(φ) = a(sinα cosφ, sinα sinφ, cosα).

The right hand side of Stokes’ isˆ
C

F•dℓ =
ˆ 2π

0

a sinα cosφ︸ ︷︷ ︸
x

a cosα︸ ︷︷ ︸
z

a sinα cosφ dφ︸ ︷︷ ︸
dy

= a3 sin2 α cosα
ˆ 2π

0

cos2 φ dφ

= πa3 sin2 α cosα.

So they agree.

440 Remark
The rule determining the direction of traversal of γ is often called the right hand rule. Namely, if you put
your right handon the surfacewith thumbalignedwith n̂, then γ is traversed in the pointed to by your index
finger.

441 Remark
If the surface S has holes in it, then (as we did with Greens theorem) we orient each of the holes clockwise,
and the exterior boundary counter clockwise following the right hand rule. Now Kelvin–Stokes theorem
becomes ˆ

S

∇× f•n̂ dS =

ˆ
∂S

f•dℓ,

408



7.5. Kelvin-Stokes Theorem

where the line integral over ∂S is defined to be the sum of the line integrals over each component of the
boundary.

442 Remark
If S is contained in the x, y plane and is oriented by choosing n̂ = e3, then Kelvin–Stokes theorem reduces
to Greens theorem.

Kelvin–Stokes theoremallowsus toquickly seehowthecurl of avector fieldmeasures the infinitesimal
circulation.

443 Proposition
Supposeasmall, rigidpaddlewheelof radiusa is placed ina fluidwithcenteratx0 androtationaxisparallel
to n̂. Let v : R3 → R3 be the vector field describing the velocity of the ambient fluid. Ifω the angular speed
of rotation of the paddle wheel about the axis n̂, then

lim
a→0

ω =
∇× v(x0)•n̂

2
.

Proof. Let S be the surface of a disk with center x0, radius a, and face perpendicular to n̂, and γ = ∂S.
(Here S represents the face of the paddle wheel, and γ the boundary.) The angular speed ω will be such
that ˛

γ

(v − aωτ̂)•dℓ = 0,
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7. Surface Integrals

where τ̂ is a unit vector tangent to γ, pointing in the direction of traversal. Consequently

ω =
1

2πa2

˛
γ

v•dℓ = 1

2πa2

¨
S

∇× v•n̂ dS a→0−−→ ∇× v(x0)
•n̂

2
.■

■

444 Example
Let S be the elliptic paraboloid z =

x2

4
+
y2

9
for z ≤ 1, and letC be its boundary curve. Calculate

˛
C

f•dr
for f(x, y, z) = (9xz + 2y)i + (2x+ y2)j + (−2y2 + 2z)k, whereC is traversed counterclockwise.

Solution: ▶ The surface is similar to the one in Example 438, except now the boundary curve C is

the ellipse
x2

4
+
y2

9
= 1 laying in the plane z = 1. In this case, using Stokes’ Theorem is easier than

computing the line integral directly. As in Example 438, at each point (x, y, z(x, y)) on the surface z =

z(x, y) =
x2

4
+
y2

9
the vector

n =
−∂z
∂x

i− ∂z

∂y
j + kÃ

1 +

Ç
∂z

∂x

å2

+

(
∂z

∂y

)2
=
−x
2

i− 2y

9
j + k 

1 +
x2

4
+

4y2

9

,
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7.6. Gauss Theorem

is a positive unit normal vector to S. And calculating the curl of f gives

∇× f = (−4y − 0)i + (9x− 0)j + (2− 2)k = − 4y i + 9x j + 0k ,

so

(∇× f )•n =
(−4y)(−x

2
) + (9x)(−2y

9
) + (0)(1) 

1 +
x2

4
+

4y2

9

=
2xy − 2xy + 0 
1 +

x2

4
+

4y2

9

= 0 ,

and so by Stokes’ Theorem ˛
C

f•dr =

¨

S

(∇× f )•n dS =

¨

S

0 dS = 0 .

◀

7.6. Gauss Theorem

445 Theorem (Divergence Theorem or Gauss Theorem)
LetU ⊆ R3 be a bounded domain whose boundary is a (piecewise)C1 surface denoted by ∂U . If f : U →
R3 is aC1 vector field, then ˚

U

(∇•f) dV =

‹
∂U

f•n̂ dS,
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7. Surface Integrals

where n̂ is the outward pointing unit normal vector.

446 Remark
Similar to our convention with line integrals, we denote surface integrals over closed surfaces with the

symbol
‹

.

447 Remark
LetBR = B(x0, R) and observe

lim
R→0

1

volume (∂BR)

ˆ
∂BR

f•n̂ dS = lim
R→0

1

volume (∂BR)

ˆ
BR

∇•f dV = ∇•f(x0),

which justifies our intuition that∇•f measures the outward flux of a vector field.

448 Remark
If V ⊆ R2, U = V × [a, b] is a cylinder, and f : R3 → R3 is a vector field that doesn’t depend on x3, then
the divergence theorem reduces to Greens theorem.

Proof. [Proof of the Divergence Theorem] Suppose first that the domainU is the unit cube (0, 1)3 ⊆ R3.
In this case ˚

U

∇•f dV =

˚
U

(∂1v1 + ∂2v2 + ∂3v3) dV.
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7.6. Gauss Theorem

Taking the first term on the right, the fundamental theorem of calculus gives˚
U

∂1v1 dV =

ˆ 1

x3=0

ˆ 1

x2=0

(v1(1, x2, x3)− v1(0, x2, x3)) dx2 dx3

=

ˆ
L

v•n̂ dS +

ˆ
R

v•n̂ dS,

whereL andB are the left and right faces of the cube respectively. The ∂2v2 and ∂3v3 terms give the sur-
face integrals over the other four faces. This proves the divergence theorem in the case that the domain
is the unit cube.

■

449 Example
Evaluate

¨

S

f•dS, where f(x, y, z) = xi + yj + zk and S is the unit sphere x2 + y2 + z2 = 1.

Solution: ▶We see that div f = 1 + 1 + 1 = 3, so¨

S

f•dS =

˚

S

div f dV =

˚

S

3 dV

= 3

˚

S

1 dV = 3 vol(S) = 3 · 4π(1)
3

3
= 4π .

◀
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7. Surface Integrals
450 Example

Consider a hemisphere.

S2

S1

V is a solid hemisphere
x2 + y2 + z2 ≤ a2, z ≥ 0,

and ∂V = S1 + S2, the hemisphere and the disc at the bottom.
Take F = (0, 0, z + a) and∇•F = 1. Then˚

V

∇•F dV =
2

3
πa3,

the volume of the hemisphere.
On S1, the outward pointing fundamental vector is

n(u, v) = a sin v r(u, v) = a sin v (x, y, z).

Then
F•n(u, v) = az(z + a) sin v = a3 cosφ(cosφ+ 1) sin v
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7.6. Gauss Theorem

Then

¨
S1

F•dS = a3
ˆ 2π

0

dφ
ˆ π/2

0

sinφ(cos2 φ+ cosφ) dφ

= 2πa3
ñ−1
3

cos3 φ− 1

2
cos2 φ

ôπ/2
0

=
5

3
πa3.

On S2, dS = n dS = −(0, 0, 1) dS. Then F•dS = −a dS. So

¨
S2

F•dS = −πa3.

So
¨

S1

F•dS +

¨
S2

F•dS =

Ç
5

3
− 1

å
πa3 =

2

3
πa3,

in accordance with Gauss’ theorem.
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7. Surface Integrals

7.6. Gauss’s Law For Inverse-Square Fields
451 Proposition (Gauss’s gravitational law)

Let g : R3 → R3 be the gravitational field of a mass distribution (i.e. g(x) is the force experienced by a
point mass located at x). If S is any closedC1 surface, then˛

S

g•n̂ dS = −4πGM,

whereM is the mass enclosed by the region S. HereG is the gravitational constant, and n̂ is the outward
pointing unit normal vector.

Proof. The core of the proof is the following calculation. Given a fixed y ∈ R3, define the vector field f
by

f(x) = x− y
∥x− y∥3

.

The vector field−Gmf(x) represents the gravitational field of a mass located at y Then

˛
S

f•n̂ dS =


4π if y is in the region enclosed by S,

0 otherwise.
(7.8)

For simplicity, we subsequently assume y = 0.
To prove (7.8), observe

∇•f = 0,
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7.6. Gauss Theorem

when x ̸= 0. Let U be the region enclosed by S. If 0 ̸∈ U , then the divergence theorem will apply to in
the region U and we have ˛

S

g•n̂ dS =

˚
U

∇•g dV = 0.

On the other hand, if 0 ∈ U , the divergence theorem will not directly apply, since f ̸∈ C1(U). To
circumvent this, let ϵ > 0 and U ′ = U − B(0, ϵ), and S ′ be the boundary of U ′. Since 0 ̸∈ U ′, f is C1 on
all of U ′ and the divergence theorem gives

0 =

˚
U ′
∇•f dV =

ˆ
∂U ′

f•n̂ dS,

and hence ˛
S

f•n̂ dS = −
˛
∂B(0,ϵ)

f•n̂ dS =

˛
∂B(0,ϵ)

1

ϵ2
dS = −4π,

as claimed. (Above the normal vector on ∂B(0, ϵ) points outward with respect to the domain U ′, and
inward with respect to the ballB(0, ϵ).)

Now, in the general case, suppose the mass distribution has density ρ. Then the gravitational field
g(x)will be the super-position of the gravitational fields at x due to a point mass of size ρ(y) dV placed
at y. Namely, this means

g(x) = −G
ˆ
R3

ρ(y)(x− y)
∥x− y∥3

dV (y).
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7. Surface Integrals

Now using Fubini’s theorem,

¨
S

g(x)•n̂(x) dS(x) = −G
ˆ
y∈R3

ρ(y)

ˆ
x∈S

x− y
∥x− y∥3

•n̂(x) dS(x) dV (y)

= −4πG
ˆ
y∈U

ρ(y) dV (y) = −4πGM,

where the second last equality followed from (7.8). ■

452 Example
A systemof electric charges has a charge density ρ(x, y, z) and produces an electrostatic fieldE(x, y, z) at
points (x, y, z) in space. Gauss’ Law states that

¨

S

E•dS = 4π

˚

S

ρ dV

for any closed surface S which encloses the charges, with S being the solid region enclosed by S. Show
that∇•E = 4πρ. This is one of Maxwell’s Equations.1

1In Gaussian (or CGS) units.
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7.7. Applications of Surface Integrals

Solution: ▶ By the Divergence Theorem, we have
˚

S

∇•E dV =

¨

S

E•dS

= 4π

˚

S

ρ dV by Gauss’ Law, so combining the integrals gives

˚

S

(∇•E− 4πρ) dV = 0 , so

∇•E− 4πρ = 0 since S and hence S was arbitrary, so

∇•E = 4πρ .

◀

7.7. Applications of Surface Integrals

7.7. Conservative and Potential Forces

We’ve seen before that any potential force must be conservative. We demonstrate the converse here.
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453 Theorem
LetU ⊆ R3 be a simply connected domain, and f : U → R3 be aC1 vector field. Then f is a conservative
force, if and only if f is a potential force, if and only if∇× f = 0.

Proof. Clearly, if f is a potential force, equality of mixed partials shows ∇ × f = 0. Suppose now
∇× f = 0. By Kelvin–Stokes theorem

˛
γ

f•dℓ =
ˆ
S

∇× f•n̂ dS = 0,

andso f is conservative. Thus to finish theproof of the theorem,weonlyneed to showthat a conservative
force is a potential force. We do this next.

Suppose f is a conservative force. Fix x0 ∈ U and define

V (x) = −
ˆ
γ

f•dℓ,

where γ is any path joining x0 and x that is completely contained in U . Since f is conservative, we seen
before that the line integral abovewill not depend on the path itself but only on the endpoints.

Now let h > 0, and let γ be a path that joins x0 to a, and is a straight line between a and a+ he1. Then

−∂1V (a) = lim
h→0

1

h

ˆ a1+h

a1

F1(a+ te1) dt = F1(a).
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The other partials can be computed similarly to obtain f = −∇V concluding the proof. ■

7.7. Conservation laws

454 Definition (Conservation equation)
Suppose we are interested in a quantityQ. Let ρ(r, t) be the amount of stuff per unit volume and j(r, t)
be the flow rate of the quantity (eg ifQ is charge, j is the current density).

The conservation equation is
∂ρ

∂t
+∇•j = 0.

This is stronger than the claim that the total amount ofQ in the universe is fixed. It says thatQ cannot
just disappear here and appear elsewhere. It must continuously flow out.

In particular, let V be a fixed time-independent volume with boundary S = ∂V . Then

Q(t) =

˚
V

ρ(r, t) dV

Then the rate of change of amount ofQ in V is

dQ
dt =

˚
V

∂ρ

∂t
dV = −

˚
V

∇•j dV = −
¨

S

j•dS.
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7. Surface Integrals

by divergence theorem. So this states that the rate of change of the quantityQ in V is the flux of the stuff
flowing out of the surface. ieQ cannot just disappear but must smoothly flow out.

In particular, if V is the whole universe (ie R3), and j → 0 sufficiently rapidly as |r| → ∞, then we
calculate the total amount ofQ in the universe by taking V to be a solid sphere of radiusΩ, and take the
limit asR→∞. Then the surface integral→ 0, and the equation states that

dQ
dt = 0,

455 Example
If ρ(r, t) is the charge density (ie. ρδV is the amount of charge in a small volume δV ), thenQ(t) is the total
charge in V . j(r, t) is the electric current density. So j•dS is the charge flowing through δS per unit time.

456 Example
Let j = ρu with u being the velocity field. Then (ρu δt)•δS is equal to the mass of fluid crossing δS in time
δt. So

dQ
dt = −

¨
S

j•dS

does indeed imply the conservation of mass. The conservation equation in this case is
∂ρ

∂t
+∇•(ρu) = 0

For the casewhere ρ is constant and uniform (ie. independent of r and t), we get that∇•u = 0. We say that
the fluid is incompressible.
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7.8. Helmholtz Decomposition

7.8. Helmholtz Decomposition

The Helmholtz theorem, also known as the Fundamental Theorem of Vector Calculus, states that a
vector field F which vanishes at the boundaries can be written as the sum of two terms, one of which is
irrotational and the other, solenoidal.

Roughly:

“A vector field is uniquely defined (within an additive constant) by specifying its divergence
and its curl”.

457 Theorem (Helmholtz Decomposition forR3)
If F is aC2 vector function onR3 and F vanishes faster than 1/r as r →∞. Then F can be decomposed
into a curl-free component and a divergence-free component:

F = −∇Φ+∇×A,

Proof. Wewill demonstrate first the case when F satisfies

F = −∇2Z (7.9)

for some vector field Z
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7. Surface Integrals

Now, consider the following identity for an arbitrary vector field Z(r) :

−∇2Z = −∇(∇ · Z) +∇×∇× Z (7.10)

then it follows that

F = −∇U +∇×W (7.11)

with

U = ∇.Z (7.12)

and

W = ∇× Z (7.13)

Eq.(7.11) is Helmholtz’s theorem, as∇U is irrotational and∇×W is solenoidal.
Nowwewill generalize for all vector field: ifV vanishes at infinity fast enough, for, then, the equation

∇2Z = −V , (7.14)

which is Poisson’s equation, has always the solution

Z(r) = 1

4π

ˆ
d3r′ V(r′)
|r− r′| . (7.15)
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7.8. Helmholtz Decomposition

It is now a simple matter to prove, from Eq.(7.11), that V is determined from its div and curl. Taking, in
fact, the divergence of Eq.(7.11), we have:

div(V) = −∇2U (7.16)

which is, again, Poisson’s equation, and, so, determines U as

U(r) = 1

4π

ˆ
d3r′∇

′.V(r′)
|r− r′| (7.17)

Take now the curl of Eq.(7.11). We have

∇×V = ∇×∇×W
= ∇(∇.W)−∇2W (7.18)

Now,∇.W = 0, as W = ∇× Z, so another Poisson equation determines W. Using U and W so deter-
mined in Eq.(7.11) proves the decomposition ■

458 Theorem (Helmholtz Decomposition for Bounded Domains)
If F is a C2 vector function on a bounded domain V ⊂ R3 and let S be the surface that encloses the
domainV then ThenF can be decomposed into a curl-free component and a divergence-free component:

F = −∇Φ+∇×A,
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7. Surface Integrals

where

Φ(r) = 1

4π

˚
V

∇′•F (r′)
|r− r′| dV ′ − 1

4π

‹
S

n̂′•
F (r′)
|r− r′|dS

′

A(r) = 1

4π

˚
V

∇′ × F (r′)
|r− r′| dV ′ − 1

4π

‹
S

n̂′ × F (r′)
|r− r′|dS

′

and∇′ is the gradient with respect to r′ not r.

7.9. Green’s Identities

459 Theorem
Let ϕ and ψ be two scalar fields with continuous second derivatives. Then

■

¨
S

ñ
ϕ
∂ψ

∂n

ô
dS =

˚
U

[ϕ∇2ψ + (∇ϕ) · (∇ψ)] dV Green’s first identity

■

¨
S

ñ
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

ô
dS =

˚
U

(ϕ∇2ψ − ψ∇2ϕ) dV Green’s second identity.

Proof.
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7.9. Green’s Identities

Consider the quantity
F = ϕ∇ψ

It follows that

div F = ϕ∇2ψ + (∇ϕ) · (∇ψ)

n̂ · F = ϕ∂ψ/∂n

Applying the divergence theoremwe obtain¨
S

ñ
ϕ
∂ψ

∂n

ô
dS =

˚
U

[ϕ∇2ψ + (∇ϕ) · (∇ψ)] dV

which is known as Green’s first identity. Interchanging ϕ and ψ we have¨
S

ñ
ψ
∂ϕ

∂n

ô
dS =

˚
U

[ψ∇2ϕ+ (∇ψ) · (∇ϕ)] dV

Subtracting (2) from (1) we obtain¨
S

ñ
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

ô
dS =

˚
U

(ϕ∇2ψ − ψ∇2ϕ) dV

which is known as Green’s second identity.
■

427





Part III.

Tensor Calculus

429





8.
Curvilinear Coordinates

8.1. Curvilinear Coordinates

The location of a point P in space can be represented inmany different ways. Three systems commonly
used in applications are the rectangular cartesian system of Coordinates (x, y, z), the cylindrical polar
systemof Coordinates (r, ϕ, z) and the spherical systemof Coordinates (r, φ, ϕ). The last two are the best
examples of orthogonal curvilinear systems of coordinates (u1, u2, u3) .
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460 Definition
A function u : U → V is called a (differentiable) coordinate change if

■ u is bijective

■ u is differentiable

■ Du is invertible at every point.

Figure 8.1. Coordinate System

In the tridimensional case, suppose that (x, y, z) are expressible as single-valued functions u of the
variables (u1, u2, u3). Supposealso that (u1, u2, u3)canbeexpressedas single-valued functionsof (x, y, z).

Through each point P : (a, b, c) of the space we have three surfaces: u1 = c1, u2 = c2 and u3 = c3,
where the constants ci are given by ci = ui(a, b, c)

432
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If say u2 and u3 are held fixed and u1 is made to vary, a path results. Such path is called a u1 curve. u2
and u3 curves can be constructed in analogous manner.

u2

u3

u1

u1 = const

u2 = const

u3 = const

The system (u1, u2, u3) is said to be a curvilinear coordinate system.
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8. Curvilinear Coordinates
461 Example

The parabolic cylindrical coordinates are defined in terms of the Cartesian coordinates by:

x = στ

y =
1

2

Ä
τ 2 − σ2

ä
z = z

The constant surfaces are the plane

z = z1

and the parabolic cylinders

2y =
x2

σ2
− σ2

and

2y = −x
2

τ 2
+ τ 2

Coordinates I

The surfaces u2 = u2(P ) and u3 = u3(P ) intersect in a curve, along which only u1 varies.
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8.1. Curvilinear Coordinates

ê3

ê2

ê1 P

u1 = u1(P )

u3 = u3(P )

u2 = u2(P )

r(P )

Pui curve êi

Let ê1 be the unit vector tangential to the curve at P . Let ê2, ê3 be unit vectors tangential to curves
along which only u2, u3 vary.

435



8. Curvilinear Coordinates

Clearly

êi =
∂r
∂u1

/

∥∥∥∥∥ ∂r
∂ui

∥∥∥∥∥.
And if we define hi = |∂r/∂ui| then

∂r
∂ui

= êi · hi

The quantities hi are often known as the length scales for the coordinate system.

462 Example (Versors in Spherical Coordinates)
In spherical coordinates r = (r cos(θ) sin(ϕ), r sin(θ) sin(ϕ), r cos(ϕ)) so:

er =

∂r
∂r∥∥∥∥∥∂r
∂r

∥∥∥∥∥
=

(cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))
1

er = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))

eθ =

∂r
∂θ∥∥∥∥∥∂r
∂θ

∥∥∥∥∥
=

(−r sin(θ) sin(ϕ), r cos(θ) sin(ϕ), 0)
r sin(ϕ)

eθ = (− sin(θ), cos(θ), 0)
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8.1. Curvilinear Coordinates

eϕ =

∂r
∂ϕ∥∥∥∥∥ ∂r
∂ϕ

∥∥∥∥∥
=

(r cos(θ) cos(ϕ), r sin(θ) cos(ϕ),−r sin(ϕ))
r

eϕ = (cos(θ) cos(ϕ), sin(θ) cos(ϕ),− sin(ϕ))

Coordinates II

Let (ê1, ê2, ê3) be unit vectors at P in the directions normal to u1 = u1(P ), u2 = u2(P ), u3 = u3(P )

respectively, such that u1, u2, u3 increase in the directions ê1, ê2, â3. Clearly wemust have

êi = ∇(ui)/|∇ui|

463 Definition
If (ê1, ê2, ê3) are mutually orthogonal, the coordinate system is said to be an orthogonal curvilinear co-
ordinate system.

464 Theorem
The following affirmations are equivalent:

437



8. Curvilinear Coordinates

1. (ê1, ê2, ê3) are mutually orthogonal;

2. (ê1, ê2, ê3) are mutually orthogonal;

3. êi = êi =
∂r/∂ui
|∂r/∂ui|

= ∇ui/|∇ui| for i = 1, 2, 3

So we associate to a general curvilinear coordinate system two sets of basis vectors for every point:

{ê1, ê2, ê3}

is the covariant basis, and
{ê1, ê2, ê3}

is the contravariant basis.
Note the following important equality:

êi · êj = δij.

465 Example
Cylindrical coordinates (r, θ, z):

x = r cos θ r =
»
x2 + y2

y = r sin θ θ = tan−1
Åy
x

ã
z = z z = z
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8.1. Curvilinear Coordinates

e 
1 

e 
2 

e 
3 

Figure 8.2. Covariant and Contravariant Basis

where 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0

For cylindrical coordinates (r, θ, z), and constants r0, θ0 and z0, we see from Figure 8.3 that the surface
r = r0 is a cylinder of radius r0 centered along the z-axis, the surface θ = θ0 is a half-plane emanating from
the z-axis, and the surface z = z0 is a plane parallel to the xy-plane.

The unit vectors r̂, θ̂, k̂ at any pointP are perpendicular to the surfaces r = constant, θ = constant, z =
constant throughP in the directions of increasing r, θ, z. Note that the direction of the unit vectors r̂, θ̂ vary
from point to point, unlike the corresponding Cartesian unit vectors.
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8. Curvilinear Coordinates

y

z

x

0

r0

(a) r = r0

y

z

x

0

θ0

(b) θ = θ0

y

z

x

0

z0

(c) z = z0

Figure 8.3. Cylindrical coordinate surfaces

8.2. Line and Volume Elements in Orthogonal Coordinate Systems

466 Definition (Line Element)
Since r = r(u1, u2, u3), the line element dr is given by

dr =
∂r
∂u1

du1 +
∂r
∂u2

du2 +
∂r
∂u3

du3

= h1du1ê1 + h2du2ê2 + h3du3ê3
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8.2. Line and Volume Elements in Orthogonal Coordinate Systems

If the system is orthogonal, then it follows that

(ds)2 = (dr) · (dr) = h21(du1)2 + h22(du2)2 + h23(du3)2

In what follows we will assume we have an orthogonal system so that

êi = êi =
∂r/∂ui
|∂r/∂ui|

= ∇ui/|∇ui| for i = 1, 2, 3

In particular, line elements along curves of intersection of ui surfaces have lengths h1du1, h2du2, h3du3
respectively.

467 Definition (Volume Element)
InR3, the volume element is given by

dV = dx dy dz.

In a coordinate systems x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3), the volume element is:

dV =

∣∣∣∣∣ ∂(x, y, z)

∂(u1, u2, u3)

∣∣∣∣∣ du1 du2 du3.
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8. Curvilinear Coordinates
468 Proposition

In an orthogonal systemwe have

dV = (h1du1)(h2du2)(h3du3)
= h1h2h3 du1du2du3

In this section we find the expression of the line and volume elements in some classics orthogonal
coordinate systems.
(i) Cartesian Coordinates (x, y, z)

dV = dxdydz
dr = dxî+ dyĵ + dzk̂

(ds)2 = (dr) · (dr) = (dx)2 + (dy)2 + (dz)2

(ii) Cylindrical polar coordinates (r, θ, z) The coordinates are related to Cartesian by

x = r cos θ, y = r sin θ, z = z

We have that (ds)2 = (dx)2 + (dy)2 + (dz)2, but we can write

dx =

Ç
∂x

∂r

å
dr +

Ç
∂x

∂θ

å
dθ +

Ç
∂x

∂z

å
dz

= (cos θ) dr − (r sin θ) dθ

442



8.2. Line and Volume Elements in Orthogonal Coordinate Systems

and

dy =

Ç
∂y

∂r

å
dr +

Ç
∂y

∂θ

å
dθ +

Ç
∂y

∂z

å
dz

= (sin θ) dr + (r cos θ)dθ

Therefore we have

(ds)2 = (dx)2 + (dy)2 + (dz)2

= · · · = (dr)2 + r2(dθ)2 + (dz)2

Thus we see that for this coordinate system, the length scales are

h1 = 1, h2 = r, h3 = 1

and the element of volume is

dV = r drdθdz

(iii) Spherical Polar coordinates (r, ϕ, θ) In this case the relationship between the coordinates is

x = r sinϕ cos θ; y = r sinϕ sin θ; z = r cosϕ

443



8. Curvilinear Coordinates

Again, we have that (ds)2 = (dx)2 + (dy)2 + (dz)2 and we know that

dx =
∂x

∂r
dr + ∂x

∂θ
dθ + ∂x

∂ϕ
dϕ

= (sinϕ cos θ)dr + (−r sinϕ sin θ)dθ + r cosϕ cos θdϕ

and

dy =
∂y

∂r
dr + ∂y

∂θ
dθ + ∂y

∂ϕ
dϕ

= sinϕ sin θdr + r sinϕ cos θdθ + r cosϕ sin θdϕ

together with

dz = ∂z

∂r
dr + ∂z

∂θ
dθ + ∂z

∂ϕ
dϕ

= (cosϕ)dr − (r sinϕ)dϕ

Therefore in this case, we have (after some work)

(ds)2 = (dx)2 + (dy)2 + (dz)2

= · · · = (dr)2 + r2(dϕ)2 + r2 sin2 ϕ(dθ)2
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8.2. Line and Volume Elements in Orthogonal Coordinate Systems

Thus the length scales are
h1 = 1, h2 = r, h3 = r sinϕ

and the volume element is
dV = r2 sinϕ drdϕdθ

469 Example
Find the volume and surface area of a sphere of radius a, and also find the surface area of a cap of the
sphere that subtends on angle α at the centre of the sphere.

dV = r2 sinϕ drdϕdθ

and an element of surface of a sphere of radius a is (by removing h1du1 = dr):

dS = a2 sinϕ dϕ dθ

∴ total volume is
ˆ
V

dV =

ˆ 2π

θ=0

ˆ π

ϕ=0

ˆ a

r=0

r2 sinϕ drdϕdθ

= 2π[− cosϕ]π0
ˆ a

0

r2 dr

= 4πa3/3
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8. Curvilinear Coordinates

Surface area is
ˆ
S

dS =

ˆ 2π

θ=0

ˆ π

ϕ=0

a2 sinϕ dϕ dθ

= 2πa2[− cosϕ]π0
= 4πa2

Surface area of cap is
ˆ 2π

θ=0

ˆ α

ϕ=0

a2 sinϕ dϕ dθ = 2πa2[− cosϕ]α0

= 2πa2(1− cosα)

8.3. Gradient in Orthogonal Curvilinear Coordinates

Let
∇Φ = λ1ê1 + λ2ê2 + λ3ê3

in a general coordinate system, where λ1, λ2, λ3 are to be found. Recall that the element of length is
given by

dr = h1du1ê1 + h2du2ê2 + h3du3ê3
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8.3. Gradient in Orthogonal Curvilinear Coordinates

Now

dΦ =
∂Φ

∂u1
du1 +

∂Φ

∂u2
du2 +

∂Φ

∂u3
du3

=
∂Φ

∂x
dx+ ∂Φ

∂y
dy + ∂Φ

∂z
dz

= (∇Φ) · dr

But, using our expressions for∇Φ and dr above:

(∇Φ) · dr = λ1h1du1 + λ2h2du2 + λ3h3du3

and so we see that
hiλi =

∂Φ

∂ui
(i = 1, 2, 3)

Thus we have the result that

470 Proposition (Gradient in Orthogonal Curvilinear Coordinates)

∇Φ =
ê1

h1

∂Φ

∂u1
+

ê2

h2

∂Φ

∂u2
+

ê3

h3

∂Φ

∂u3

This proposition allows us to write down∇ easily for other coordinate systems.
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8. Curvilinear Coordinates

(i) Cylindrical polars (r, θ, z) Recall that h1 = 1, h2 = r, h3 = 1. Thus

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+ ẑ

∂

∂z

(ii) Spherical Polars (r, ϕ, θ)We have h1 = 1, h2 = r, h3 = r sinϕ, and so

∇ = r̂
∂

∂r
+
ϕ̂

r

∂

∂ϕ
+

θ̂

r sinϕ
∂

∂θ

471 Example
Calculate the gradient of the function expressed in cylindrical coordinate as

f(r, θ, z) = r sin θ + z.

Solution: ▶

∇f = r̂
∂f

∂r
+
θ̂

r

∂f

∂θ
+ ẑ

∂f

∂z
(8.1)

= r̂ sin θ + θ̂ cos θ + ẑ (8.2)

◀
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8.4. Divergence in Orthogonal Curvilinear Coordinates

8.3. Expressions for Unit Vectors

From the expression for∇we have just derived, it is easy to see that

êi = hi∇ui

Alternatively, since the unit vectors are orthogonal, if we know two unit vectors we can find the third
from the relation

ê1 = ê2 × ê3 = h2h3(∇u2 ×∇u3)

and similarly for the other components, by permuting in a cyclic fashion.

8.4. Divergence in Orthogonal Curvilinear Coordinates

Suppose we have a vector field
A = A1ê1 + A2ê2 + A3ê3

Then consider

∇ · (A1ê1) = ∇ · [A1h2h3(∇u2 ×∇u3)]

= A1h2h3∇ · (∇u2 ×∇u3) +∇(A1h2h3) ·
ê1

h2h3
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8. Curvilinear Coordinates

using the results established just above. Also we know that

∇ · (B×C) = C · curl B−B · curl C

and so it follows that

∇ · (∇u2 ×∇u3) = (∇u3) · curl(∇u2)− (∇u2) · curl(∇u3) = 0

since the curl of a gradient is always zero. Thus we are left with

∇ · (A1ê1) = ∇(A1h2h3) ·
ê1

h2h3
=

1

h1h2h3

∂

∂u1
(A1h2h3)

We can proceed in a similar fashion for the other components, and establish that

472 Proposition (Divergence in Orthogonal Curvilinear Coordinates)

∇ ·A =
1

h1h2h3

ñ
∂

∂u1
(h2h3A1) +

∂

∂u2
(h3h1A2) +

∂

∂u3
(h1h2A3)

ô
Using the above proposition is now easy to write down the divergence in other coordinate systems.
(i) Cylindrical polars (r, θ, z)
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8.4. Divergence in Orthogonal Curvilinear Coordinates

Since h1 = 1, h2 = r, h3 = 1 using the above formula we have :

∇ ·A =
1

r

ñ
∂

∂r
(rA1) +

∂

∂θ
(A2) +

∂

∂z
(rA3)

ô
=
∂A1

∂r
+
A1

r
+

1

r

∂A2

∂θ
+
∂A3

∂z

(ii) Spherical polars (r, ϕ, θ)
We have h1 = 1, h2 = r, h3 = r sinϕ. So

∇ ·A =
1

r2 sinϕ

[
∂

∂r
(r2 sinϕA1) +

∂

∂ϕ
(r sinϕA2) +

∂

∂θ
(rA3)

]

473 Example
Calculate the divergence of the vector field expressed in spherical coordinates (r, ϕ, θ) as f = r̂ + ϕ̂+ θ̂

Solution: ▶

∇ · f = 1

r2 sinϕ

[
∂

∂r
(r2 sinϕ) + ∂

∂ϕ
(r sinϕ) + ∂

∂θ
r

]
(8.3)

=
1

r2 sinϕ [2r sinϕ+ r cosϕ] (8.4)

◀
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8. Curvilinear Coordinates

8.5. Curl in Orthogonal Curvilinear Coordinates

Wewill calculate the curl of the first component of A:

∇× (A1ê1) = ∇× (A1h1∇u1)

= A1h2∇× (∇u1) +∇(A1h1)×∇u1

= 0 +∇(A1h1)×∇u1

=

[
ê1

h1

∂

∂u1
(A1h1) +

ê2

h2

∂

∂u2
(A1h1) +

ê3

h3

∂

∂u3
(A1h1)

]
× ê1

h1

=
ê2

h1h3

∂

∂u3
(h1A1)−

ê3

h1h2

∂

∂u2
(h1A1)

(since ê1 × ê1 = 0, ê2 × ê1 = −ê3, ê3 × ê1 = ê2).
We can obviously find curl(A2ê2) and curl(A3ê3) in a similar way. These can be shown to be

∇× (A2ê2) =
ê3

h2h1

∂

∂u1
(h2A2)−

ê1

h2h3

∂

∂u3
(h2A2)

∇× (A3ê3) =
ê1

h3h2

∂

∂u2
(h3A3)−

ê2

h3h1

∂

∂u1
(h3A3)

Adding these three contributions together, we find we can write this in the form of a determinant as
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474 Proposition (Curl in Orthogonal Curvilinear Coordinates)

curl A =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣∣∣

h1ê1 h2ê2 h3ê3

∂u1 ∂u2 ∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣∣∣∣
It’s then straightforward to write down the expressions of the curl in various orthogonal coordinate

systems.

(i) Cylindrical polars

curl A =
1

r

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ ẑ

∂r ∂θ ∂z

A1 rA2 A3

∣∣∣∣∣∣∣∣∣∣∣∣
(ii) Spherical polars

curl A =
1

r2 sinϕ

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rϕ̂ r sinϕθ̂

∂r ∂ϕ ∂θ

A1 rA2 r sinϕA3

∣∣∣∣∣∣∣∣∣∣∣∣
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8. Curvilinear Coordinates

8.6. The Laplacian in Orthogonal Curvilinear Coordinates

From the formulae already established for the gradient and the divergent, we can see that

475 Proposition (The Laplacian in Orthogonal Curvilinear Coordinates)

∇2Φ = ∇ · (∇Φ)

=
1

h1h2h3

ñ
∂

∂u1
(h2h3

1

h1

∂Φ

∂u1
) +

∂

∂u2
(h3h1

1

h2

∂Φ

∂u2
) +

∂

∂u3
(h1h2

1

h3

∂Φ

∂u3
)

ô
(i) Cylindrical polars (r, θ, z)

∇2Φ =
1

r

[
∂

∂r

Ç
r
∂Φ

∂r

å
+

∂

∂θ

Ç
1

r

∂Φ

∂θ

å
+

∂

∂z

Ç
r
∂Φ

∂z

å]
=
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2

(ii) Spherical polars (r, ϕ, θ)

∇2Φ =
1

r2 sinϕ

 ∂
∂r

Ç
r2 sinϕ∂Φ

∂r

å
+

∂

∂ϕ

(
sinϕ∂Φ

∂ϕ

)
+

∂

∂θ

(
1

sinϕ
∂Φ

∂θ

)
=
∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

cotϕ
r2

∂Φ

∂ϕ
+

1

r2
∂2Φ

∂ϕ2
+

1

r2 sin2 ϕ

∂2Φ

∂θ2
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8.6. The Laplacian in Orthogonal Curvilinear Coordinates
476 Example

In Example ??we showed that∇∥r∥2 = 2 r and∆∥r∥2 = 6, where r(x, y, z) = x i + y j + z k in Cartesian
coordinates. Verify that we get the same answers if we switch to spherical coordinates.

Solution: Since ∥r∥2 = x2+ y2+ z2 = ρ2 in spherical coordinates, letF (ρ, θ, ϕ) = ρ2 (so thatF (ρ, θ, ϕ) =
∥r∥2). The gradient of F in spherical coordinates is

∇F =
∂F

∂ρ
eρ +

1

ρ sinϕ
∂F

∂θ
eθ +

1

ρ

∂F

∂ϕ
eϕ

= 2ρ eρ +
1

ρ sinϕ (0) eθ +
1

ρ
(0) eϕ

= 2ρ eρ = 2ρ
r
∥r∥

, as we showed earlier, so

= 2ρ
r
ρ

= 2 r , as expected. And the Laplacian is

∆F =
1

ρ2
∂

∂ρ

(
ρ2
∂F

∂ρ

)
+

1

ρ2 sin2 ϕ

∂2F

∂θ2
+

1

ρ2 sinϕ
∂

∂ϕ

(
sinϕ ∂F

∂ϕ

)

=
1

ρ2
∂

∂ρ
(ρ2 2ρ) +

1

ρ2 sinϕ (0) +
1

ρ2 sinϕ
∂

∂ϕ

Ä
sinϕ (0)

ä
=

1

ρ2
∂

∂ρ
(2ρ3) + 0 + 0

=
1

ρ2
(6ρ2) = 6 , as expected.
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∇Φ =
ê1

h1

∂Φ

∂u1
+

ê2

h2

∂Φ

∂u2
+

ê3

h3

∂Φ

∂u3

∇ ·A =
1

h1h2h3

ñ
∂

∂u1
(h2h3A1) +

∂

∂u2
(h3h1A2) +

∂

∂u3
(h1h2A3)

ô
curl A =

1

h1h2h3

∣∣∣∣∣∣∣∣∣∣∣∣

h1ê1 h2ê2 h3ê3

∂u1 ∂u2 ∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣∣∣∣
∇2Φ =

1

h1h2h3

ñ
∂

∂u1
(h2h3

1

h1

∂Φ

∂u1
) +

∂

∂u2
(h3h1

1

h2

∂Φ

∂u2
) +

∂

∂u3
(h1h2

1

h3

∂Φ

∂u3
)

ô
Table 8.1. Vector operators in orthogonal curvi-
linear coordinates u1, u2, u3.

8.7. Examples of Orthogonal Coordinates

Spherical Polar Coordinates (r, ϕ, θ) ∈ [0,∞)× [0, π]× [0, 2π)

x = r sinϕ cos θ (8.5)

y = r sinϕ sin θ (8.6)

z = r cosϕ (8.7)
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8.7. Examples of Orthogonal Coordinates

The scale factors for the Spherical Polar Coordinates are:

h1 = 1 (8.8)

h2 = r (8.9)

h3 = r sinϕ (8.10)

Cylindrical Polar Coordinates (r, θ, z) ∈ [0,∞)× [0, 2π)× (−∞,∞)

x = r cos θ (8.11)

y = r sin θ (8.12)

z = z (8.13)

The scale factors for the Cylindrical Polar Coordinates are:

h1 = h3 = 1 (8.14)

h2 = r (8.15)
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8. Curvilinear Coordinates

Parabolic Cylindrical Coordinates (u, v, z) ∈ (−∞,∞)× [0,∞)× (−∞,∞)

x =
1

2
(u2 − v2) (8.16)

y = uv (8.17)

z = z (8.18)

The scale factors for the Parabolic Cylindrical Coordinates are:

h1 = h2 =
√
u2 + v2 (8.19)

h3 = 1 (8.20)

Paraboloidal Coordinates (u, v, θ) ∈ [0,∞)× [0,∞)× [0, 2π)

x = uv cos θ (8.21)

y = uv sin θ (8.22)

z =
1

2
(u2 − v2) (8.23)

The scale factors for the Paraboloidal Coordinates are:

h1 = h2 =
√
u2 + v2 (8.24)

h3 = uv (8.25)
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Elliptic Cylindrical Coordinates (u, v, z) ∈ [0,∞)× [0, 2π)× (−∞,∞)

x = a coshu cos v (8.26)

y = a sinhu sin v (8.27)

z = z (8.28)

The scale factors for the Elliptic Cylindrical Coordinates are:

h1 = h2 = a
»

sinh2 u+ sin2 v (8.29)

h3 = 1 (8.30)

Prolate Spheroidal Coordinates (ξ, η, θ) ∈ [0,∞)× [0, π]× [0, 2π)

x = a sinh ξ sin η cos θ (8.31)

y = a sinh ξ sin η sin θ (8.32)

z = a cosh ξ cos η (8.33)

The scale factors for the Prolate Spheroidal Coordinates are:

h1 = h2 = a
»

sinh2 ξ + sin2 η (8.34)

h3 = a sinh ξ sin η (8.35)
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8. Curvilinear Coordinates

Oblate Spheroidal Coordinates (ξ, η, θ) ∈ [0,∞)×
î
−π

2
, π
2

ó
× [0, 2π)

x = a cosh ξ cos η cos θ (8.36)

y = a cosh ξ cos η sin θ (8.37)

z = a sinh ξ sin η (8.38)

The scale factors for the Oblate Spheroidal Coordinates are:

h1 = h2 = a
»

sinh2 ξ + sin2 η (8.39)

h3 = a cosh ξ cos η (8.40)

Ellipsoidal Coordinates
(λ, µ, ν) (8.41)

λ < c2 < b2 < a2, (8.42)

c2 < µ < b2 < a2, (8.43)

c2 < b2 < ν < a2, (8.44)

x2

a2−qi
+ y2

b2−qi
+ z2

c2−qi
= 1where (q1, q2, q3) = (λ, µ, ν)

The scale factors for the Ellipsoidal Coordinates are: hi = 1
2

…
(qj−qi)(qk−qi)

(a2−qi)(b2−qi)(c2−qi)
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Bipolar Coordinates (u, v, z) ∈ [0, 2π)× (−∞,∞)× (−∞,∞)

x =
a sinh v

cosh v − cosu (8.45)

y =
a sinu

cosh v − cosu (8.46)

z = z (8.47)

The scale factors for the Bipolar Coordinates are:

h1 = h2 =
a

cosh v − cosu (8.48)

h3 = 1 (8.49)

Toroidal Coordinates (u, v, θ) ∈ (−π, π]× [0,∞)× [0, 2π)

x =
a sinh v cos θ
cosh v − cosu (8.50)

y =
a sinh v sin θ

cosh v − cosu (8.51)

z =
a sinu

cosh v − cosu (8.52)

The scale factors for the Toroidal Coordinates are:
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h1 = h2 =
a

cosh v − cosu (8.53)

h3 =
a sinh v

cosh v − cosu (8.54)

Conical Coordinates
(λ, µ, ν) (8.55)

ν2 < b2 < µ2 < a2 (8.56)

λ ∈ [0,∞) (8.57)

x =
λµν

ab
(8.58)

y =
λ

a

√
(µ2 − a2)(ν2 − a2)

a2 − b2
(8.59)

z =
λ

b

√
(µ2 − b2)(ν2 − b2)

a2 − b2
(8.60)

The scale factors for the Conical Coordinates are:

h1 = 1 (8.61)

h22 =
λ2(µ2 − ν2)

(µ2 − a2)(b2 − µ2)
(8.62)
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h23 =
λ2(µ2 − ν2)

(ν2 − a2)(ν2 − b2)
(8.63)

Exercises

A
For Exercises 1-6, find the Laplacian of the function f(x, y, z) in Cartesian coordinates.

1. f(x, y, z) = x+ y + z 2. f(x, y, z) = x5 3. f(x, y, z) = (x2 + y2 + z2)3/2

4. f(x, y, z) = ex+y+z 5. f(x, y, z) = x3 + y3 + z3 6. f(x, y, z) = e−x2−y2−z2

7. Find the Laplacian of the function in Exercise 3 in spherical coordinates.

8. Find the Laplacian of the function in Exercise 6 in spherical coordinates.

9. Let f(x, y, z) =
z

x2 + y2
in Cartesian coordinates. Find∇f in cylindrical coordinates.

10. For f(r, θ, z) = r er + z sin θ eθ + rz ez in cylindrical coordinates, find div f and curl f.

11. For f(ρ, θ, ϕ) = eρ + ρ cos θ eθ + ρ eϕ in spherical coordinates, find div f and curl f.
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B
For Exercises 12-23, prove the given formula (r = ∥r∥ is the length of the position vector field r(x, y, z) =
x i+ y j+ z k).

12. ∇ (1/r) = −r/r3 13. ∆(1/r) = 0 14. ∇•(r/r3) = 0 15. ∇ (ln r) = r/r2

16. div (F+ G) = div F + div G 17. curl (F+ G) = curl F + curl G

18. div (f F) = f div F + F•∇f 19. div (F×G) = G•curl F − F•curl G

20. div (∇f×∇g) = 0 21. curl (f F) = f curl F + (∇f )×F

22. curl (curl F) = ∇(div F) − ∆ F 23. ∆(fg) = f ∆ g + g∆ f + 2(∇f •∇g)
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9.
Tensors
In this chapter we define a tensor as a multilinear map.

9.1. Linear Functional

477 Definition
A function f : Rn → R is a linear functional if satisfies the

linearity condition: f(au + bv) = af(u) + bf(v) ,
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9. Tensors

or in words: “the value on a linear combination is the the linear combination of the values.”

A linear functional is also called linear function, 1-form, or covector.
This easily extends to linear combinations with any number of terms; for example

f(v) = f

Ñ
N∑
i=1

viei

é
=

N∑
i=1

vif(ei)

where the coefficients fi ≡ f(ei) are the “components” of a covector with respect to the basis {ei}, or
in our shorthand notation

f(v) = f(viei) (express in terms of basis)

= vif(ei) (linearity)

= vifi . (definition of components)

A covector f is entirely determined by its values fi on the basis vectors, namely its components with
respect to that basis.

Our linearity condition is usually presented separately as a pair of separate conditions on the two op-
erations which define a vector space:

■ sum rule: the value of the function on a sumof vectors is the sumof the values, f(u+v) = f(u)+
f(v),
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9.2. Dual Spaces

■ scalar multiple rule: the value of the function on a scalar multiple of a vector is the scalar times
the value on the vector, f(cu) = cf(u).

478 Example
In the usual notation onR3, with Cartesian coordinates (x1, x2, x3) = (x, y, z), linear functions are of the
form f(x, y, z) = ax+ by + cz,

479 Example
If we fixed a vector n we have a function n∗ : Rn → R defined by

n∗(v) := n · v

is a linear function.

9.2. Dual Spaces

480 Definition
We define the dual space ofRn, denoted as (Rn)∗, as the set of all real-valued linear functions onRn;

(Rn)∗ = {f : f : Rn → R is a linear function }
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9. Tensors

The dual space (Rn)∗ is itself an n-dimensional vector space, with linear combinations of covectors
defined in the usual way that one can takes linear combinations of any functions, i.e., in terms of values

covector addition: (af + bg)(v) ≡ af(v) + bg(v) , f, g covectors, v a vector .

481 Theorem
Suppose that vectors inRn represented as column vectors

x =


x1
...

xn

 .

For each row vector
[a] = [a1 . . . an]
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9.2. Dual Spaces

there is a linear functional f defined by

f(x) = [a1 . . . an]


x1
...

xn

 .

f(x) = a1x1 + · · ·+ anxn,

and each linear functional inRn can be expressed in this form

482 Remark
As consequence of the previous theorem we can see vectors as column and covectors as row matrix. And
the action of covectors in vectors as the matrix product of the row vector and the column vector.

Rn =




x1
...

xn

 , xi ∈ R


(9.1)

(Rn)∗ =
¶
[a1 . . . an], ai ∈ R

©
(9.2)

483 Remark
closure of the dual space
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9. Tensors

Show that the dual space is closed under this linear combination operation. In other words, show that if
f, g are linear functions, satisfyingour linearity condition, thena f+b g also satisfies the linearity condition
for linear functions:

(a f + b g)(c1u + c2v) = c1(a f + b g)(u) + c2(a f + b g)(v) .

9.2. Duas Basis

Let us produce a basis for (Rn)∗, called the dual basis {ei} or “the basis dual to {ei},” by defining n
covectors which satisfy the following “duality relations”

ei(ej) = δij ≡


1 if i = j ,

0 if i ̸= j ,

where the symbol δij is called the “Kronecker delta,” nothingmore than a symbol for the components of
then×n identitymatrix I = (δij). We then extend them to any other vector by linearity. Thenby linearity

ei(v) = ei(vjej) (expand in basis)

= vjei(ej) (linearity)

= vjδij (duality)

= vj (Kronecker delta definition)
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9.2. Dual Spaces

where the last equality follows since for each i, only the termwith j = i in the sum over j contributes to
the sum. Alternatively matrix multiplication of a vector on the left by the identity matrix δijvj = vi does
not change the vector. Thus the calculation shows that the i-th dual basis covector ei picks out the i-th
component vi of a vector v.

484 Theorem
The n covectors {ei} form a basis of (Rn)∗.

Proof.

1. spanning condition:
Using linearity and the definition fi = f(ei), this calculation shows that every linear function f
can be written as a linear combination of these covectors

f(v) = f(viei) (expand in basis)

= vif(ei) (linearity)

= vifi (definition of components)

= viδj ifj (Kronecker delta definition)

= viej(ei)fj (dual basis definition)

= (fjej)(viei) (linearity)
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9. Tensors

= (fjej)(v) . (expansion in basis, in reverse)

Thus f and fiei have the same value on every v ∈ Rn so they are the same function: f = fiei,
where fi = f(ei) are the “components” of f with respect to the basis {ei} of (Rn)∗ also said to be
the “components” of f with respect to the basis {ei} ofRn already introduced above. The index i
on fi labels the components of f , while the index i on ei labels the dual basis covectors.

2. linear independence:
Suppose fiei = 0 is the zero covector. Then evaluating each side of this equation on ej and using
linearity

0 = 0(ej) (zero scalar = value of zero linear function)

= (fiei)(ej) (expand zero vector in basis)

= fiei(ej) (definition of linear combination function value)

= fiδ
i
j (duality)

= fj (Knonecker delta definition)

forces all the coefficients of ei to vanish, i.e., no nontrivial linear combination of these covectors
exists which equals the zero covector so these covectors are linearly independent. Thus (Rn)∗ is
also an n-dimensional vector space.
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9.3. Bilinear Forms

■

9.3. Bilinear Forms

A bilinear form is a function that is linear in each argument separately:

1. B(u + v,w) = B(u,w) +B(v,w) andB(λu,v) = λB(u,v)

2. B(u,v + w) = B(u,v) +B(u,w) andB(u, λv) = λB(u,v)

Let f(v,w) be a bilinear form and let e1, . . . , en be a basis in this space. The numbersBij determined
by formula

Bij = f(ei, ej) (9.3)

are called the coordinates or the components of the form B in the basis e1, . . . , en. The numbers 9.3
are written in form of a matrix

B =



B11 . . . B1n

... . . . ...

Bn1 . . . Bnn


, (9.4)
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9. Tensors

which is called thematrix of the bilinear formB in the basis e1, . . . , en. For the elementBij in thematrix
9.4 the first index i specifies the row number, the second index j specifies the column number.

Thematrixof a symmetricbilinear formB is also symmetric: Bij = Bji. Letv1, . . . , vn andw1, . . . , wn

be coordinates of two vectorsv andw in the basis e1, . . . , en. Then the values f(v,w) of a bilinear form
are calculated by the following formulas:

B(v,w) =
n∑

i=1

n∑
j=1

Bij v
iwj, (9.5)

9.4. Tensor

Let V = Rn and let V ∗ = Rn∗ denote its dual space. We let

V k = V × · · · × V︸ ︷︷ ︸
k times

.

485 Definition
A k-multilinear map on V is a function T : V k → Rwhich is linear in each variable.

T(v1, . . . , λv + w,vi+1, . . . ,vk) = λT(v1, . . . ,v,vi+1, . . . ,vk) + T(v1, . . . ,w,vi+1, . . . ,vk)
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9.4. Tensor

In other words, given (k − 1) vectors v1, v2, . . . , vi−1, vi+1, . . . , vk, the map Ti : V → R defined by
Ti(v) = T(v1,v2, . . . ,v,vi+1, . . . ,vk) is linear.

486 Definition

■ A tensor of type (r, s) on V is a multilinear map T : V r × (V ∗)s → R.

■ A covariant k-tensor on V is a multilinear map T : V k → R

■ A contravariant k-tensor on V is a multilinear map T : (V ∗)k → R.

In other words, a covariant k-tensor is a tensor of type (k, 0) and a contravariant k-tensor is a tensor
of type (0, k).

487 Example

■ Vectors can be seem as functions V ∗ → R, so vectors are contravariant tensor.

■ Linear functionals are covariant tensors.

■ Inner product are functions from V × V → R so covariant tensor.
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■ The determinant of amatrix is anmultilinear function of the columns (or rows) of a squarematrix, so
is a covariant tensor.

The above terminology seems backwards, Michael Spivak explains:

”Nowadays such situations are always distinguished by calling the things which go in the
samedirection“covariant”and the thingswhichgo in theoppositedirection“contravariant.”
Classical terminology used these same words, and it just happens to have reversed this...
And no one had the gall or authority to reverse terminology sanctified by years of usage. So
it’s very easy to remember which kind of tensor is covariant, and which is contravariant —
it’s just the opposite of what it logically ought to be.”

488 Definition
We denote the space of tensors of type (r, s) by Trs(V ).

So, in particular,

Tk(V ) := Tk0(V ) = {covariant k-tensors}

Tk(V ) := T0k(V ) = {contravariant k-tensors}.
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9.4. Tensor

Two important special cases are:

T1(V ) = {covariant 1-tensors} = V ∗

T1(V ) = {contravariant 1-tensors} = V ∗∗ ∼= V.

This last linemeans that we can regard vectors v ∈ V as contravariant 1-tensors. That is, every vector
v ∈ V can be regarded as a linear functional V ∗ → R via

v(ω) := ω(v),

where ω ∈ V ∗.
The rank of an (r, s)-tensor is defined to be r + s.
In particular, vectors (contravariant 1-tensors) and dual vectors (covariant 1-tensors) have rank 1.

489 Definition
IfS ∈ Tr1s1(V ) is an (r1, s1)-tensor, andT ∈ Tr2s2(V ) is an (r2, s2)-tensor, we candefine their tensor product
S⊗ T ∈ Tr1+r2

s1+s2(V ) by

(S⊗T)(v1, . . . , vr1+r2 , ω1, . . . , ωs1+s2) = S(v1, . . . , vr1 , ω1, . . . , ωs1)·T(vr1+1, . . . , vr1+r2 , ωs1+1, . . . , ωs1+s2).
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490 Example

Let u,v ∈ V . Again, since V ∼= T1(V ), we can regard u,v ∈ T1(V ) as (0, 1)-tensors. Their tensor product
u⊗ v ∈ T2(V ) is a (0, 2)-tensor defined by

(u⊗ v)(ω, η) = u(ω) · v(η)

491 Example
Let V = R3. Write u = (1, 2, 3)⊤ ∈ V in the standard basis, and η = (4, 5, 6) ∈ V ∗ in the dual basis. For
the inputs, let’s also write ω = (x, y, z) ∈ V ∗ and v = (p, q, r)⊤ ∈ V . Then

(u⊗ η)(ω,v) = u(ω) · η(v)

=


1

2

3

 [x, y, z] · [4, 5, 6]

p

q

r


= (x+ 2y + 3z)(4p+ 5q + 6r)

= 4px+ 5qx+ 6rx

8py + 10qy + 12py

12pz + 15qz + 18rz
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= [x, y, z]


4 5 6

8 10 12

12 15 18




p

q

r



= ω


4 5 6

8 10 12

12 15 18

 v.

492 Example
If S has components αi

j
k, and T has components βrs then S⊗ T has components αi

j
kβ

rs, because

S ⊗ T(ui, uj, uk, ur, us) = S(ui, uj, uk)T(ur, us).

Tensors satisfy algebraic laws such as:

(i) R⊗ (S+ T) = R⊗ S+ R⊗ T,

(ii) (λR)⊗ S = λ(R⊗ S) = R⊗ (λS),

(iii) (R⊗ S)⊗ T = R⊗ (S⊗ T).
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But
S⊗ T ̸= T⊗ S

in general. To prove those we look at components wrt a basis, and note that

αi
jk(β

r
s + γrs) = αi

jkβ
r
s + αi

jkγ
r
s,

for example, but
αiβj ̸= βjαi

in general.
Some authors take the definition of an (r, s)-tensor tomean amultilinearmap V s× (V ∗)r → R (note

that the r and s are reversed).

9.4. Basis of Tensor

493 Theorem
Let Trs(V ) be the space of tensors of type (r, s). Let {e1, . . . , en} be a basis for V , and {e1, . . . , en} be the
dual basis for V ∗

Then

{ej1 ⊗ . . . ,⊗ejr ⊗ ejr+1 ⊗ . . .⊗ ejr+s 1 ≤ ji ≤ r + s}
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is a base for Trs(V ).

So any tensor T ∈ Trs(V ) can be written as combination of this basis. Let T ∈ Trs(V ) be a (r, s) tensor
and let {e1, . . . , en} be a basis for V , and {e1, . . . , en} be the dual basis for V ∗ then we can define a
collection of scalars Ajr+1···jr+s

j1···jr by

T(ej1 , . . . , ejr , ejr+1 . . . ejn) = Ajr+1···jr+s

j1···jr

Then the scalars Ajr+1···jr+s

j1···jr | 1 ≤ ji ≤ r + s} completely determine the multilinear function T

494 Theorem
Given T ∈ Trs(V ) a (r, s) tensor. Then we can define a collection of scalars Ajr+1···jr+s

j1···jr by

Ajr+1···jr+s

j1···jr = T(ej1 , . . . , ejr , ejr+1 . . . ejn)

The tensor T can be expressed as:

T =
n∑

j1=1

· · ·
n∑

jn=1

Ajr+1···jr+s

j1···jr ej1 ⊗ ejr ⊗ ejr+1 · · · ⊗ ejr+s

As consequence of the previous theoremwe have the following expression for the value of a tensor:
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495 Theorem
Given T ∈ Trs(V ) be a (r, s) tensor. And

vi =
n∑

ji=1

vjii eji

for 1 < i < r, and

vi =
n∑

ji=1

vijie
ji

for r + 1 < i < r + s, then

T(v1, . . . ,vn) =
n∑

j1=1

· · ·
n∑

jn=1

Ajr+1···jr+s

j1···jr vj11 · · · v
(r+s)
jr+s

496 Example
Let’s take a trilinear function

f : R2 × R2 × R2 → R.

A basis forR2 is {e1, e2} = {(1, 0), (0, 1)}. Let

f(ei, ej, ek) = Aijk,

where i, j, k ∈ {1, 2}. In otherwords, the constantAijk is a function valueat oneof the eight possible triples
of basis vectors (since there are two choices for each of the three Vi), namely:
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{e1, e1, e1}, {e1, e1, e2}, {e1, e2, e1}, {e1, e2, e2}, {e2, e1, e1}, {e2, e1, e2}, {e2, e2, e1}, {e2, e2, e2}.

Each vector vi ∈ Vi = R2 can be expressed as a linear combination of the basis vectors

vi =
2∑

j=1

vji ej = v1i × e1 + v2i × e2 = v1i × (1, 0) + v2i × (0, 1).

The function value at an arbitrary collection of three vectors vi ∈ R2 can be expressed as

f(v1,v2,v3) =
2∑

i=1

2∑
j=1

2∑
k=1

Aijkv
i
1v

j
2v

k
3 .

Or, in expanded form as

f((a, b), (c, d), (e, f)) = ace× f(e1, e1, e1) + acf × f(e1, e1, e2) (9.6)

+ ade× f(e1, e2, e1) + adf × f(e1, e2, e2) + bce× f(e2, e1, e1) + bcf × f(e2, e1, e2)

(9.7)

+ bde× f(e2, e2, e1) + bdf × f(e2, e2, e2). (9.8)

9.4. Contraction

The simplest case of contraction is the pairing of V with its dual vector space V ∗.
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9. Tensors

C : V ∗ ⊗ V → R (9.9)

C(f ⊗ v) = f(v) (9.10)

where f is in V ∗ and v is in V .

The above operation can be generalized to a tensor of type (r, s) (with r > 1, s > 1)

Cks : Trs(V )→ Tr−1
s−1(V ) (9.11)

(9.12)

9.5. Change of Coordinates

9.5. Vectors and Covectors

Suppose thatV is a vector space andE = {v1, · · · , vn} andF = {w1, · · · , wn} are two ordered basis for
V . E and F give rise to the dual basisE∗ = {v1, · · · , vn} and F ∗ = {w1, · · · , wn} for V ∗ respectively.

If [T ]EF = [λji ] is the matrix representation of coordinate transformation fromE to F , i.e.
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w1

...

wn

 =


λ11 λ21 . . . λn1
...

... . . . ...

λ1n λ2n · · · λnn




v1
...

vn


What is the matrix of coordinate transformation fromE∗ to F ∗?
We can writewj ∈ F ∗ as a linear combination of basis elements inE∗:

wj = µj
1v

1 + · · ·+ µj
nv

n

We get a matrix representation [S]E∗
F ∗ = [µj

i ] as the following:

ñ
w1 · · · wn

ô
=

ñ
v1 · · · vn

ô µ
1
1 µ2

1 . . . µn
1

...
... . . . ...

µ1
n µ2

n · · · µn
n


We know thatwi = λ1i v1 + · · ·+ λni vn. Evaluating this functional atwi ∈ V we get:

wj(wi) = µj
1v

1(wi) + · · ·+ µj
nv

n(wi) = δji

wj(wi) = µj
1v

1(λ1i v1 + · · ·+ λni vn) + · · ·+ µj
nv

n(λ1i v1 + · · ·+ λni vn) = δji
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wj(wi) = µj
1λ

1
i + · · ·+ µj

nλ
n
i =

n∑
k=1

µj
kλ

k
i = δji

But
n∑

k=1

µj
kλ

k
i is the (i, j) entry of the matrix product TS. Therefore TS = In and S = T−1.

Ifwewant towritedown the transformation fromE∗ toF ∗ as columnvectors insteadof rowvector and
name the new matrix that represents this transformation as U , we observe that U = St and therefore
U = (T−1)t.

Therefore if T represents the transformation fromE to F by the equation w = Tv, then w∗ = Uv∗.

9.5. Bilinear Forms

Let e1, . . . , en and ẽ1, . . . , ẽn be two basis in a linear vector space V . Let’s denote by S the transition
matrix for passing from the first basis to the second one. Denote T = S−1. From 9.3 we easily derive
the formula relating the components of a bilinear form f(v,w) these two basis. For this purpose it is
sufficient to substitute the expression for a change of basis into the formula 9.3 and use the bilinearity
of the form f(v,w):

fij = f(ei, ej) =
n∑

k=1

n∑
q=1

Tki T
q
j f(ẽk, ẽq) =

n∑
k=1

n∑
q=1

Tki T
q
j f̃kq.

The reverse formula expressing f̃kq through fij is derived similarly:
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9.6. Symmetry properties of tensors

fij =
n∑

k=1

n∑
q=1

Tki T
q
j f̃kq,f̃kq =

n∑
i=1

n∑
j=1

Si
k S

j
q fij. (9.13)

In matrix form these relationships are written as follows:

F = TT F̃ T,F̃ = ST F S. (9.14)

Here ST and TT are twomatrices obtained from S and T by transposition.

9.6. Symmetry properties of tensors

Symmetry properties involve the behavior of a tensor under the interchange of two ormore arguments.
Of course to even consider the value of a tensor after the permutation of some of its arguments, the
arguments must be of the same type, i.e., covectors have to go in covector arguments and vectors in
vectors arguments and no other combinations are allowed.

The simplest case to consider are tensors with only 2 arguments of the same type. For vector argu-
ments we have (0, 2)-tensors. For such a tensor T introduce the following terminology:

T(Y,X) = T(X,Y ) , T is symmetric inX and Y ,

T(Y,X) = −T(X,Y ) , T is antisymmetric or “ alternating” inX and Y .
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9. Tensors

Letting (X,Y ) = (ei, ej) and using the definition of components, we get a corresponding condition on
the components

Tji = Tij , T is symmetric in the index pair (i, j),

Tji = −Tij , T is antisymmetric (alternating) in the index pair (i, j).

For an antisymmetric tensor, the last condition immediately implies that no index can be repeatedwith-
out the corresponding component being zero

Tji = −Tij → Tii = 0 .

Any (0, 2)-tensor can be decomposed into symmetric and antisymmetric parts by defining

[SYM(T)](X,Y ) =
1

2
[T(X,Y ) + T(Y,X)] , (“the symmetric part of T”),

[ALT (T)](X,Y ) =
1

2
[T(X,Y )− T(Y,X)] , (“the antisymmetric part of T”),

T = SYM(T) + ALT (T) .

The last equality holds since evaluating it on the pair (X,Y ) immediately leads to an identity. [Check.]
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Again letting (X,Y ) = (ei, ej) leads to corresponding component formulas

[SYM(T)]ij =
1

2
(Tij + Tji) ≡ T(ij) , (n(n+ 1)/2 independent components),

[ALT (T)]ij =
1

2
(Tij − Tji) ≡ T[ij] , (n(n− 1)/2 independent components),

Tij = T(ij) + T[ij] , (n2 = n(n+ 1)/2 + n(n− 1)/2 independent components).

Round brackets around a pair of indices denote the symmetrization operation, while square brack-
ets denote antisymmetrization. This is a very convenient shorthand. All of this can be repeated for (20)-
tensors and just reflects what we already know about the symmetric and antisymmetric parts of matri-
ces.

9.7. Forms

9.7. Motivation

Oriented area and Volume We define the oriented area functionA(a,b) by

A(a,b) = ± |a| · |b| · sinα,

where the sign is chosen positive when the angle α is measured from the vector a to the vector b in the
counterclockwise direction, and negative otherwise.
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9. Tensors

Statement: The oriented area A(a,b) of a parallelogram spanned by the vectors a and b in the two-
dimensional Euclidean space is an antisymmetric and bilinear function of the vectors a and b:

A(a,b) = −A(b, a),
A(λa,b) = λA(a,b),

A(a,b + c) = A(a,b) + A(a, c). (the sum law)

The ordinary (unoriented) area is then obtained as the absolute value of the oriented area,Ar(a,b) =∣∣∣A(a,b)∣∣∣. It turns out that the oriented area, due to its strict linearity properties, is a muchmore conve-
nient and powerful construction than the unoriented area.

497 Theorem
Let a, b, c, be linearly independent vectors in R3. The signed volume of the parallelepiped spanned by
them is (a × b)•c.

Statement: The oriented volume V (a,b, c) of a parallelepiped spanned by the vectors a,b and c in
the three-dimensional Euclidean space is an antisymmetric and trilinear function of the vectors a,b and
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9.7. Forms

c:

V (a,b, c) = −V (b, a, c),
V (λa,b, c) = λV (a,b, c),

V (a,b + d, c) = V (a,b) + V (a,d, c). (the sum law)

9.7. Exterior product

In three dimensions, an oriented area is represented by the cross product a × b, which is indeed an
antisymmetric and bilinear product. So we expect that the oriented area in higher dimensions can be
represented by some kind of new antisymmetric product of a and b; let us denote this product (to be
defined below) by a ∧ b, pronounced “a wedge b.” The value of a ∧ b will be a vector in a new vector
space. We will also construct this new space explicitly.

Definition of exterior product We will construct an antisymmetric product using the tensor product
space.

498 Definition
Givena vector spaceV , wedefine anewvector spaceV ∧V called the exterior product (or antisymmetric
tensor product, or alternating product, or wedge product) of two copies of V . The space V ∧ V is the
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9. Tensors

subspace in V ⊗ V consisting of all antisymmetric tensors, i.e. tensors of the form

v1 ⊗ v2 − v2 ⊗ v1, v1,2 ∈ V,

andall linear combinationsof such tensors. Theexterior product of twovectorsv1 andv2 is the expression
shown above; it is obviously an antisymmetric and bilinear function of v1 and v2.

For example, here is one particular element from V ∧ V , which we write in two different ways using
the properties of the tensor product:

(u + v)⊗ (v + w)− (v + w)⊗ (u + v) = u⊗ v− v⊗ u
+u⊗w−w⊗ u + v⊗w−w⊗ v ∈ V ∧ V. (9.15)

Remark: A tensor v1 ⊗ v2 ∈ V ⊗ V is not equal to the tensor v2 ⊗ v1 if v1 ̸= v2.

It is quite cumbersome to perform calculations in the tensor product notation as we did in Eq. (9.15).
So let us write the exterior product as u ∧ v instead of u ⊗ v − v ⊗ u. It is then straightforward to see
that the “wedge” symbol ∧ indeed works like an anti-commutative multiplication, as we intended. The
rules of computation are summarized in the following statement.
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Statement 1: One may save time and write u ⊗ v − v ⊗ u ≡ u ∧ v ∈ V ∧ V , and the result of any
calculation will be correct, as long as one follows the rules:

u ∧ v = −v ∧ u, (9.16)

(λu) ∧ v = λ (u ∧ v) , (9.17)

(u + v) ∧ x = u ∧ x + v ∧ x. (9.18)

It follows also that u ∧ (λv) = λ (u ∧ v) and that v ∧ v = 0. (These identities hold for any vectors
u,v ∈ V and any scalars λ ∈ K.)

Proof: These properties are direct consequences of the properties of the tensor product when ap-
plied to antisymmetric tensors. For example, the calculation (9.15) now requires a simple expansion of
brackets,

(u + v) ∧ (v + w) = u ∧ v + u ∧w + v ∧w.

Here we removed the term v∧vwhich vanishes due to the antisymmetry of∧. Details left as exercise.■
Elements of the spaceV ∧V , such as a∧b+c∧d, are sometimes calledbivectors.1 Wewill alsowant

to define the exterior product of more than two vectors. To define the exterior product of three vectors,

1It is important to note that a bivector is not necessarily expressible as a single-termproduct of two vectors; see the Exercise
at the end of Sec. ??.
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we consider the subspace of V ⊗ V ⊗ V that consists of antisymmetric tensors of the form

a⊗ b⊗ c− b⊗ a⊗ c + c⊗ a⊗ b− c⊗ b⊗ a
+b⊗ c⊗ a− a⊗ c⊗ b (9.19)

and linear combinations of such tensors. These tensors are called totally antisymmetric because they
can be viewed as (tensor-valued) functions of the vectors a,b, c that change sign under exchange of any
two vectors. The expression in Eq. (9.19) will be denoted for brevity by a∧b∧ c, similarly to the exterior
product of two vectors, a⊗b−b⊗a, which is denoted for brevity by a∧b. Here is a general definition.

Definition 2: The exterior product of k copies of V (also called the k-th exterior power of V ) is de-
noted by∧kV and is defined as the subspace of totally antisymmetric tensors within V ⊗ ...⊗ V . In the
concise notation, this is the space spanned by expressions of the form

v1 ∧ v2 ∧ ... ∧ vk, vj ∈ V,

assuming that the properties of the wedge product (linearity and antisymmetry) hold as given by State-
ment 1. For instance,

u ∧ v1 ∧ ... ∧ vk = (−1)k v1 ∧ ... ∧ vk ∧ u (9.20)

(“pulling a vector through k other vectors changes sign k times”). ■
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The previously defined space of bivectors is in this notation V ∧ V ≡ ∧2V . A natural extension of this
notation is ∧0V = K and∧1V = V . I will also use the following “wedge product” notation,

n∧
k=1

vk ≡ v1 ∧ v2 ∧ ... ∧ vn.

Tensors from the space∧nV are also called n-vectors or antisymmetric tensors of rank n.

Question: How to compute expressions containing multiple products such as a ∧ b ∧ c?

Answer: Apply the rules shown in Statement 1. For example, one can permute adjacent vectors and
change sign,

a ∧ b ∧ c = −b ∧ a ∧ c = b ∧ c ∧ a,

one can expand brackets,

a ∧ (x + 4y) ∧ b = a ∧ x ∧ b + 4a ∧ y ∧ b,

and so on. If the vectors a,b, c are given as linear combinations of some basis vectors
¶
ej

©
, we can thus

reduce a ∧ b ∧ c to a linear combination of exterior products of basis vectors, such as e1 ∧ e2 ∧ e3,
e1 ∧ e2 ∧ e4, etc.
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9. Tensors

Example 1: Supposewework inR3 and have vectors a =

Ç
0,

1

2
,−1

2

å
,b = (2,−2, 0), c = (−2, 5,−3).

Let us compute various exterior products. Calculations are easier if we introduce the basis {e1, e2, e3}
explicitly:

a =
1

2
(e2 − e3) , b = 2(e1 − e2), c = −2e1 + 5e2 − 3e3.

We compute the 2-vector a ∧ b by using the properties of the exterior product, such as x ∧ x = 0 and
x ∧ y = −y ∧ x, and simply expanding the brackets as usual in algebra:

a ∧ b =
1

2
(e2 − e3) ∧ 2 (e1 − e2)

= (e2 − e3) ∧ (e1 − e2)

= e2 ∧ e1 − e3 ∧ e1 − e2 ∧ e2 + e3 ∧ e2

= −e1 ∧ e2 + e1 ∧ e3 − e2 ∧ e3.

The last expression is the result; note that now there is nothing more to compute or to simplify. The
expressions such as e1 ∧ e2 are the basic expressions out of which the spaceR3 ∧ R3 is built.

Let us also compute the 3-vector a ∧ b ∧ c,

a ∧ b ∧ c = (a ∧ b) ∧ c
= (−e1 ∧ e2 + e1 ∧ e3 − e2 ∧ e3) ∧ (−2e1 + 5e2 − 3e3).
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When we expand the brackets here, terms such as e1 ∧ e2 ∧ e1 will vanish because

e1 ∧ e2 ∧ e1 = −e2 ∧ e1 ∧ e1 = 0,

so only terms containing all different vectors need to be kept, and we find

a ∧ b ∧ c = 3e1 ∧ e2 ∧ e3 + 5e1 ∧ e3 ∧ e2 + 2e2 ∧ e3 ∧ e1

= (3− 5 + 2) e1 ∧ e2 ∧ e3 = 0.

We note that all the terms are proportional to the 3-vector e1 ∧ e2 ∧ e3, so only the coefficient in front of
e1 ∧ e2 ∧ e3 was needed; then, by coincidence, that coefficient turned out to be zero. So the result is the
zero 3-vector. ■

Remark: Origin of the name “exterior.” The construction of the exterior product is a modern formu-
lation of the ideas dating back to H. Grassmann (1844). A 2-vector a ∧ b is interpreted geometrically as
the oriented area of the parallelogram spanned by the vectors a and b. Similarly, a 3-vector a ∧ b ∧ c
represents the oriented 3-volume of a parallelepiped spanned by {a,b, c}. Due to the antisymmetry of
the exterior product, we have (a ∧ b) ∧ (a ∧ c) = 0, (a ∧ b ∧ c) ∧ (b ∧ d) = 0, etc. We can interpret
this geometrically by saying that the “product” of two volumes is zero if these volumes have a vector in
common. This motivated Grassmann to call his antisymmetric product “exterior.” In his reasoning, the
product of two “extensive quantities” (such as lines, areas, or volumes) is nonzero only when each of the
two quantities is geometrically “to the exterior” (outside) of the other.
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Exercise 2: Show that in a two-dimensional space V , any 3-vector such as a ∧ b ∧ c can be simplified
to the zero 3-vector. Prove the same for n-vectors inN -dimensional spaces when n > N . ■

One can also consider the exterior powers of the dual space V ∗. Tensors from ∧nV ∗ are usually (for
historical reasons) called n-forms (rather than “n-covectors”).

Definition 3: The action of a k-form f∗1 ∧ ... ∧ f∗k on a k-vector v1 ∧ ... ∧ vk is defined by

∑
σ

(−1)|σ|f∗1(vσ(1))...f∗k(vσ(k)),

where the summation is performed over all permutations σ of the ordered set (1, ..., k).

Example 2: With k = 3we have

(p∗ ∧ q∗ ∧ r∗)(a ∧ b ∧ c)
= p∗(a)q∗(b)r∗(c)− p∗(b)q∗(a)r∗(c)
+ p∗(b)q∗(c)r∗(a)− p∗(c)q∗(b)r∗(a)
+ p∗(c)q∗(a)r∗(b)− p∗(c)q∗(b)r∗(a).

Exercise 3: a) Show that a∧b∧ω = ω∧a∧bwhereω is any antisymmetric tensor (e.g.ω = x∧y∧z).
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b) Show that
ω1 ∧ a ∧ ω2 ∧ b ∧ ω3 = −ω1 ∧ b ∧ ω2 ∧ a ∧ ω3,

where ω1, ω2, ω3 are arbitrary antisymmetric tensors and a,b are vectors.
c) Due to antisymmetry, a ∧ a = 0 for any vector a ∈ V . Is it also true that ω ∧ ω = 0 for any bivector

ω ∈ ∧2V ?

9.7. Hodge star operator
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10.
Tensors in Coordinates

”The introduction of numbers as coordinates is an act of violence.”
HermannWeyl.

10.1. Index notation for tensors

So far we have used a coordinate-free formalism to define and describe tensors. However, in many cal-
culations a basis in V is fixed, and one needs to compute the components of tensors in that basis. In this
cases the index notationmakes such calculations easier.
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Suppose a basis {e1, ..., en} in V is fixed; then the dual basis
¶
ek
©
is also fixed. Any vector v ∈ V is

decomposed as v =
∑
k

vkek and any covector as f∗ =
∑
k

fkek.

Any tensor from V ⊗ V is decomposed as

A =
∑
j,k

Ajkej ⊗ ek ∈ V ⊗ V

and so on. The action of a covector on a vector is f∗ (v) =
∑
k

fkvk, and the action of an operator on a

vector is
∑
j,k

Ajkvkek. However, it is cumbersome to keep writing these sums. In the index notation, one

writes only the components vk or Ajk of vectors and tensors.

499 Definition
Given T ∈ Trs(V ):

T =
n∑

j1=1

· · ·
n∑

jr+s=1

T
jr+1···jr+s

j1···jr ej1 ⊗ ejr ⊗ ejr+1 · · · ⊗ ejr+s

The index notation of this tensor is
T

jr+1···jr+s

j1···jr
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10.1. Definition of index notation

The rules for expressing tensors in the index notations are as follows:

o Basis vectors ek and basis tensors (e.g. ek⊗ e∗
l ) are never written explicitly. (It is assumed that the

basis is fixed and known.)

o Instead of a vector v ∈ V , one writes its array of components vk with the superscript index. Cov-
ectors f∗ ∈ V ∗ are written fk with the subscript index. The index k runs over integers from 1 toN .
Components of vectors and tensors may be thought of as numbers.

o Tensors are written as multidimensional arrays of components with superscript or subscript in-
dices as necessary, for example Ajk ∈ V ∗ ⊗ V ∗ or Blm

k ∈ V ⊗ V ⊗ V ∗. Thus e.g. the Kronecker
delta symbol is written as δjk when it represents the identity operator 1̂V .

o Tensorswith subscript indices, like Aij , are called covariant, while tensorswith superscript indices,
like Ak, are called contravariant. Tensors with both types of indices, like Almn

lk , are called mixed
type.

o Subscript indices, rather than subscripted tensors, are also dubbed “covariant” and superscript
indices are dubbed “contravariant”.
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o For tensor invariance, a pair of dummy indices should in general be complementary in their vari-
ance type, i.e. one covariant and the other contravariant.

o As indicated earlier, tensor order is equal to the number of its indices while tensor rank is equal to
the number of its free indices; hence vectors (terms, expressions and equalities) are represented
by a single free index and rank-2 tensors are represented by two free indices. The dimension of a
tensor is determined by the range taken by its indices.

o The choice of indices must be consistent; each index corresponds to a particular copy of V or V ∗.
Thus it is wrong towrite vj = uk or vi+ui = 0. Correct equations are vj = uj and vi+ui = 0. This
disallowsmeaningless expressions such as v∗+u (one cannot add vectors fromdifferent spaces).

o Sums over indices such as
n∑

k=1

akbk are not written explicitly, the
∑

symbol is omitted, and the

Einstein summation convention is used instead: Summation over all values of an index is always
implied when that index letter appears once as a subscript and once as a superscript. In this case
the letter is called a dummy (ormute) index. Thus one writes fkvk instead of

∑
k

fkvk and Aj
kv

k

instead of
∑
k

Ajkvk.

o Summation is allowed only over one subscript and one superscript but never over two subscripts
or two superscripts andnever over three ormore coincident indices. This corresponds to requiring
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that we are only allowed to compute the canonical pairing of V and V ∗ but no other pairing. The
expression vkvk is not allowed because there is no canonical pairing of V and V , so, for instance,

the sum
n∑

k=1

vkvk depends on the choice of the basis. For the same reason (dependence on the

basis), expressions such as uiviwi or AiiBii are not allowed. Correct expressions are uiviwk and
AikBik.

o One needs to pay close attention to the choice and the position of the letters such as j, k, l,... used
as indices. Indices that are not repeated are free indices. The rank of a tensor expression is equal
to the number of free subscript and superscript indices. Thus Aj

kv
k is a rank 1 tensor (i.e. a vector)

because the expression Aj
kv

k has a single free index, j, and a summation over k is implied.

o The tensor product symbol ⊗ is never written. For example, if v ⊗ f∗ =
∑
jk

vjf
∗
kej ⊗ ek, one

writes vkfj to represent the tensorv⊗ f∗. The index letters in the expression vkfj are intentionally
chosen to be different (in this case, k and j) so that no summation would be implied. In other
words, a tensor product is written simply as a product of components, and the index letters are
chosen appropriately. Then one can interpret vkfj as simply the product of numbers. In particular,
it makes no difference whether one writes fjvk or vkfj . The position of the indices (rather than the
ordering of vectors) shows in every case how the tensor product is formed. Note that it is not
possible to distinguish V ⊗ V ∗ from V ∗ ⊗ V in the index notation.
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500 Example

It follows from the definition of δij that δijvj = vi. This is the index representation of the identity transfor-
mation 1̂v = v.

501 Example
Suppose w, x, y, and z are vectors from V whose components arewi, xi, yi, zi. What are the components
of the tensor w⊗ x + 2y⊗ z ∈ V ⊗ V ?

Solution: ▶ wixk +2yizk. (We need to choose another letter for the second free index, k, which corre-
sponds to the second copy of V in V ⊗ V .) ◀

502 Example
The operator Â ≡ 1̂V + λv⊗u∗ ∈ V ⊗ V ∗ acts on a vectorx ∈ V . Calculate the resulting vectory ≡ Âx.

In the index-free notation, the calculation is

y = Âx =
(
1̂V + λv⊗ u∗

)
x = x + λu∗ (x)v.

In the index notation, the calculation looks like this:

yk =
Ä
δkj + λvkuj

ä
xj = xk + λvkujx

j.

In this formula, j is a dummy index and k is a free index. We could have also written λxjvkuj instead of
λvkujx

j since the ordering of components makes no difference in the index notation.
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503 Example

In a physics book you find the following formula,

Hα
µν =

1

2

Ä
hβµν + hβνµ − hµνβ

ä
gαβ.

To what spaces do the tensorsH , g, h belong (assuming these quantities represent tensors)? Rewrite this
formula in the coordinate-free notation.

Solution: ▶ H ∈ V ⊗ V ∗ ⊗ V ∗, h ∈ V ∗ ⊗ V ∗ ⊗ V ∗, g ∈ V ⊗ V . Assuming the simplest case,

h = h∗
1 ⊗ h∗

2 ⊗ h∗
3, g = g1 ⊗ g2,

the coordinate-free formula is

H =
1

2
g1 ⊗

Ä
h∗
1 (g2)h∗

2 ⊗ h∗
3 + h∗

1 (g2)h∗
3 ⊗ h∗

2 − h∗
3 (g2)h∗

1 ⊗ h∗
2

ä
.

◀

10.1. Advantages and disadvantages of index notation

Index notation is conceptually easier than the index-free notation because one can imagine manipulat-
ing “merely” some tables of numbers, rather than “abstract vectors.” In otherwords,weareworkingwith
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less abstract objects. The price is thatweobscure the geometric interpretation ofwhatwe are doing, and
proofs of general theorems becomemore difficult to understand.

The main advantage of the index notation is that it makes computations with complicated tensors
quicker.

Some disadvantages of the index notation are:

o If the basis is changed, all components need to be recomputed. In textbooks that use the index
notation, quite some time is spent studying the transformation laws of tensor components under
a change of basis. If different basis are used simultaneously, confusion may result.

o The geometrical meaning of many calculations appears hidden behind a mass of indices. It is
sometimes unclear whether a long expression with indices can be simplified and how to proceed
with calculations.

Despite these disadvantages, the index notation enables one to perform practical calculations with
high-rank tensor spaces, such as those required in field theory and in general relativity. For this reason,
andalso forhistorical reasons (Einsteinused the indexnotationwhendeveloping the theoryof relativity),
most physics textbooks use the index notation. In some cases, calculations can be performed equally
quickly using index and index-free notations. In other cases, especiallywhenderiving general properties
of tensors, the index-free notation is superior.
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10.2. Tensor Revisited: Change of Coordinate

Vectors, covectors, linear operators, and bilinear forms are examples of tensors. They are multilinear
maps that are represented numerically when some basis in the space is chosen.

This numeric representation is specific to each of them: vectors and covectors are represented by
one-dimensional arrays, linear operators and quadratic forms are represented by two-dimensional ar-
rays. Apart from the number of indices, their position does matter. The coordinates of a vector are nu-
merated by one upper index, which is called the contravariant index. The coordinates of a covector are
numerated by one lower index, which is called the covariant index. In a matrix of bilinear form we use
two lower indices; therefore bilinear forms are called twice-covariant tensors. Linear operators are ten-
sors of mixed type; their components are numerated by one upper and one lower index. The number
of indices and their positions determine the transformation rules, i ̇eṫhe way the components of each
particular tensor behave under a change of basis. In the general case, any tensor is represented by a
multidimensional array with a definite number of upper indices and a definite number of lower indices.
Let’s denote these numbers by r and s. Thenwe have a tensor of the type (r, s), or sometimes the term
valency is used. A tensor of type (r, s), or of valency (r, s) is called an r-times contravariant and an
s-times covariant tensor. This is terminology; now let’s proceed to the exact definition. It is based on
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the following general transformation formulas:

Xi1... irj1... js =
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js X̃

h1... hr
k1... ks

, (10.1)

X̃i1... irj1... js =
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Ti1h1
. . . Tirhr

Sk1j1 . . . S
ks
js X

h1... hr
k1... ks

. (10.2)

504 Definition (Tensor Definition in Coordinate)
A (r + s)-dimensional array Xi1... irj1... js of real numbers and such that the components of this array obey the
transformation rules

Xi1... irj1... js =
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js X̃

h1... hr
k1... ks

, (10.3)

X̃i1... irj1... js =
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Ti1h1
. . . Tirhr

Sk1j1 . . . S
ks
js X

h1... hr
k1... ks

. (10.4)

under a change of basis is called tensor of type (r, s), or of valency (r, s).

Formula 10.4 is derived from 10.3, so it is sufficient to remember only one of them. Let it be the formula
10.3. Though huge, formula 10.3 is easy to remember.
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Indices i1, . . . , ir and j1, . . . , js are free indices. In right hand side of the equality 10.3 they are dis-
tributed inS-s andT -s, eachhavingonlyoneentryandeachkeeping itsposition, i ̇eu̇pper indices i1, . . . , ir
remain upper and lower indices j1, . . . , js remain lower in right hand side of the equality 10.3.

Other indices h1, . . . , hr and k1, . . . , ks are summation indices; they enter the right hand side of 10.3
pairwise: once as an upper index and once as a lower index, once in S-s or T -s and once in components
of array X̃h1... hr

k1... ks
.

When expressing Xi1... irj1... js through X̃h1... hr
k1... ks

each upper index is served by direct transition matrix S and
produces one summation in 10.3:

X... iα ...
... ... ... =

∑
. . .
∑n

hα=1
. . .
∑

. . . S iα
hα
. . . X̃... hα ...

... ... .... (10.5)

In a similar way, each lower index is served by inverse transition matrix T and also produces one sum-
mation in formula 10.3:

X... ... ...... jα ... =
∑

. . .
∑n

kα=1
. . .
∑

. . . Tkα jα . . . X̃
... ... ...
... kα .... (10.6)

Formulas 10.5 and 10.6 are the same as 10.3 and used to highlight how 10.3 is written. So tensors are
defined. Further we shall consider more examples showing that many well-known objects undergo the
definition 12.1.

505 Example
Verify that formulas for change of basis of vectors, covectors, linear transformation and bilinear forms are
special cases of formula 10.3. What are the valencies of vectors, covectors, linear operators, and bilinear
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10. Tensors in Coordinates

forms when they are considered as tensors.

506 Example
The δji is a tensor.

Solution: ▶
δ′ji = Aj

k(A
−1)liδ

k
l = Aj

k(A
−1)ki = δji

◀
507 Example

The ϵijk is a pseudo-tensor.

508 Example
Let aij be thematrix of some bilinear form a. Let’s denote by bij components of inversematrix for aij . Prove
that matrix bij under a change of basis transforms like matrix of twice-contravariant tensor. Hence it de-
termines tensor b of valency (2, 0). Tensor b is called a dual bilinear form for a.

10.2. Rank

The order of a tensor is identified by the number of its indices (e.g. Ai
jk is a tensor of order 3) which

normally identifies the tensor rank aswell. However, when contraction (see S 10.3.4) takes place once or
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10.2. Tensor Revisited: Change of Coordinate

more, theorderof the tensor is notaffectedbut its rank is reducedby two for eachcontractionoperation.1

■ “Zero tensor” is a tensor whose all components are zero.

■ “Unit tensor” or “unity tensor”, which is usually defined for rank-2 tensors, is a tensor whose all
elements are zero except the ones with identical values of all indices which are assigned the value
1.

■ While tensors of rank-0 are generally represented in a common formof light face non-indexed sym-
bols, tensors of rank ≥ 1 are represented in several forms and notations, the main ones are the
index-free notation, whichmay also be called direct or symbolic or Gibbs notation, and the indicial
notation which is also called index or component or tensor notation. The first is a geometrically
oriented notation with no reference to a particular reference frame and hence it is intrinsically in-
variant to the choice of coordinate systems, whereas the second takes an algebraic form based on
components identifiedby indices andhence thenotation is suggestive of anunderlying coordinate
system, althoughbeing a tensormakes it form-invariant under certain coordinate transformations

1In the literature of tensor calculus, rank and order of tensors are generally used interchangeably; however some authors
differentiate between the two as they assign order to the total number of indices, including repetitive indices, while they
keep rank to the number of free indices. We think the latter is better and hence we follow this convention in the present
text.
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10. Tensors in Coordinates

and therefore it possesses certain invariant properties. The index-free notation is usually identi-
fied by using bold face symbols, like a andB, while the indicial notation is identified by using light
face indexed symbols such as ai and Bij .

10.2. Examples of Tensors of Different Ranks

o Examples of rank-0 tensors (scalars) are energy, mass, temperature, volume and density. These
are totally identified by a single number regardless of any coordinate system and hence they are
invariant under coordinate transformations.

o Examples of rank-1 tensors (vectors) are displacement, force, electric field, velocity and accelera-
tion. These need for their complete identification a number, representing their magnitude, and
a direction representing their geometric orientation within their space. Alternatively, they can
be uniquely identified by a set of numbers, equal to the number of dimensions of the underly-
ing space, in reference to a particular coordinate system and hence this identification is system-
dependent although they still have system-invariant properties such as length.

o Examples of rank-2 tensors areKronecker delta (seeS 10.4.1), stress, strain, rate of strain and inertia
tensors. These require for their full identification a set of numbers each ofwhich is associatedwith
two directions.

514



10.3. Tensor Operations in Coordinates

o Examples of rank-3 tensors are the Levi-Civita tensor (see S 10.4.2) and the tensor of piezoelectric
moduli.

o Examples of rank-4 tensors are the elasticity or stiffness tensor, the compliance tensor and the
fourth-order moment of inertia tensor.

o Tensors of high ranks are relatively rare in science.

10.3. Tensor Operations in Coordinates

There aremany operations that can be performed on tensors to produce other tensors in general. Some
examples of these operations are addition/subtraction, multiplication by a scalar (rank-0 tensor), multi-
plication of tensors (each of rank> 0), contraction and permutation. Some of these operations, such as
addition andmultiplication, involvemore thanone tensorwhile others are performedona single tensor,
such as contraction and permutation.

In tensor algebra, division is allowed only for scalars, hence if the components of an indexed tensor

should appear in a denominator, the tensor should be redefined to avoid this, e.g. Bi =
1

Ai

.
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10. Tensors in Coordinates

10.3. Addition and Subtraction

Tensors of the same rank and type can be added algebraically to produce a tensor of the same rank and
type, e.g.

a = b+ c (10.7)

Ai = Bi − Ci (10.8)

Ai
j = Bi

j + Ci
j (10.9)

509 Definition
Given two tensors Yi1... irj1... js and Z

i1... ir
j1... js of the same type then we define their sum as

Xi1... irj1... js + Yi1... irj1... js = Zi1... irj1... js .

510 Theorem
Given two tensors Yi1... irj1... js and Z

i1... ir
j1... js of type (r, s) then their sum

Zi1... irj1... js = Xi1... irj1... js + Yi1... irj1... js .

is also a tensor of type (r, s).
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10.3. Tensor Operations in Coordinates

Proof.
Xi1... irj1... js =

n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js X̃

h1... hr
k1... ks

,

Yi1... irj1... js =
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js Ỹ

h1... hr
k1... ks

,

Then
Zi1... irj1... js =

n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js X̃

h1... hr
k1... ks

+
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js Ỹ

h1... hr
k1... ks

Zi1... irj1... js =
n∑
. . .

n∑
h1, ..., hr
k1, ..., ks

Si1h1
. . . Sirhr

Tk1j1 . . . T
ks
js

(
X̃h1... hr
k1... ks

+ Ỹh1... hr
k1... ks

)
■

Addition of tensors is associative and commutative:

(A + B) + C = A + (B + C) (10.10)

A + B = B + A (10.11)
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10. Tensors in Coordinates

10.3. Multiplication by Scalar

A tensor can be multiplied by a scalar, which generally should not be zero, to produce a tensor of the
same variance type and rank, e.g.

Aj
ik = aBj

ik (10.12)

where a is a non-zero scalar.

511 Definition
Given Xi1... irj1... js a tensor of type (r, s) and α a scalar we define the multiplication of Xi1... irj1... js by α as:

Yi1... irj1... js = α Xi1... irj1... js .

512 Theorem
Given Xi1... irj1... js a tensor of type (r, s) and α a scalar then

Yi1... irj1... js = α Xi1... irj1... js .

is also a tensor of type (r, s)

The proof of this Theorem is very similar to the proof of the Theorem 510 and the proof is left as an
exercise to the reader.
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10.3. Tensor Operations in Coordinates

As indicated above, multiplying a tensor by a scalarmeansmultiplying each component of the tensor
by that scalar.

Multiplication by a scalar is commutative, and associative whenmore than two factors are involved.

10.3. Tensor Product

Thismayalsobecalledouteror exterior ordirect ordyadicmultiplication, although someof thesenames
may be reserved for operations on vectors.

The tensor product is defined by a more tricky formula. Suppose we have tensor X of type (r, s) and
tensor Y of type (p, q), then we can write:

Zi1... ir+p

j1... js+q
= Xi1... irj1... js Y

ir+1... ir+p

js+1... js+q
.

Formula 10.3.3 produces new tensorZ of the type (r+ p, s+ q). It is called the tensor product of X and
Y and denoted Z = X⊗ Y.

513 Example

AiBj = Cij (10.13)

AijBkl = Cij
kl (10.14)
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10. Tensors in Coordinates

Direct multiplication of tensors is not commutative.

514 Example (Outer Product of Vectors)
Theouterproductof twovectors is equivalent toamatrixmultiplicationuvT , provided thatu is represented
as a column vector and v as a column vector. And so vT is a row vector.

u⊗ v = uvT =



u1

u2

u3

u4


ñ
v1 v2 v3

ô
=



u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

u4v1 u4v2 u4v3


. (10.15)

In index notation:

(uvT)ij = uivj

The outer product operation is distributive with respect to the algebraic sum of tensors:

A (B±C) = AB±AC & (B±C)A = BA±CA (10.16)

Multiplication of a tensor by a scalar (refer to S 10.3.2) may be regarded as a special case of direct
multiplication.
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10.3. Tensor Operations in Coordinates

The rank-2 tensor constructedas a result of thedirectmultiplicationof twovectors is commonly called
dyad.

Tensors may be expressed as an outer product of vectors where the rank of the resultant product is
equal to the number of the vectors involved (e.g. 2 for dyads and 3 for triads).

Not every tensor can be synthesized as a product of lower rank tensors.

10.3. Contraction

Contraction of a tensor of rank> 1 is to make two free indices identical, by unifying their symbols, and
perform summation over these repeated indices, e.g.

Aj
i contraction−−−−−−−−→ Ai

i (10.17)

Ajk
il contraction on jl−−−−−−−−−−−−→ Amk

im (10.18)

Contraction results in a reduction of the rank by 2 since it implies the annihilation of two free indices.
Therefore, the contraction of a rank-2 tensor is a scalar, the contraction of a rank-3 tensor is a vector, the
contraction of a rank-4 tensor is a rank-2 tensor, and so on.

For non-Cartesian coordinate systems, the pair of contracted indices should be different in their vari-
ance type, i.e. one upper and one lower. Hence, contraction of a mixed tensor of type (m,n) will, in
general, produce a tensor of type (m− 1, n− 1).
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10. Tensors in Coordinates

A tensor of type (p, q) can have p× q possible contractions, i.e. one contraction for each pair of lower
and upper indices.

515 Example (Trace)
Inmatrix algebra, taking the trace (summing the diagonal elements) canalso be consideredas contraction
of the matrix, which under certain conditions can represent a rank-2 tensor, and hence it yields the trace
which is a scalar.

10.3. Inner Product

On taking the outer product of two tensors of rank≥ 1 followed by a contraction on two indices of the
product, an inner product of the two tensors is formed. Hence if one of the original tensors is of rank-m
and the other is of rank-n, the inner product will be of rank-(m+ n− 2).

The inner product operation is usually symbolized by a single dot between the two tensors, e.g. A ·B,
to indicate contraction following outer multiplication.

In general, the inner product is not commutative. When one or both of the tensors involved in the
inner product are of rank> 1 the order of the multiplicands does matter.

The inner product operation is distributive with respect to the algebraic sum of tensors:

A · (B±C) = A ·B±A ·C & (B±C) ·A = B ·A±C ·A (10.19)
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10.3. Tensor Operations in Coordinates

516 Example (Dot Product)
A commonexampleof contraction is thedot product operationon vectorswhich canbe regardedasadirect
multiplication (refer to S 10.3.3) of the two vectors, which results in a rank-2 tensor, followed by a contrac-
tion.

517 Example (Matrix acting on vectors)
Another common example (from linear algebra) of inner product is the multiplication of a matrix (repre-
senting a rank-2 tensor) by a vector (rank-1 tensor) to produce a vector, e.g.

[Ab] k
ij = Aijb

k contraction on jk−−−−−−−−−−−−−→ [A · b]i = Aijb
j (10.20)

Themultiplication of two n× nmatrices is another example of inner product (see Eq. ??).
For tensors whose outer product produces a tensor of rank > 2, various contraction operations be-

tween different sets of indices can occur and hence more than one inner product, which are different in
general, can be defined. Moreover, when the outer product produces a tensor of rank> 3more than one
contraction can take place simultaneously.

10.3. Permutation

A tensor may be obtained by exchanging the indices of another tensor, e.g. transposition of rank-2 ten-
sors.
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10. Tensors in Coordinates

Obviously, tensor permutation applies only to tensors of rank≥ 2.
The collection of tensors obtained by permuting the indices of a basic tensor may be called isomers.

10.4. Kronecker and Levi-Civita Tensors

These tensors are of particular importance in tensor calculus due to their distinctive properties and
unique transformation attributes. They are numerical tensors with fixed components in all coordinate
systems. The first is called Kronecker delta or unit tensor, while the second is called Levi-Civita

The δ and ϵ tensors are conserved under coordinate transformations and hence they are the same for
all systems of coordinate.2

10.4. Kronecker δ

This is a rank-2 symmetric tensor in all dimensions, i.e.

δij = δji (i, j = 1, 2, . . . , n) (10.21)

Similar identities apply to the contravariant andmixed types of this tensor.

2For the permutation tensor, the statement applies to proper coordinate transformations.
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10.4. Kronecker and Levi-Civita Tensors

It is invariant in all coordinate systems, and hence it is an isotropic tensor.3

It is defined as:

δij =


1 (i = j)

0 (i ̸= j)
(10.22)

and hence it can be considered as the identity matrix, e.g. for 3D

î
δij
ó
=


δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =


1 0 0

0 1 0

0 0 1

 (10.23)

Covariant, contravariant andmixed type of this tensor are the same, that is

δij = δ j
i = δij = δij (10.24)

10.4. Permutation ϵ

This is an isotropic tensor. It has a rank equal to the number of dimensions; hence, a rank-n permutation
tensor has nn components.
3In fact it is more general than isotropic as it is invariant even under improper coordinate transformations.
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10. Tensors in Coordinates

It is totally anti-symmetric in each pair of its indices, i.e. it changes sign on swapping any two of its
indices, that is

ϵi1...ik...il...in = −ϵi1...il...ik...in (10.25)

The reason is that any exchange of two indices requires an even/odd number of single-step shifts to the
right of the first index plus an odd/even number of single-step shifts to the left of the second index, so
the total number of shifts is odd and hence it is an odd permutation of the original arrangement.

It is a pseudo tensor since it acquires a minus sign under improper orthogonal transformation of co-
ordinates (inversion of axes with possible superposition of rotation).

Definition of rank-2 ϵ (ϵij):

ϵ12 = 1, ϵ21 = −1 & ϵ11 = ϵ22 = 0 (10.26)

Definition of rank-3 ϵ (ϵijk):

ϵijk =


1 (i, j, k is even permutation of 1,2,3)

−1 (i, j, k is odd permutation of 1,2,3)

0 (repeated index)

(10.27)

The definition of rank-n ϵ (ϵi1i2...in) is similar to the definition of rank-3 ϵ considering index repetition
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10.4. Kronecker and Levi-Civita Tensors

and even or odd permutations of its indices (i1, i2, · · · , in) corresponding to (1, 2, · · · , n), that is

ϵi1i2...in =


1

î
(i1, i2, . . . , in) is even permutation of (1, 2, . . . , n)

ó
−1

î
(i1, i2, . . . , in) is odd permutation of (1, 2, . . . , n)

ó
0 [repeated index]

(10.28)

ϵ may be considered a contravariant relative tensor of weight +1 or a covariant relative tensor of
weight−1. Hence, in 2, 3 and n dimensional spaces respectively we have:

ϵij = ϵij (10.29)

ϵijk = ϵijk (10.30)

ϵi1i2...in = ϵi1i2...in (10.31)

10.4. Useful Identities Involving δ or/and ϵ

Identities Involving δ

When an index of the Kronecker delta is involved in a contraction operation by repeating an index in
another tensor in its own term, the effect of this is to replace the shared index in the other tensor by the
other index of the Kronecker delta, that is

δijAj = Ai (10.32)
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10. Tensors in Coordinates

In such cases the Kronecker delta is described as the substitution or index replacement operator. Hence,

δijδjk = δik (10.33)

Similarly,
δijδjkδki = δikδki = δii = n (10.34)

where n is the space dimension.
Because the coordinates are independent of each other:

∂xi
∂xj

= ∂jxi = xi,j = δij (10.35)

Hence, in an n dimensional space we have

∂ixi = δii = n (10.36)

For orthonormal Cartesian systems:

∂xi

∂xj
=
∂xj

∂xi
= δij = δij (10.37)

For a set of orthonormal basis vectors in orthonormal Cartesian systems:

ei · ej = δij (10.38)
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10.4. Kronecker and Levi-Civita Tensors

Thedouble inner product of twodyads formedby orthonormal basis vectors of an orthonormal Carte-
sian system is given by:

eiej : ekel = δikδjl (10.39)

Identities Involving ϵ

For rank-3 ϵ:

ϵijk = ϵkij = ϵjki = −ϵikj = −ϵjik = −ϵkji (sense of cyclic order) (10.40)

These equations demonstrate the fact that rank-3 ϵ is totally anti-symmetric in all of its indices since a
shift of any two indices reverses the sign. This also reflects the fact that the above tensor systemhas only
one independent component.

For rank-2 ϵ:

ϵij = (j − i) (10.41)

For rank-3 ϵ:

ϵijk =
1

2
(j − i) (k − i) (k − j) (10.42)

For rank-4 ϵ:

ϵijkl =
1

12
(j − i) (k − i) (l − i) (k − j) (l − j) (l − k) (10.43)
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For rank-n ϵ:

ϵa1a2···an =
n−1∏
i=1

 1
i!

n∏
j=i+1

Ä
aj − ai

ä =
1

S(n− 1)

∏
1≤i<j≤n

Ä
aj − ai

ä
(10.44)

where S(n− 1) is the super-factorial function of (n− 1)which is defined as

S(k) =
k∏

i=1

i! = 1! · 2! · . . . · k! (10.45)

A simpler formula for rank-n ϵ can be obtained from the previous one by ignoring the magnitude of the
multiplication factors and taking only their signs, that is

ϵa1a2···an =
∏

1≤i<j≤n

σ
Ä
aj − ai

ä
= σ

Ñ ∏
1≤i<j≤n

Ä
aj − ai

äé
(10.46)

where

σ(k) =


+1 (k > 0)

−1 (k < 0)

0 (k = 0)

(10.47)

For rank-n ϵ:
ϵi1i2···in ϵi1i2···in = n! (10.48)
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10.4. Kronecker and Levi-Civita Tensors

because this is the sum of the squares of ϵi1i2···in over all the permutations of n different indices which is
equal to n!where the value of ϵ of each one of these permutations is either+1 or−1 and hence in both
cases their square is 1.

For a symmetric tensor Ajk:

ϵijkAjk = 0 (10.49)

because an exchange of the two indices of Ajk does not affect its value due to the symmetry whereas a
similar exchange in these indices in ϵijk results in a sign change; hence each term in the sum has its own
negative and therefore the total sumwill vanish.

ϵijkAiAj = ϵijkAiAk = ϵijkAjAk = 0 (10.50)

because, due to the commutativity of multiplication, an exchange of the indices inA’s will not affect the
value but a similar exchange in the corresponding indices of ϵijk will cause a change in sign; hence each
term in the sum has its own negative and therefore the total sumwill be zero.

For a set of orthonormal basis vectors in a 3D space with a right-handed orthonormal Cartesian coor-
dinate system:

ei × ej = ϵijkek (10.51)

ei ·
Ä
ej × ek

ä
= ϵijk (10.52)
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Identities Involving δ and ϵ

ϵijkδ1iδ2jδ3k = ϵ123 = 1 (10.53)

For rank-2 ϵ:

ϵijϵkl =

∣∣∣∣∣∣∣∣
δik δil

δjk δjl

∣∣∣∣∣∣∣∣ = δikδjl − δilδjk (10.54)

ϵilϵkl = δik (10.55)

ϵijϵij = 2 (10.56)

For rank-3 ϵ:

ϵijkϵlmn =

∣∣∣∣∣∣∣∣∣∣∣∣

δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣∣∣∣∣
= δilδjmδkn+δimδjnδkl+δinδjlδkm−δilδjnδkm−δimδjlδkn−δinδjmδkl (10.57)

ϵijkϵlmk =

∣∣∣∣∣∣∣∣
δil δim

δjl δjm

∣∣∣∣∣∣∣∣ = δilδjm − δimδjl (10.58)
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The last identity is very useful in manipulating and simplifying tensor expressions and proving vector
and tensor identities.

ϵijkϵljk = 2δil (10.59)

ϵijkϵijk = 2δii = 6 (10.60)

since the rank and dimension of ϵ are the same, which is 3 in this case.

For rank-n ϵ:

ϵi1i2···in ϵj1j2···jn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δi1j1 δi1j2 · · · δi1jn

δi2j1 δi2j2 · · · δi2jn
...

... . . . ...

δinj1 δinj2 · · · δinjn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10.61)

According to Eqs. 10.27 and 10.32:

ϵijkδij = ϵijkδik = ϵijkδjk = 0 (10.62)
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10.4. ⋆ Generalized Kronecker delta

The generalized Kronecker delta is defined by:

δi1...inj1...jn =


1

î
(j1 . . . jn) is even permutation of (i1 . . . in)

ó
−1

î
(j1 . . . jn) is odd permutation of (i1 . . . in)

ó
0 [repeated j’s]

(10.63)

It can also be defined by the following n× n determinant:

δi1...inj1...jn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δi1j1 δi1j2 · · · δi1jn

δi2j1 δi2j2 · · · δi2jn
...

... . . . ...

δinj1 δinj2 · · · δinjn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10.64)

where the δij entries in the determinant are the normal Kronecker delta as defined by Eq. 10.22.
Accordingly, the relationbetween the rank-nϵand thegeneralizedKroneckerdelta inanndimensional

space is given by:

ϵi1i2...in = δ1 2...ni1i2...in
& ϵi1i2...in = δi1i2...in1 2...n (10.65)
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Hence, the permutation tensor ϵmay be considered as a special case of the generalized Kronecker delta.
Consequently the permutation symbol can be written as an n× n determinant consisting of the normal
Kronecker deltas.

If we define
δijlm = δijklmk (10.66)

then Eq. 10.58 will take the following form:

δijlm = δilδ
j
m − δimδ

j
l (10.67)

Other identities involving δ and ϵ can also be formulated in terms of the generalized Kronecker delta.
On comparing Eq. 10.61 with Eq. 10.64 we conclude

δi1...inj1...jn = ϵi1...in ϵj1...jn (10.68)

10.5. Types of Tensors Fields

In the following subsections we introduce a number of tensor types and categories and highlight their
main characteristics and differences. These types and categories are not mutually exclusive and hence
they overlap in general; moreover they may not be exhaustive in their classes as some tensors may not
instantiate any one of a complementary set of types such as being symmetric or anti-symmetric.
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10.5. Isotropic and Anisotropic Tensors

Isotropic tensors are characterized by the property that the values of their components are invariant
under coordinate transformation by proper rotation of axes. In contrast, the values of the components
of anisotropic tensors are dependent on the orientation of the coordinate axes. Notable examples of
isotropic tensors are scalars (rank-0), the vector 0 (rank-1), Kronecker delta δij (rank-2) and Levi-Civita
tensor ϵijk (rank-3). Many tensors describing physical properties of materials, such as stress and mag-
netic susceptibility, are anisotropic.

Direct and inner products of isotropic tensors are isotropic tensors.
The zero tensor of any rank is isotropic; therefore if the components of a tensor vanish in a particular

coordinate system they will vanish in all properly and improperly rotated coordinate systems.4 Conse-
quently, if the components of two tensors are identical in a particular coordinate system they are iden-
tical in all transformed coordinate systems.

As indicated, all rank-0 tensors (scalars) are isotropic. Also, the zero vector, 0, of any dimension is
isotropic; in fact it is the only rank-1 isotropic tensor.

4For improper rotation, this is more general than being isotropic.

536



10.5. Types of Tensors Fields

518 Theorem
Any isotropic second order tensor Tij we can be written as

Tij = λδij

for some scalar λ.

Proof. First we will prove that T is diagonal. LetR be the reflection in the hyperplane perpendicular to
the j-th vector in the standard ordered basis.

Rkl =


−1 if k = l = j

δkl otherwise

therefore

R = RT ∧R2 = I ⇒ RTR = RRT = I

Therefore:

Tij =
∑
p,q

RipRjqTpq = RiiRjjTiji ̸= j ⇒ Tij = −Tij ⇒ Tij = 0

Now we will prove that Tjj = T11. Let P be the permutation matrix that interchanges the 1st and j-th
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10. Tensors in Coordinates

rows when acrting by leftmultiplication.

Pkl =


δjl if k = 1

δ1l if k = j

δkl otherwise

(P TP )kl =
∑
m

P T
kmPml =

∑
m

PmkPml =
∑

m ̸=1,j

PmkPml+
∑

m=1,j

PmkPml =
∑

m ̸=1,j

δmkδml+δjkδjl+δ1kδ1l =
∑
m

δmkδml = δkl

Therefore:
Tjj =

∑
p,q

PjpPjqTpq =
∑
q

P 2
jqTqq =

∑
q

δ21qTqq =
∑
q

δ1qTqq = T11

■

10.5. Symmetric and Anti-symmetric Tensors

These types of tensor apply to high ranks only (rank≥ 2). Moreover, these types are not exhaustive, even
for tensors of ranks≥ 2, as there are high-rank tensors which are neither symmetric nor anti-symmetric.

A rank-2 tensor Aij is symmetric iff for all i and j

Aji = Aij (10.69)
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and anti-symmetric or skew-symmetric iff

Aji = −Aij (10.70)

Similar conditions apply to contravariant type tensors (refer also to the following).
A rank-n tensor Ai1...in is symmetric in its two indices ij and il iff

Ai1...il...ij ...in = Ai1...ij ...il...in (10.71)

and anti-symmetric or skew-symmetric in its two indices ij and il iff

Ai1...il...ij ...in = −Ai1...ij ...il...in (10.72)

Any rank-2 tensor Aij can be synthesized from (or decomposed into) a symmetric part A(ij) (marked
with round brackets enclosing the indices) and an anti-symmetric part A[ij] (marked with square brack-
ets) where

Aij = A(ij) + A[ij], A(ij) =
1

2

Ä
Aij + Aji

ä
& A[ij] =

1

2

Ä
Aij − Aji

ä
(10.73)

A rank-3 tensor Aijk can be symmetrized by

A(ijk) =
1

3!

Ä
Aijk + Akij + Ajki + Aikj + Ajik + Akji

ä
(10.74)
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and anti-symmetrized by

A[ijk] =
1

3!

Ä
Aijk + Akij + Ajki − Aikj − Ajik − Akji

ä
(10.75)

A rank-n tensor Ai1...in can be symmetrized by

A(i1...in) =
1

n!
(sum of all even & odd permutations of indices i’s) (10.76)

and anti-symmetrized by

A[i1...in] =
1

n!
(sum of all even permutations minus sum of all odd permutations) (10.77)

For a symmetric tensor Aij and an anti-symmetric tensor Bij (or the other way around) we have

AijBij = 0 (10.78)

The indiceswhoseexchangedefines the symmetry andanti-symmetry relations shouldbeof the same
variance type, i.e. both upper or both lower.

The symmetry and anti-symmetry characteristic of a tensor is invariant under coordinate transforma-
tion.

A tensor of high rank (> 2) may be symmetrized or anti-symmetrized with respect to only some of its
indices instead of all of its indices, e.g.

A(ij)k =
1

2

Ä
Aijk + Ajik

ä
& A[ij]k =

1

2

Ä
Aijk − Ajik

ä
(10.79)
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A tensor is totally symmetric iff
Ai1...in = A(i1...in) (10.80)

and totally anti-symmetric iff
Ai1...in = A[i1...in] (10.81)

For a totally skew-symmetric tensor (i.e. anti-symmetric in all of its indices), nonzero entries can occur
only when all the indices are different.
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11.
Tensor Calculus

11.1. Tensor Fields

In many applications, especially in differential geometry and physics, it is natural to consider a tensor
with components that are functions of the point in a space. This was the setting of Ricci’s original work.
In modernmathematical terminology such an object is called a tensor field and often referred to simply
as a tensor.
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11. Tensor Calculus

519 Definition
A tensor field of type (r, s) is a map T : V → T r

s (V ).

The space of all tensor fields of type (r, s) is denoted T r
s (V ). In this way, given T ∈ T r

s (V ), if we apply
this to a point p ∈ V , we obtain T (p) ∈ T r

s (V )

It’s usual to write the point p as an index:

Tp : (v1, . . . , ωn) 7→ Tp(v1, . . . , ωn) ∈ R

520 Example

■ If f ∈ T 0
0 (V ) then f is a scalar function.

■ If T ∈ T 0
1 (V ) then T is a vector field.

■ If T ∈ T 1
0 (V ) then T is called differential form of rank 1.

521 Example

Mij =
x x+ y

x− y2 x
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11.1. Tensor Fields

Differential Nowwe will construct the one of the most important tensor field: the differential.
Given a differentiable scalar function f the directional derivative

Dvf(p) :=
d

dt
f(p+ tv)

∣∣∣∣∣
t=0

is a linear function of v.

(Dv+wf)(p) = (Dvf)(p) + (Dwf)(p) (11.1)

(Dcvf)(p) = c(Dvf)(p) (11.2)

As we already know the directional derivative is the Jacobian applied to the vector

Dvf(p) = Dfp(v) = [∂1f, . . . ∂nf ][v1, . . . , vn]
T

In other words Dvf(p) ∈ T 1
0 (V )

522 Definition
Let f : V → R be a differentiable function. The differential of f , denoted by df , is the differential form
defined by

dfpv = Dvf(p).
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11. Tensor Calculus

Clearly, df ∈ T 1
0 (V )

Let {u1, u2, . . . , un} be a coordinate system. Since the coordinates {u1, u2, . . . , un} are themselves
functions, we define the associated differential-forms {du1, du2, . . . , dun}.

523 Proposition
Let{u1, u2, . . . , un}bea coordinate systemand

∂r
∂ui

(p) the correspondingbasis ofV . Then thedifferential-

forms {du1, du2, . . . , dun} are the corresponding dual basis:

duip
(
∂r
∂uj

(p)

)
= δji

Since
∂ui

∂uj
= δij , it follows that

df =
n∑

i=1

∂f

∂ui
dui.

We also have the following product rule

d(fg) = (df)g + f(dg)

As consequence of Theorem 524 and Proposition 523 we have:
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11.1. Tensor Fields

524 Theorem
Given T ∈ T r

s (V ) be a (r, s) tensor. Then T can be expressed in coordinates as:

T =
n∑

j1=1

· · ·
n∑

jn=1

Aj1···jr
jr+1···jnduj1 ⊗ dujr ⊗ ∂r

∂ujr+1

(p) · · · ⊗ ∂r

∂ujr+s

(p)

11.1. Change of Coordinates

Let {u1, u2, . . . , un} and {ū1, ū2, . . . , ūn} two coordinates system and { ∂r
∂ui

(p)} and { ∂r
∂ūi

(p)} the basis

of V with {duj} and {dūj} are the corresponding dual basis:
By the chain rule we have that the vectors change of basis as:

∂r
∂ūj

(p) =
∂ui
∂ūj

(p)
∂r
∂ui

(p)

So the matrix of change of basis is:

Aj
i =

∂ui
∂ūj

And the covectors changes by the inverse: Ä
A−1

äj
i
=
∂ūj
∂ui
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11. Tensor Calculus

525 Theorem (Change of Basis For Tensor Fields)
Let {u1, u2, . . . , un} and {ū1, ū2, . . . , ūn} two coordinates system and T a tensor

T̂
i′1...i

′
p

j′1...j
′
q
(ū1, . . . , ūn) =

∂ūi
′
1

∂ui1
· · · ∂ū

i′p

∂uip
∂uj1

∂ūj
′
1
· · · ∂u

jq

∂ūj
′
q
T

i1...ip
j1...jq (u

1, . . . , un).

526 Example (Contravariance)
The tangent vector to a curve is a contravariant vector.

Solution: ▶ Let the curve be given by the parameterization xi = xi(t). Then the tangent vector to the
curve is

T i =
dxi

dt
Under a change of coordinates, the curve is given by

x′i = x′i(t) = x′i(x1(t), · · · , xn(t))

and the tangent vector in the new coordinate system is given by:

T ′i =
dx′i

dt

By the chain rule,
dx′i

dt
=
∂x′i

∂xj
dxj

dt
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11.1. Tensor Fields

Therefore,

T ′i = T j ∂x
′i

∂xj

which shows that the tangent vector transforms contravariantly and thus it is a contravariant vector. ◀

527 Example (Covariance)
The gradient of a scalar field is a covariant vector field.

Solution: ▶ Let ϕ(x) be a scalar field. Then let

G = ∇ϕ =

Ç
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3
, · · · , ∂ϕ

∂xn

å
thus

Gi =
∂ϕ

∂xi

In the primed coordinate system, the gradient is

G′
i =

∂ϕ′

∂x′i

where ϕ′ = ϕ′(x′) = ϕ(x(x′)) By the chain rule,

∂ϕ′

∂x′i
=

∂ϕ

∂xj
∂xj

∂x′i
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11. Tensor Calculus

Thus

G′
i = Gj

∂xj

∂x′i

which shows that the gradient is a covariant vector.
◀

528 Example
A covariant tensor has components xy, z2, 3yz − x in rectangular coordinates. Write its components in
spherical coordinates.

Solution: ▶ LetAi denote its coordinates in rectangular coordinates (x1, x2, x3) = (x, y, z).

A1 = xy A2 = z2, A3 = 3y − x

Let Āk denote its coordinates in spherical coordinates (x̄1, x̄2, x̄3) = (r, ϕ, θ):
Then

Āk =
∂xj

∂x̄k
Aj

The relation between the two coordinates systems are given by:

x = r sinϕ cos θ; y = r sinϕ sin θ; z = r cosϕ
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11.1. Tensor Fields

And so:

Ā1 =
∂x1

∂x̄1
A1 +

∂x2

∂x̄1
A2 +

∂x3

∂x̄1
A3 (11.3)

= sinϕ cos θ(xy) + sinϕ sin θ(z2) + cosϕ(3y − x) (11.4)

= sinϕ cos θ(r sinϕ cos θ)(r sinϕ sin θ) + sinϕ sin θ(r cosϕ)2 (11.5)

+ cosϕ(3r sinϕ sin θ − r sinϕ cos θ) (11.6)

Ā2 =
∂x1

∂x̄2
A1 +

∂x2

∂x̄2
A2 +

∂x3

∂x̄2
A3 (11.7)

= r cosϕ cos θ(xy) + r cosϕ sin θ(z2) +−r sinϕ(3y − x) (11.8)

= r cosϕ cos θ(r sinϕ cos θ)(r sinϕ sin θ) + r cosϕ sin θ(r cosϕ)2 (11.9)

+ r sinϕ(3r sinϕ sin θ − r sinϕ cos θ) (11.10)

Ā3 =
∂x1

∂x̄3
A1 +

∂x2

∂x̄3
A2 +

∂x3

∂x̄3
A3 (11.11)

= −r sinϕ sin θ(xy) + r sinϕ cos θ(z2) + 0) (11.12)

= −r sinϕ sin θ(r sinϕ cos θ)(r sinϕ sin θ) + r sinϕ cos θ(r cosϕ)2 (11.13)

(11.14)

◀
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11. Tensor Calculus

11.2. Derivatives

In this section we consider two different types of derivatives of tensor fields: differentiation with re-
spect to spacial variables x1, . . . , xn and differentiation with respect to parameters other than the spa-
tial ones.

The second type of derivatives are simpler to define. Suppose we have tensor field T of type (r, s)

and depending on the additional parameter t (for instance, this could be a time variable). Then, upon
choosing some Cartesian coordinate system, we can write

∂X i1... ir
j1... js

∂t
= lim

h→0

X i1... ir
j1... js(t+ h, x1, . . . , xn)−X i1... ir

j1... js(t, x
1, . . . , xn)

h
. (11.15)

The lefthand sideof 11.15 is a tensor since the fraction in right hand side is constructedbymeansof two
tensorial operations: difference and scalarmultiplication. Taking the limith→ 0preserves the tensorial
nature of this fraction since the matrices of change of coordinates are time-independent.

So the differentiation with respect to external parameters is a tensorial operation producing new ten-
sors from existing ones.

Now let’s consider the spacial derivative of tensor field T , e.g, the derivative with respect to x1. In this
case we want to write the derivative as

∂T i1... ir
j1... js

∂x1
= lim

h→0

T i1... ir
j1... js (x

1 + h, . . . , xn)− T i1... ir
j1... js (x

1, . . . , xn)

h
, (11.16)
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but in numerator of the fraction in the right hand side of 11.16 we get the difference of two tensors bound
to different points of space: the point x1, . . . , xn and the point x1 + h, . . . , xn.

In general we can’t sum the coordinates of tensors defined in different points since these tensors are
written with respect to distinct basis of vector and covectors, as both basis varies with the point. In
Cartesian coordinate system we don’t have this dependence. And both tensors are written in the same
basis and everything is well defined.

We now claim:

529 Theorem
For any tensor field T of type (r, s) partial derivatives with respect to spacial variables u1, . . . , un

∂

∂ua
· · · ∂

∂xc︸ ︷︷ ︸
m

T i1... ir
j1... js ,

in any Cartesian coordinate system represent another tensor field of the type (r, s+m).

Proof. Since T is a Tensor

T
i1...ip
j1...jq (u

1, . . . , un) =
∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn).

and so:
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∂

∂ua
T

i1...ip
j1...jq (u

1, . . . , un) =
∂

∂ua

Ñ
∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn)

é
(11.17)

=
∂

∂ua

Ñ
∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq

é
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn)+ (11.18)

∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq
∂

∂ua
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn) (11.19)

We are assuming that the matrices

∂uis

∂ūi′s
∂ūj

′
l

∂ujl

are constant matrices.

And so

∂

∂ua
∂uis

∂ūi′s
= 0

∂

∂ua
∂ūj

′
l

∂ujl
= 0

Hence

∂

∂ua

Ñ
∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq

é
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn) = 0

554



11.2. Derivatives

And

∂

∂ua
T

i1...ip
j1...jq (u

1, . . . , un) =
∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq
∂

∂ua
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn) (11.20)

=
∂ui1

∂ūi
′
1
· · · ∂u

ip

∂ūi
′
p

∂ūj
′
1

∂uj1
· · · ∂ū

j′q

∂ujq
∂ū′a
∂ua

[
∂

∂ū′a
T̂

i′1...i
′
p

j′1...j
′
q
(ū1, . . . , ūn)

]
(11.21)

■

530 Remark
We note that in general the partial derivative is not a tensor. Given a vector field

v = vj
∂r
∂uj

,

then
∂v
∂ui

=
∂vj

∂ui
∂r
∂uj

+ vj
∂2r

∂ui ∂uj
.

The term
∂2r

∂ui ∂uj
in general is not null if the coordinate system is not the Cartesian.

531 Example
Calculate

∂xm∂λn(Aijλixj +Bijxiλj)
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Solution: ▶

∂xm∂λn(Aijλixj +Bijxiλj) = Aijδinδjm +Bijδimδjn (11.22)

= Anm +Bmn (11.23)

◀

532 Example
Prove that if Fik is an antisymmetric tensor then

Tijk = ∂iFjk + ∂jFki + ∂kFij

is a tensor .

Solution: ▶
The tensor Fik changes as:

Fjk =
∂xj

∂x′a
∂xk

∂x′b
F̄ab
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Then

∂iFjk = ∂i

Ñ
∂xj

∂x′a
∂xk

∂x′b
F̄ab

é
(11.24)

= ∂i

Ñ
∂xj

∂x′a
∂xk

∂x′b

é
F̄ab +

∂xj

∂x′a
∂xk

∂x′b
∂iF̄ab (11.25)

= ∂i

Ñ
∂xj

∂x′a
∂xk

∂x′b

é
F̄ab +

∂xj

∂x′a
∂xk

∂x′b
∂xi

∂x′a
∂aF̄ab (11.26)

The tensor

Tijk = ∂iFjk + ∂jFki + ∂kFij

is totally antisymmetric under any index pair exchange. Now perform a coordinate change, Tijk will
transform as

Tabc =
∂xi

∂x′a
∂xj

∂x′b
∂xk

∂x′c
Tijk + Iabc

where this Iabc is given by:

Iabc =
∂xi

∂x′a
∂i(

∂xj

∂x′b
∂xk

∂x′c
)Fjk + · · ·
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such Iabcwill clearly be also totally antisymmetric under exchange of any pair of the indices a, b, c. Notice
now that we can rewrite:

Iabc =
∂

∂x′a
(
∂xj

∂x′b
∂xk

∂x′c
)Fjk + · · · =

∂2xj

∂x′ax′b
∂xk

∂x′c
Fjk +

∂xj

∂x′b
∂2xj

∂x′ax′c
Fjk + · · ·

and they all vanish because the object is antisymmetric in the indices a, b, c while the mixed partial
derivatives are symmetric (remember that an object both symmetric and antisymmetric is zero), hence
Tijk is a tensor. ◀

533 Problem
Give amore detailed explanation of why the time derivative of a tensor of type (r, s) is tensor of type (r, s).

11.3. Integrals and the Tensor Divergence Theorem

It is also straightforward to do integrals. Since we can sum tensors and take limits, the definition of a
tensor-valued integral is straightforward.

For example,
ˆ
V

Tij···k(x) dV is a tensor of the same rank as Tij···k (think of the integral as the limit of

a sum).
It is easy to generalize the divergence theorem from vectors to tensors.
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534 Theorem (Divergence Theorem for Tensors)
Let Tijk··· be a continuously differentiable tensor defined on a domain V with a piecewise-differentiable
boundary (i.e. for almost all points, we have a well-defined normal vector nl), then we have

ˆ
S

Tij···kℓn
ℓ dS =

ˆ
V

∂

∂xℓ
(Tij···kℓ) dV,

with n being an outward pointing normal.

The regular divergence theorem is the case where T has one index and is a vector field.
Proof. The tensor form of the divergence theorem can be obtained applying the usual divergence the-
orem to the vector field v defined by vℓ = aibj · · · ckTij···kℓ, where a,b, · · · , c are fixed constant vectors.

Then

∇ · v =
∂vℓ
∂xℓ

= aibj · · · ck ∂

∂xℓ
T ij···kℓ,

and

n · v = nℓvℓ = aibj · · · ckTij···kℓnℓ.

Since a,b, · · · , c are arbitrary, therefore they can be eliminated, and the tensor divergence theorem fol-
lows. ■
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11.4. Metric Tensor

This is a rank-2 tensor which may also be called the fundamental tensor.
The main purpose of the metric tensor is to generalize the concept of distance to general curvilinear

coordinate frames andmaintain the invariance of distance in different coordinate systems.
In orthonormal Cartesian coordinate systems the distance element squared, (ds)2, between two in-

finitesimallyneighboringpoints in space, onewith coordinatesxi and theotherwith coordinatesxi+dxi,
is given by

(ds)2 = dxidxi = δijdx
idxj (11.27)

This definition of distance is the key to introducing a rank-2 tensor, gij , called the metric tensor which,
for a general coordinate system, is defined by

(ds)2 = gijdx
idxj (11.28)

Themetric tensor has also a contravariant form, i.e. gij .
The components of the metric tensor are given by:

gij = êi · êj & gij = êi · êj (11.29)

where the indexed ê are the covariant and contravariant basis vectors:

êi =
∂r
∂ui

& êi = ∇ui (11.30)
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11.4. Metric Tensor

where r is the position vector in Cartesian coordinates and ui is a generalized curvilinear coordinate.
The mixed type metric tensor is given by:

gij = êi · êj = δij & g j
i = êi · êj = δ j

i (11.31)

and hence it is the same as the unity tensor.
For a coordinate system in which themetric tensor can be cast in a diagonal formwhere the diagonal

elements are±1 the metric is called flat.
For Cartesian coordinate systems, which are orthonormal flat-space systems, we have

gij = δij = gij = δij (11.32)

Themetric tensor is symmetric, that is

gij = gji & gij = gji (11.33)

Thecontravariantmetric tensor is used for raising indicesof covariant tensors and thecovariantmetric
tensor is used for lowering indices of contravariant tensors, e.g.

Ai = gijAj Ai = gijA
j (11.34)

where themetric tensoracts, likeaKroneckerdelta, asan index replacementoperator. Hence, any tensor
can be cast into a covariant or a contravariant form, as well as a mixed form. However, the order of the
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11. Tensor Calculus

indices should be respected in this process, e.g.

Ai
j = gjkA

ik ̸= A i
j = gjkA

ki (11.35)

Some authors insert dots (e.g. A· i
j ) to remove any ambiguity about the order of the indices.

The covariant and contravariant metric tensors are inverses of each other, that isî
gij
ó
=
î
gij
ó−1 &

î
gij
ó
=
î
gij
ó−1 (11.36)

Hence
gikgkj = δij & gikg

kj = δ j
i (11.37)

It is common to reserve the “metric tensor” to the covariant form and call the contravariant form,
which is its inverse, the “associate” or “conjugate” or “reciprocal” metric tensor.

As a tensor, the metric has a significance regardless of any coordinate system although it requires a
coordinate system to be represented in a specific form.

For orthogonal coordinate systems the metric tensor is diagonal, i.e. gij = gij = 0 for i ̸= j.
For flat-space orthonormal Cartesian coordinate systems in a 3D space, the metric tensor is given by:

î
gij
ó
=
î
δij
ó
=


1 0 0

0 1 0

0 0 1

 =
î
δij
ó
=
î
gij
ó

(11.38)
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11.5. Covariant Differentiation

For cylindrical coordinate systems with coordinates (ρ, ϕ, z), the metric tensor is given by:

î
gij
ó
=


1 0 0

0 ρ2 0

0 0 1

 &
î
gij
ó
=


1 0 0

0
1

ρ2
0

0 0 1

 (11.39)

For spherical coordinate systems with coordinates (r, θ, ϕ), the metric tensor is given by:

î
gij
ó
=


1 0 0

0 r2 0

0 0 r2 sin2 θ

 &
î
gij
ó
=


1 0 0

0
1

r2
0

0 0
1

r2 sin2 θ

 (11.40)

11.5. Covariant Differentiation

Let {x1, . . . , xn} be a coordinate system. And ∂r
∂xi

∣∣∣∣∣
p

: i ∈ {1, . . . , n}


the associated basis
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11. Tensor Calculus

Themetric tensor gij =
Æ
∂r
∂xi

;
∂r
∂xj

∏
.

Given a vector field

v = vj
∂r
∂xj

,

then
∂v
∂xi

=
∂vj

∂xi
∂r
∂xj

+ vj
∂2r

∂xi ∂xj
.

The last term but can be expressed as a linear combination of the tangent space base vectors using the
Christoffel symbols

∂2r
∂xi ∂xj

= Γk
ij
∂r
∂xk

.

535 Definition
The covariant derivative∇ei

v, also written∇iv, is defined as:

∇ei
v :=

∂v
∂xi

=

Ñ
∂vk

∂xi
+ vjΓk

ij

é
∂r
∂xk

.

The Christoffel symbols can be calculated using the inner product:
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11.5. Covariant Differentiation⟨
∂2r

∂xi ∂xj
,
∂r
∂xl

⟩
= Γk

ij

Æ
∂r
∂xk

,
∂r
∂xl

∏
= Γk

ij gkl.

On the other hand,

∂gab
∂xc

=

⟨
∂2r

∂xc ∂xa
,
∂r
∂xb

⟩
+

⟨
∂r
∂xa

,
∂2r

∂xc ∂xb

⟩

using the symmetry of the scalar product and swapping the order of partial differentiations we have

∂gjk
∂xi

+
∂gki
∂xj
− ∂gij
∂xk

= 2

⟨
∂2r

∂xi ∂xj
,
∂r
∂xk

⟩

and so we have expressed the Christoffel symbols for the Levi-Civita connection in terms of the metric:

gklΓ
k
ij =

1

2

Ç
∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl

å
.

536 Definition
Christoffel symbol of the second kind is defined by:

Γk
ij =

gkl

2

Ç
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

å
(11.41)
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where the indexed g is themetric tensor in its contravariant and covariant formswith implied summation
over l. It is noteworthy that Christoffel symbols are not tensors.

The Christoffel symbols of the second kind are symmetric in their two lower indices:

Γk
ij = Γk

ji (11.42)

537 Example
For Cartesian coordinate systems, the Christoffel symbols are zero for all the values of indices.

538 Example
For cylindrical coordinate systems (ρ, ϕ, z), the Christoffel symbols are zero for all the values of indices ex-
cept:

Γk
22 = −ρ (11.43)

Γ2
12 = Γ2

21 =
1

ρ

where (1, 2, 3) stand for (ρ, ϕ, z).

539 Example
For spherical coordinate systems (r, θ, ϕ), the Christoffel symbols can be computed from

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2
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11.5. Covariant Differentiation

We can easily then see that the metric tensor and the inverse metric tensor are:

g =


1 0 0

0 r2 0

0 0 r2 sin2 θ



g−1 =


1 0 0

0 r−2 0

0 0 r−2 sin−2 θ


Using the formula:

Γm
ij =

1

2
gml(∂jgil + ∂iglj − ∂lgji)

Where upper indices indicate the inverse matrix. And so:

Γ1 =


0 0 0

0 −r 0

0 0 −r sin2 θ
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Γ2 =


0

1

r
0

1

r
0 0

0 0 − sin θcosθ



Γ3 =


0 0

1

r

0 0 cot θ
1

r
cot θ 0



540 Theorem
Under a change of variable from (y1, . . . , yn) to (x1, . . . , xn), the Christoffel symbol transform as

Γ̄k
ij =

∂xp

∂yi
∂xq

∂yj
Γr

pq
∂yk

∂xr
+
∂yk

∂xm
∂2xm

∂yi∂yj

where the overline denotes the Christoffel symbols in the y coordinate system.
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11.5. Covariant Differentiation

541 Definition (Derivatives of Tensors in Coordinates)

■ For a differentiable scalar f the covariant derivative is the same as the normal partial derivative,
that is:

f;i = f,i = ∂if (11.44)

This is justified by the fact that the covariant derivative is different from the normal partial deriva-
tive because the basis vectors in general coordinate systems are dependent on their spatial posi-
tion, and since a scalar is independent of the basis vectors the covariant and partial derivatives are
identical.

■ For a differentiable vector A the covariant derivative is:

Aj;i = ∂iAj − Γk
jiAk (covariant)

Aj
;i = ∂iA

j + Γj
kiA

k (contravariant)
(11.45)
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■ For a differentiable rank-2 tensor A the covariant derivative is:

Ajk;i = ∂iAjk − Γl
jiAlk − Γl

kiAjl (covariant)

Ajk
;i = ∂iA

jk + Γj
liA

lk + Γk
liA

jl (contravariant)

Ak
j;i = ∂iAk

j + Γk
liA

k
jl−Γl

jiAl
(mixed)

(11.46)

■ For a differentiable rank-n tensor A the covariant derivative is:

Aij...k
lm...p;q = ∂qAij...k

lm...p + Γi
aqA

aj...k
lm...pΓ

j
aqA

ia...k
lm...p + · · ·+ Γk

aqA
ij...a
lm...p (11.47)

−Γa
lqA

ij...k
am...p − Γa

mqA
ij...k
la...p − · · · − Γa

pqA
ij...k
lm...a

Since theChristoffel symbolsare identically zero inCartesiancoordinate systems, thecovariantderiva-
tive is the same as the normal partial derivative for all tensor ranks.

The covariant derivative of the metric tensor is zero in all coordinate systems.

Several rules of normal differentiation similarly apply to covariant differentiation. For example, co-
variant differentiation is a linear operation with respect to algebraic sums of tensor terms:

∂;i (aA± bB) = a∂;iA± b∂;iB (11.48)

where a and b are scalar constants and A and B are differentiable tensor fields. The product rule of
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11.5. Covariant Differentiation

normal differentiation also applies to covariant differentiation of tensor multiplication:

∂;i (AB) =
Ä
∂;iA

ä
B + A∂;iB (11.49)

This rule is also valid for the inner product of tensors because the inner product is an outer product
operation followed by a contraction of indices, and covariant differentiation and contraction of indices
commute.

The covariant derivative operator can bypass the raising/lowering index operator:

Ai = gijA
j =⇒ ∂;mAi = gij∂;mA

j (11.50)

and hence the metric behaves like a constant with respect to the covariant operator.

A principal difference between normal partial differentiation and covariant differentiation is that for
successive differential operations the partial derivative operators do commute with each other (assum-
ing certain continuity conditions) but the covariant operators do not commute, that is

∂i∂j = ∂j∂i but ∂;i∂;j ̸= ∂;j∂;i (11.51)

Higher order covariant derivatives are similarly defined as derivatives of derivatives; however the or-
der of differentiation should be respected (refer to the previous point).
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11. Tensor Calculus

11.6. Geodesics and The Euler-Lagrange Equations

Given the metric tensor g in some domain U ⊂ Rn, the length of a continuously differentiable curve
γ : [a, b]→ Rn is defined by

L(γ) =

ˆ b

a

»
gγ(t)(γ̇(t), γ̇(t)) dt.

In coordinates if γ(t) = (x1, . . . xn) then:

L(γ) =

ˆ b

a

 
−gµν

dxµ

dt
dxν

dt dt

The distance d(p, q) between two points p and q is defined as the infimum of the length taken over
all continuous, piecewise continuously differentiable curves γ : [a, b] → Rn such that γ(a) = p and
γ(b) = q. The geodesics are then defined as the locally distance-minimizing paths.

So the geodesics are the curve y(x) such that the functional

L(γ) =

ˆ b

a

»
gγ(x)(γ̇(x), γ̇(x)) dx.

is minimized over all smooth (or piecewise smooth) functions y(x) such that x(a) = p and x(b) = q.
This problem can be simplified, if we introduce the energy functional

E(γ) =
1

2

ˆ b

a

gγ(t)(γ̇(t), γ̇(t)) dt.
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11.6. Geodesics and The Euler-Lagrange Equations

For a piecewiseC1 curve, the Cauchy–Schwarz inequality gives

L(γ)2 ≤ 2(b− a)E(γ)

with equality if and only if

g(γ′, γ′)

is constant.
Hence the minimizers ofE(γ) also minimizeL(γ).
The previous problem is an example of calculus of variations is concerned with the extrema of func-

tionals. The fundamental problem of the calculus of variations is to find a function x(t) such that the
functional

I(x) =

ˆ b

a

f(t, x(t), y′(t)) dt

isminimizedoverall smooth (orpiecewise smooth) functionsx(t) satisfyingcertainboundaryconditions—
for example, x(a) = A and x(b) = B.

If x̂(t) is the smooth function at which the desired minimum of I(x) occurs, and if I(x̂(t) + εη(t)) is
defined for some arbitrary smooth function eta(x)with η(a) = 0 and η(b) = 0, for small enough ε, then

I(x̂+ εη) =

ˆ b

a

f(t, x̂+ εη, x̂′ + εη′) dt
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is now a function of ε, which must have a minimum at ε = 0. In that case, if I(ε) is smooth enough, we
must have

dI

dε
|ε=0 =

ˆ b

a

fx(t, x̂, x̂
′)η(t) + fx′(t, x̂, x̂′)η′(t) dt = 0 .

If we integrate the second term by parts we get, using η(a) = 0 and η(b) = 0,

ˆ b

a

Ñ
fx(t, x̂, x̂

′)− d

dt
fx′(t, x̂, x̂′)

é
η(t) dt = 0 .

One can then argue that since η(t)was arbitrary and x̂ is smooth, wemust have the quantity in brackets
identically zero. This gives the Euler-Lagrange equations:

∂

∂x
f(t, x, x′)− d

dt

∂

∂x′
f(t, x, x′) = 0 . (11.52)

In general this gives a second-order ordinary differential equation which can be solved to obtain the
extremal function f(x). We remark that the Euler–Lagrange equation is a necessary, but not a sufficient,
condition for an extremum.

This can be generalized to many variables: Given the functional:

I(x) =

ˆ b

a

f(t, x1(t), x′1(t), . . . , xn(t), x′n(t)) dt
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11.6. Geodesics and The Euler-Lagrange Equations

We have the corresponding Euler-Lagrange equations:

∂

∂xk
f(t, x1(t), x′1(t), . . . , xn(t), x′n(t))− d

dt

∂

∂x′k
(t, x1(t), x′1(t), . . . , xn(t), x′n(t)) = 0 . (11.53)

542 Theorem
A necessary condition to a curve γ be a geodesic is

d2γλ

dt2
+ Γλ

µν

dγµ

dt

dγν

dt
= 0

Proof. The geodesics are the minimum of the functional

L(γ) =

ˆ b

a

»
gγ(x)(γ̇(x), γ̇(x)) dx.

Let
E =

1

2
gµν

dxµ

dλ

dxν

dλ

Wewill write the Euler Lagrange equations.

d

dλ

∂L

∂(dxµ/dλ)
=

∂L

∂xµ
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Developing the right hand side we have:

∂E

∂xλ
=

1

2
∂λgµν ẋ

µẋν

The first derivative on the left hand side is
∂L

∂ẋλ
= gµλ(x(λ))ẋ

µ

wherewe havemade the dependence of g on λ clear for the next step. Nowwedifferentiatewith respect
to the curve parameter:

d
dλ [gµλ(x(λ))ẋ

µ] = ∂νgµλẋ
µẋν + gµλẍ

µ =
1

2
∂νgµλẋ

µẋν +
1

2
∂µgνλẋ

µẋν + gµλẍ
µ

Putting it all together, we obtain

gµλẍ
µ = −1

2

Ä
∂νgµλ + ∂µgνλ − ∂λgµν

ä
ẋµẋν = −Γλµν ẋ

µẋν

where in the last step we used the definition of the Christoffel symbols with three lower indices. Now
contract with the inverse metric to raise the first index and cancel the metric on the left hand side. So

ẍλ = −Γλ
µν ẋ

µẋν

■
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12.
Applications of Tensor

12.1. The Inertia Tensor

Consider massesmα with positions rα, all rotating with angular velocity ω about 0. So the velocities are
vα = ω × rα. The total angular momentum is

L =
∑
α

rα ×mαvα

=
∑
α

mαrα × (ω × rα)
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=
∑
α

mα(|rα|2ω − (rα · ω)rα).

by vector identities. In components, we have

Li = Iijωj,

where

543 Definition (Inertia tensor)
The inertia tensor is defined as

Iij =
∑
α

mα[|rα|2δij − (rα)i(rα)j].

For a rigid body occupying volume V with mass density ρ(r), we replace the sum with an integral to
obtain

Iij =

ˆ
V

ρ(r)(xkxkδij − xixj) dV.

By inspection, I is a symmetric tensor.

544 Example
Consider a rotating cylinder with uniform density ρ0. The total mass is 2ℓπa2ρ0.
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12.1. The Inertia Tensor

x1

x3

x2

2ℓ

a

Use cylindrical polar coordinate:

x1 = r cos θ
x2 = r sin θ
x3 = x3

dV = r dr dθ dx3

We have

I33 =

ˆ
V

ρ0(x
2
1 + x22) dV

= ρ0

ˆ a

0

ˆ 2π

0

ˆ ℓ

−ℓ

r2(r dr dθ dx2)
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= ρ0 · 2π · 2ℓ
[
r4

4

]a
0

= ε0πℓa
4.

Similarly, we have

I11 =

ˆ
V

ρ0(x
2
2 + x23) dV

= ρ0

ˆ a

0

ˆ 2π

0

ˆ ℓ

−ℓ

(r2 sin2 θ + x23)r dr dθ dx3

= ρ0

ˆ a

0

ˆ 2π

0

r

Ñ
r2 sin2 θ [x3]

ℓ
−ℓ +

[
x33
3

]ℓ
−ℓ

é
dθ dr

= ρ0

ˆ a

0

ˆ 2π

0

r

Ç
r2 sin2 θ2ℓ+

2

3
ℓ3
å

dθ dr

= ρ0

Ñ
2πa · 2

3
ℓ3 + 2ℓ

ˆ a

0

r2 dr
ˆ 2π

0

sin2 θ

é
= ρ0πa

2ℓ

(
a2

2
+

2

3
ℓ2
)

By symmetry, the result for I22 is the same.
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12.1. The Inertia Tensor

How about the off-diagonal elements?

I13 = −
ˆ
V

ρ0x1x3 dV

= −ρ0
ˆ a

0

ˆ ℓ

−ℓ

ˆ 2π

0

r2 cos θx3 dr dx3 dθ

= 0

Since
ˆ 2π

0

dθ cos θ = 0. Similarly, the other off-diagonal elements are all 0. So the non-zero components
are

I33 =
1

2
Ma2

I11 = I22 =M

(
a2

4
+
ℓ2

3

)

In the particular case where ℓ =
a
√
3

2
, we have Iij =

1

2
ma2δij . So in this case,

L =
1

2
Ma2ω

for rotation about any axis.
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545 Example (Inertia Tensor of a Cube about the Center of Mass)
The high degree of symmetry here means we only need to do two out of nine possible integrals.

Ixx =

ˆ
dV ρ(y2 + z2) (12.1)

= ρ

ˆ b/2

−b/2

dx

ˆ b/2

−b/2

dy

ˆ b/2

−b/2

dz(y2 + z2) (12.2)

= ρb

ˆ b/2

−b/2

dy (zy2 +
1

3
z3)

∣∣∣∣∣
b/2

−b/2

(12.3)

= ρb

ˆ b/2

−b/2

dy

(
by2 +

1

3

b3

4

)
(12.4)

= ρb

Ç
1

3
by3 +

1

12
b3y

å∣∣∣∣∣b/2
−b/2

(12.5)

= ρb

Ç
1

12
b4 +

1

12
b4
å

(12.6)

=
1

6
ρb5 =

1

6
Mb2. (12.7)

On the other hand, all the off-diagonal moments are zero, for example Ixy =
ˆ

dV ρ(−xy).
This is an odd function of x and y, and our integration is now symmetric about the origin in all directions,

so it vanishes identically. So the inertia tensor of the cube about its center is
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12.1. The Inertia Tensor

I =
1

6
Mb2


1 0 0

0 1 0

0 0 1

 .

12.1. The Parallel Axis Theorem

The Parallel Axis Theorem relates the inertia tensor about the center of gravity and the inertia tensor
about a parallel axis.

For this purpose we consider two coordinate systems: the first r = (x, y, z) with origin at the center
of mass of an arbitrary object, and the second r′ = (x′, y′, z′) offset by some distance. We consider that
the object is translated from the origin, but not rotated, by some constant vector a.

In vector form, the coordinates are related as

r′ = a + r.

Note that a points towards the center of mass - the direction is important.

546 Theorem
If Iij is the inertia tensor calculated in Center of Mass Coordinate, and Jij is the tensor in the translated
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coordinates, then:
Jij = Iij +M(a2δij − aiaj).

547 Example (Inertia Tensor of a Cube about a corner)
The CM inertia tensor was

I =Mb2


1/6 0 0

0 1/6 0

0 0 1/6


If instead we want the tensor about one corner of the cube, the displacement vector is

a = (b/2, b/2, b/2),

so a2 = (3/4)b2.We can construct the difference as amatrix: the off-diagonal components are

M

[
3

4
B2 −

Ç
1

2
b

åÇ
1

2
b

å]
=

1

2
Mb2

and off-diagonal,

M

[
−
Ç
1

2
b

åÇ
1

2
b

å]
= −1

4
Mb2
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12.2. Ohm’s Law

so the shifted inertia tensor is

J =Mb2


1/6 0 0

0 1/6 0

0 0 1/6

+Mb2


1/2 −1/4 −1/4

−1/4 1/2 −1/4

−1/4 −1/4 1/2

 (12.8)

=Mb2


2/3 −1/4 −1/4

−1/4 2/3 −1/4

−1/4 −1/4 2/3

 (12.9)

12.2. Ohm’s Law

Ohm’s law is an empirical law that states that there is a linear relationship between the electric current
j flowing through amaterial and the electric fieldE applied to this material. This law can be written as

j = σE

where the constant of proportionality σ is known as the conductivity (the conductivity is defined as the
inverse of resistivity).

One important consequence of equation 12.2 is that the vectors j andE are necessary parallel.
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This law is true for some materials, but not for all. For example, if the medium is made of alternate
layers of a conductor and an insulator, then the current can only flow along the layers, regardless of the
direction of the electric field. It is useful therefore to have an alternative to equation in which j and E
do not have to be parallel.

This can be achieved by introducing the conductivity tensor, σik, which relates j andE through the
equation:

ji = σikEk

We note that as j andE are vectors, it follows from the quotient rule that σik is a tensor.

12.3. Equation of Motion for a Fluid: Navier-Stokes Equation

12.3. Stress Tensor

The stress tensor consists of nine components σij that completely define the state of stress at a point
inside a material in the deformed state, placement, or configuration.

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33
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12.3. Equation of Motion for a Fluid: Navier-Stokes Equation

The stress tensor can be separated into two components. One component is a hydrostatic or dilata-
tional stress that acts to change the volume of the material only; the other is the deviator stress that
acts to change the shape only.


σ11 σ12 σ31

σ12 σ22 σ23

σ31 σ23 σ33

 =


σH 0 0

0 σH 0

0 0 σH

+


σ11 − σH σ12 σ31

σ12 σ22 − σH σ23

σ31 σ23 σ33 − σH



12.3. Derivation of the Navier-Stokes Equations

The Navier-Stokes equations can be derived from the conservation and continuity equations and some
properties of fluids. In order to derive the equations of fluid motion, we will first derive the continuity
equation, apply the equation to conservation of mass andmomentum, and finally combine the conser-
vation equations with a physical understanding of what a fluid is.

The first assumption is that the motion of a fluid are described with the flow velocity of the fluid:
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548 Definition
The flow velocity v of a fluid is a vector field

v = v(x, t)

which gives the velocity of an element of fluid at a position x and time t

Material Derivative

A normal derivative is the rate of change of of an property at a point. For instance, the value
dT

dt
could be

the rate of change of temperature at a point (x, y). However, a material derivative is the rate of change
of an property on a particle in a velocity field. It incorporates two things:

■ Rate of change of the property,
dL

dt

■ Change in position of of the particle in the velocity field v

Therefore, the material derivative can be defined as
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549 Definition (Material Derivative)
Given a function u(t, x, y, z)

Du

Dt
=
du

dt
+ (v · ∇)u.

Continuity Equation

An intensive property is a quantity whose value does not depend on the amount of the substance for
which it is measured. For example, the temperature of a system is the same as the temperature of any
part of it. If the system is divided the temperature of each subsystem is identical. The same applies to
the density of a homogeneous system; if the system is divided in half, the mass and the volume change
in the identical ratio and the density remains unchanged.

The volume will be denoted by U and its bounding surface area is referred to as ∂U . The continuity
equation derived can later be applied to mass andmomentum.

Reynold’s Transport Theorem The first basic assumption is the Reynold’s Transport Theorem:

550 Theorem (Reynold’s Transport Theorem)
Let U be a region in Rn with a C1 boundary ∂U . Let x(t) be the positions of points in the region and let

589



12. Applications of Tensor

v(x, t) be the velocity field in the region. Let n(x, t) be the outward unit normal to the boundary. Let
L(x, t) be aC2 scalar field. Then

d

dt

(ˆ
U

L dV
)
=

ˆ
U

∂L

∂t
dV +

ˆ
∂U

(v · n)L dA .

What we will write in a simplified way as

d

dt

ˆ
U

L dV = −
ˆ
∂U

Lv · n dA−
ˆ
U

Q dV. (12.10)

The left hand side of the equation denotes the rate of change of the property L contained inside the
volume U . The right hand side is the sum of two terms:

■ A flux term,
ˆ
∂U

Lv · n dA, which indicates howmuch of the property L is leaving the volume by

flowing over the boundary ∂U

■ A sink term,
ˆ
U

Q dV , which describes how much of the property L is leaving the volume due to

sinks or sources inside the boundary

This equation states that the change in the total amount of a property is due to how much flows out
through the volume boundary as well as howmuch is lost or gained through sources or sinks inside the
boundary.
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12.3. Equation of Motion for a Fluid: Navier-Stokes Equation

If the intensive property we’re dealing with is density, then the equation is simply a statement of con-
servation of mass: the change in mass is the sum of what leaves the boundary and what appears within
it; no mass is left unaccounted for.

Divergence Theorem The Divergence Theorem allows the flux term of the above equation to be ex-
pressed as a volume integral. By the Divergence Theorem,

ˆ
∂U

Lv · n dA =

ˆ
U

∇ · (Lv) dV.

Therefore, we can now rewrite our previous equation as

d

dt

ˆ
U

L dV = −
ˆ
U

î
∇ · (Lv) +Q

ó
dV.

Deriving under the integral sign, we find that
ˆ
U

d

dt
L dV = −

ˆ
U

∇ · (Lv) +Q dV.

Equivalently, ˆ
U

d

dt
L+∇ · (Lv) +Q dV = 0.
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12. Applications of Tensor

This relation applies to any volumeU ; the only way the above equality remains true for any volumeU is
if the integrand itself is zero. Thus, we arrive at the differential form of the continuity equation

dL

dt
+∇ · (Lv) +Q = 0.

Conservation of Mass

Applying the continuity equation to density, we obtain
dρ

dt
+∇ · (ρv) +Q = 0.

This is the conservation of mass because we are operating with a constant volume U . With no sources
or sinks of mass (Q = 0),

dρ

dt
+∇ · (ρv) = 0. (12.11)

The equation 12.11 is called conversation of mass.

In certain cases it is useful to simplify it further. For an incompressible fluid, the density is constant.
Setting the derivative of density equal to zero and dividing through by a constant ρ, we obtain the sim-
plest form of the equation

∇ · v = 0.
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12.3. Equation of Motion for a Fluid: Navier-Stokes Equation

Conversation of Momentum

We start with
F = ma.

Allowing for the body force F = a and substituting density for mass, we get a similar equation

b = ρ
d

dt
v(x, y, z, t).

Applying the chain rule to the derivative of velocity, we get

b = ρ

(
∂v
∂t

+
∂v
∂x

∂x

∂t
+
∂v
∂y

∂y

∂t
+
∂v
∂z

∂z

∂t

)
.

Equivalently,

b = ρ

Ç
∂v
∂t

+ v · ∇v
å
.

Substituting the value in parentheses for the definition of a material derivative, we obtain

ρ
Dv
Dt

= b. (12.12)

Equations of Motion

The conservation equations derived above, in addition to a few assumptions about the forces and the
behaviour of fluids, lead to the equations of motion for fluids.
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12. Applications of Tensor

Weassume that the body force on the fluid parcels is due to two components, fluid stresses and other,
external forces.

b = ∇ · σ + f. (12.13)

Here, σ is the stress tensor, and f represents external forces. Intuitively, the fluid stress is represented as
the divergence of the stress tensor because the divergence is the extent to which the tensor acts like a
sink or source; in other words, the divergence of the tensor results in a momentum source or sink, also
known as a force. For many applications f is the gravity force, but for now we will leave the equation in
its most general form.

General Form of the Navier-Stokes Equation

We divide the stress tensor σ into the hydrostatic and deviator part. Denoting the stress deviator tensor
as T , we canmake the substitution

σ = −pI + T. (12.14)

Substituting this into the previous equation, we arrive at the most general form of the Navier-Stokes
equation:

ρ
Dv
Dt

= −∇p+∇ · T + f. (12.15)
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13.
Integration of Forms

13.1. Differential Forms

551 Definition
A k-differential form field inRn is an expression of the form

ω =
∑

1≤j1≤j2≤···≤jk≤n

aj1j2...jkdxj1 ∧ dxj2 ∧ · · · dxjk ,

where the aj1j2...jk are differentiable functions inRn.
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13. Integration of Forms

A 0-differential form inRn is simply a differentiable function inRn.

552 Example

g(x, y, z, w) = x+ y2 + z3 + w4

is a 0-form inR4.

553 Example
An example of a 1-form field inR3 is

ω = xdx+ y2dy + xyz3dz.

554 Example
An example of a 2-form field inR3 is

ω = x2dx ∧ dy + y2dy ∧ dz + dz ∧ dx.

555 Example
An example of a 3-form field inR3 is

ω = (x+ y + z)dx ∧ dy ∧ dz.

We shew now how tomultiply differential forms.
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13.1. Differential Forms
556 Example

The product of the 1-form fields inR3

ω1 = ydx+ xdy,

ω2 = −2xdx+ 2ydy,

is

ω1 ∧ ω2 = (2x2 + 2y2)dx ∧ dy.

557 Definition
Let f(x1, x2, . . . , xn) be a 0-form inRn. The exterior derivative df of f is

df =
n∑

i=1

∂f

∂xi
dxi.

Furthermore, if
ω = f(x1, x2, . . . , xn)dxj1 ∧ dxj2 ∧ · · · ∧ dxjk

is a k-form inRn, the exterior derivative dω of ω is the (k + 1)-form

dω = df(x1, x2, . . . , xn) ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjk .
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13. Integration of Forms
558 Example

If inR2, ω = x3y4, then
d(x3y4) = 3x2y4dx+ 4x3y3dy.

559 Example
If inR2, ω = x2ydx+ x3y4dy then

dω = d(x2ydx+ x3y4dy)

= (2xydx+ x2dy) ∧ dx+ (3x2y4dx+ 4x3y3dy) ∧ dy

= x2dy ∧ dx+ 3x2y4dx ∧ dy

= (3x2y4 − x2)dx ∧ dy

560 Example
Consider the change of variables x = u+ v, y = uv. Then

dx = du+ dv,

dy = vdu+ udv,

whence
dx ∧ dy = (u− v)du ∧ dv.
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13.2. Integrating Differential Forms
561 Example

Consider the transformation of coordinates xyz into uvw coordinates given by

u = x+ y + z, v =
z

y + z
, w =

y + z

x+ y + z
.

Then
du = dx+ dy + dz,

dv = − z

(y + z)2
dy + y

(y + z)2
dz,

dw = − y + z

(x+ y + z)2
dx+ x

(x+ y + z)2
dy + x

(x+ y + z)2
dz.

Multiplication gives

du ∧ dv ∧ dw =

(
− zx

(y + z)2(x+ y + z)2
− y(y + z)

(y + z)2(x+ y + z)2

+
z(y + z)

(y + z)2(x+ y + z)2
− xy

(y + z)2(x+ y + z)2

)
dx ∧ dy ∧ dz

=
z2 − y2 − zx− xy
(y + z)2(x+ y + z)2

dx ∧ dy ∧ dz.

13.2. Integrating Differential Forms

Let

599



13. Integration of Forms

ω =
∑

i1<···<ik

ai1,...,ik(x) dxi1 ∧ . . . ∧ dxik

be a differential form andM a differentiable-manifold over which we wish to integrate, whereM has
the parameterization

M(u) = (x1(u), . . . , xk(u))

for in the parameter u domainD . Then defines the integral of the differential form over as
ˆ
S

ω =

ˆ
D

∑
i1<···<ik

ai1,...,ik(M(u))∂(x
i1 , . . . , xik)

∂(u1, . . . , uk)
du1 · · · duk,

where the integral on the right-hand side is the standard Riemann integral overD, and

∂(xi1 , . . . , xik)

∂(u1, . . . , uk)

is the determinant of the Jacobian.

13.3. Zero-Manifolds
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13.3. Zero-Manifolds

562 Definition
A 0-dimensional oriented manifold of Rn is simply a point x ∈ Rn, with a choice of the + or − sign. A
general oriented 0-manifold is a union of oriented points.

563 Definition
LetM = +{b} ∪ −{a} be an oriented 0-manifold, and let ω be a 0-form. Then

ˆ
M

ω = ω(b)− ω(a).

−x has opposite orientation to+x andˆ
−x
ω = −

ˆ
+x
ω.

564 Example
LetM = −{(1, 0, 0)} ∪+{(1, 2, 3)} ∪−{(0,−2, 0)}1 be an oriented 0-manifold, and let ω = x+ 2y + z2.
Then ˆ

M

ω = −ω((1, 0, 0)) + ω(1, 2, 3)− ω(0, 0, 3) = −(1) + (14)− (−4) = 17.

1Do not confuse, say,−{(1, 0, 0)}with−(1, 0, 0) = (−1, 0, 0). The first one means that the point (1, 0, 0) is given negative
orientation, the secondmeans that (−1, 0, 0) is the additive inverse of (1, 0, 0).
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13. Integration of Forms

13.4. One-Manifolds

565 Definition
A 1-dimensional orientedmanifold ofRn is simply an oriented smooth curve Γ ∈ Rn, with a choice of a
+ orientation if the curve traverses in the direction of increasing t, or with a choice of a− sign if the curve
traverses in the direction of decreasing t. A general oriented 1-manifold is a union of oriented curves.

The curve−Γ has opposite orientation to Γ andˆ
−Γ

ω = −
ˆ
Γ

ω.

If f : R2 → R2 and if dr =

dx

dy

, the classical way of writing this is
ˆ
Γ

f · dr.

We now turn to the problem of integrating 1-forms.
566 Example

Calculate ˆ
Γ

xydx+ (x+ y)dy
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13.4. One-Manifolds

where Γ is the parabola y = x2, x ∈ [−1; 2] oriented in the positive direction.

Solution: ▶ We parametrise the curve as x = t, y = t2. Then

xydx+ (x+ y)dy = t3dt+ (t+ t2)dt2 = (3t3 + 2t2)dt,

whence ˆ
Γ

ω =

ˆ 2

−1

(3t3 + 2t2)dt

=

ñ
2

3
t3 +

3

4
t4
ô2
−1

=
69

4
.

What would happen if we had given the curve above a different parametrisation? First observe that the
curve travels from (−1, 1) to (2, 4) on the parabola y = x2. These conditions aremetwith the parametri-
sation x =

√
t− 1, y = (

√
t− 1)2, t ∈ [0; 9]. Then

xydx+ (x+ y)dy = (
√
t− 1)3d(

√
t− 1) + ((

√
t− 1) + (

√
t− 1)2)d(

√
t− 1)2

= (3(
√
t− 1)3 + 2(

√
t− 1)2)d(

√
t− 1)

=
1

2
√
t
(3(
√
t− 1)3 + 2(

√
t− 1)2)dt,
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13. Integration of Forms

whence ˆ
Γ

ω =

ˆ 9

0

1

2
√
t
(3(
√
t− 1)3 + 2(

√
t− 1)2)dt

=
[
3t2

4
− 7t3/2

3
+ 5t

2
−
√
t
]9
0

=
69

4
,

as before.
◀

It turns out that if two different parametrisations of the same curve have the same orienta-
tion, then their integrals are equal. Hence, we only need to worry about finding a suitable
parametrisation.

567 Example
Calculate the line integral ˆ

Γ

y sinxdx+ x cos ydy,

where Γ is the line segment from (0, 0) to (1, 1) in the positive direction.

Solution: ▶ This line has equation y = x, so we choose the parametrisation x = y = t. The integral is
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13.4. One-Manifolds

thus ˆ
Γ

y sinxdx+ x cos ydy =

ˆ 1

0

(t sin t+ t cos t)dt

= [t(sinx− cos t)]10 −
ˆ 1

0

(sin t− cos t)dt

= 2 sin 1− 1,

upon integrating by parts.

◀

568 Example
Calculate the path integral

ˆ
Γ

x+ y

x2 + y2
dy + x− y

x2 + y2
dx

around the closed square Γ = ABCD withA = (1, 1),B = (−1, 1), C = (−1,−1), andD = (1,−1) in
the directionABCDA.

Solution: ▶ On AB, y = 1, dy = 0, on BC, x = −1, dx = 0, on CD, y = −1, dy = 0, and onDA,
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13. Integration of Forms

x = 1, dx = 0. The integral is thus
ˆ
Γ

ω =

ˆ
AB

ω +

ˆ
BC

ω +

ˆ
CD

ω +

ˆ
DA

ω

=

ˆ −1

1

x− 1

x2 + 1
dx+

ˆ −1

1

y − 1

y2 + 1
dy +

ˆ 1

−1

x+ 1

x2 + 1
dx+

ˆ 1

−1

y + 1

y2 + 1
dy

= 4

ˆ 1

−1

1

x2 + 1
dx

= 4 arctanx|1−1

= 2π.

◀

When the integral is along a closedpath, like in the preceding example, it is customary to use

the symbol
˛
Γ

rather than
ˆ
Γ

. The positive direction of integration is that sense that when

traversing the path, the area enclosed by the curve is to the left of the curve.
569 Example

Calculate the path integral ˛
Γ

x2dy + y2dx,
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13.4. One-Manifolds

where Γ is the ellipse 9x2 + 4y2 = 36 traversed once in the positive sense.

Solution: ▶ Parametrise the ellipse as x = 2 cos t, y = 3 sin t, t ∈ [0; 2π]. Observe that when travers-
ing this closed curve, the area of the ellipse is on the left hand side of the path, so this parametrisation
traverses the curve in the positive sense. We have

˛
Γ

ω =

ˆ 2π

0

((4 cos2 t)(3 cos t) + (9 sin t)(−2 sin t))dt

=

ˆ 2π

0

(12 cos3 t− 18 sin3 t)dt

= 0.

◀

570 Definition
Let Γ be a smooth curve. The integral ˆ

Γ

f(x)∥dx∥

is called the path integral of f along Γ.

571 Example
Find
ˆ

Γ

x∥dx∥where Γ is the triangle starting atA : (−1,−1) toB : (2,−2), and ending inC : (1, 2).
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13. Integration of Forms

Solution: ▶ The lines passing through the given points have equations LAB : y =
−x− 4

3
, and

LBC : y = −4x+ 6. On LAB

x∥dx∥ = x
»
(dx)2 + (dy)2 = x

Ã
1 +

Ç
−1

3

å2

dx =
x
√
10dx
3

,

and on LBC

x∥dx∥ = x
»
(dx)2 + (dy)2 = x(

√
1 + (−4)2)dx = x

√
17dx.

Hence ˆ

Γ

x∥dx∥ =

ˆ

LAB

x∥dx∥+
ˆ

LBC

x∥dx∥

=

ˆ 2

−1

x
√
10dx
3

+

ˆ 1

2

x
√
17dx

=

√
10

2
− 3
√
17

2
.

◀
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13.4. One-Manifolds

1 2 3-1-2-3

-1

-2

-3

1

2

3

b

b

b

Figure 13.1. Example 571.

Homework
572 Problem

Consider
ˆ
C

xdx+ ydy and
ˆ
C

xy∥dx∥.

1. Evaluate
ˆ
C

xdx+ydywhereC is the straight

line path that starts at (−1, 0) goes to (0, 1)

and ends at (1, 0), by parametrising this

path. Calculate also
ˆ
C

xy∥dx∥ using this

parametrisation.

2. Evaluate
ˆ
C

xdx + ydy where C is the semi-

circle that starts at (−1, 0) goes to (0, 1) and
endsat (1, 0), by parametrising this path. Cal-

culate also
ˆ
C

xy∥dx∥ using this parametri-

sation.

573 Problem
Find
ˆ
Γ

xdx+ ydy where Γ is the path shewn in fig-

ure ??, starting atO(0, 0) going on a straight line to
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13. Integration of Forms

A
Ä
4 cos π

6
, 4 sin π

6

ä
and continuing on an arc of a cir-

cle toB
Ä
4 cos π

5
, 4 sin π

5

ä
.

574 Problem
Find
˛
Γ

zdx+xdy+ydzwhereΓ is the intersectionof

the spherex2+y2+z2 = 1and the planex+y = 1,
traversed in the positive direction.

13.5. Closed and Exact Forms

575 Lemma (Poincaré Lemma)
If ω is a p-differential form of continuously differentiable functions inRn then

d(dω) = 0.

Proof. Wewill prove this by induction on p. For p = 0 if

ω = f(x1, x2, . . . , xn)

then

dω =
n∑

k=1

∂f

∂xk
dxk
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13.5. Closed and Exact Forms

and
d(dω) =

n∑
k=1

d
Ç
∂f

∂xk

å
∧ dxk

=
n∑

k=1

Ñ
n∑

j=1

∂2f

∂xj∂xk
∧ dxj

é
∧ dxk

=
n∑

1≤j≤k≤n

(
∂2f

∂xj∂xk
− ∂2f

∂xk∂xj

)
dxj ∧ dxk

= 0,

since ω is continuously differentiable and so the mixed partial derivatives are equal. Consider now an
arbitrary p-form, p > 0. Since such a form can be written as

ω =
∑

1≤j1≤j2≤···≤jp≤n

aj1j2...jpdxj1 ∧ dxj2 ∧ · · · dxjp ,

where the aj1j2...jp are continuous differentiable functions inRn, we have

dω =
∑

1≤j1≤j2≤···≤jp≤n

daj1j2...jp ∧ dxj1 ∧ dxj2 ∧ · · · dxjp

=
∑

1≤j1≤j2≤···≤jp≤n

Ñ
n∑

i=1

∂aj1j2...jp
∂xi

dxi

é
∧ dxj1 ∧ dxj2 ∧ · · · dxjp ,

it is enough to prove that for each summand

d
Ä
da ∧ dxj1 ∧ dxj2 ∧ · · · dxjp

ä
= 0.
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13. Integration of Forms

But
d
Ä
da ∧ dxj1 ∧ dxj2 ∧ · · · dxjp

ä
= dda ∧

Ä
dxj1 ∧ dxj2 ∧ · · · dxjp

ä
+da ∧ d

Ä
dxj1 ∧ dxj2 ∧ · · · dxjp

ä
= da ∧ d

Ä
dxj1 ∧ dxj2 ∧ · · · dxjp

ä
,

since dda = 0 from the case p = 0. But an independent induction argument proves that

d
Ä
dxj1 ∧ dxj2 ∧ · · · dxjp

ä
= 0,

completing the proof. ■

576 Definition
A differential form ω is said to be exact if there is a continuously differentiable function F such that

dF = ω.

577 Example
The differential form

xdx+ ydy

is exact, since

xdx+ ydy = d
Ç
1

2
(x2 + y2)

å
.
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13.5. Closed and Exact Forms
578 Example

The differential form
ydx+ xdy

is exact, since
ydx+ xdy = d (xy) .

579 Example
The differential form

x

x2 + y2
dx+ y

x2 + y2
dy

is exact, since
x

x2 + y2
dx+ y

x2 + y2
dy = d

Ç
1

2
loge(x

2 + y2)

å
.

Letω = dF be an exact form. By the Poincaré LemmaTheorem575, dω = ddF = 0. A result
of Poincaré says that for certain domains (called star-shapeddomains) the converse is also
true, that is, if dω = 0 on a star-shaped domain then ω is exact.

580 Example
Determine whether the differential form

ω =
2x(1− ey)
(1 + x2)2

dx+ ey

1 + x2
dy

is exact.
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13. Integration of Forms

Solution: ▶ Assume there is a function F such that

dF = ω.

By the Chain Rule

dF =
∂F

∂x
dx+ ∂F

∂y
dy.

This demands that
∂F

∂x
=

2x(1− ey)
(1 + x2)2

,

∂F

∂y
=

ey

1 + x2
.

We have a choice here of integrating either the first, or the second expression. Since integrating the
second expression (with respect to y) is easier, we find

F (x, y) =
ey

1 + x2
+ ϕ(x),

where ϕ(x) is a function depending only on x. To find it, we differentiate the obtained expression for F
with respect to x and find

∂F

∂x
= − 2xey

(1 + x2)2
+ ϕ′(x).
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13.5. Closed and Exact Forms

Comparing this with our first expression for
∂F

∂x
, we find

ϕ′(x) =
2x

(1 + x2)2
,

that is
ϕ(x) = − 1

1 + x2
+ c,

where c is a constant. We then take
F (x, y) =

ey − 1

1 + x2
+ c.

◀
581 Example

Is there a continuously differentiable function such that

dF = ω = y2z3dx+ 2xyz3dy + 3xy2z2dz ?

Solution: ▶ We have

dω = (2yz3dy + 3y2z2dz) ∧ dx

+(2yz3dx+ 2xz3dy + 6xyz2dz) ∧ dy

+(3y2z2dx+ 6xyz2dy + 6xy2zdz) ∧ dz

= 0,
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13. Integration of Forms

so this form is exact in a star-shaped domain. So put

dF =
∂F

∂x
dx+ ∂F

∂y
dy + ∂F

∂z
dz = y2z3dx+ 2xyz3dy + 3xy2z2dz.

Then
∂F

∂x
= y2z3 =⇒ F = xy2z3 + a(y, z),

∂F

∂y
= 2xyz3 =⇒ F = xy2z3 + b(x, z),

∂F

∂z
= 3xy2z2 =⇒ F = xy2z3 + c(x, y),

Comparing these three expressions for F , we obtain F (x, y, z) = xy2z3. ◀
We have the following equivalent of the Fundamental Theorem of Calculus.

582 Theorem
LetU ⊆ Rn be an open set. Assumeω = dF is an exact form, andΓ a path inU with starting pointA and
endpointB. Then ˆ

Γ

ω =

ˆ B

A

dF = F (B)− F (A).
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13.5. Closed and Exact Forms

In particular, if Γ is a simple closed path, then
˛
Γ

ω = 0.

583 Example
Evaluate the integral ˛

Γ

2x

x2 + y2
dx+ 2y

x2 + y2
dy

where Γ is the closed polygon with vertices atA = (0, 0),B = (5, 0), C = (7, 2),D = (3, 2),E = (1, 1),
traversed in the orderABCDEA.

Solution: ▶ Observe that

d
(

2x

x2 + y2
dx+ 2y

x2 + y2
dy
)
= − 4xy

(x2 + y2)2
dy ∧ dx− 4xy

(x2 + y2)2
dx ∧ dy = 0,

and so the form is exact in a start-shaped domain. By virtue of Theorem 582, the integral is 0. ◀
584 Example

Calculate the path integral ˛
Γ

(x2 − y)dx+ (y2 − x)dy,

where Γ is a loop of x3 + y3 − 2xy = 0 traversed once in the positive sense.
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13. Integration of Forms

Solution: ▶ Since
∂

∂y
(x2 − y) = −1 =

∂

∂x
(y2 − x),

the form is exact, and since this is a closed simple path, the integral is 0. ◀

13.6. Two-Manifolds

585 Definition
A 2-dimensional orientedmanifold ofR2 is simply an open set (region)D ∈ R2, where the+ orientation
is counter-clockwise and the− orientation is clockwise. A general oriented 2-manifold is a union of open
sets.

The region−D has opposite orientation toD and
ˆ
−D

ω = −
ˆ
D

ω.

Wewill often write ˆ
D

f(x, y)dA

where dA denotes the area element.
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13.7. Three-Manifolds

In this section, unless otherwise noticed, we will choose the positive orientation for the re-
gions considered. This corresponds to using the area form dxdy.

LetD ⊆ R2. Given a function f : D → R, the integral
ˆ

D

fdA

is the sum of all the values of f restricted toD. In particular,
ˆ

D

dA

is the area ofD.

13.7. Three-Manifolds

586 Definition
A 3-dimensional oriented manifold ofR3 is simply an open set (body) V ∈ R3, where the+ orientation
is in the direction of the outward pointing normal to the body, and the− orientation is in the direction of
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13. Integration of Forms

the inward pointing normal to the body. A general oriented 3-manifold is a union of open sets.

The region−M has opposite orientation toM andˆ
−M

ω = −
ˆ
M

ω.

Wewill often write ˆ
M

fdV

where dV denotes the volume element.

In this section, unless otherwise noticed, we will choose the positive orientation for the re-
gions considered. This corresponds to using the volume form dx ∧ dy ∧ dz.

Let V ⊆ R3. Given a function f : V → R, the integralˆ

V

fdV

is the sum of all the values of f restricted to V . In particular,ˆ

V

dV

is the oriented volume of V .
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587 Example

Find ˆ

[0;1]3

x2yexyz dV.

Solution: ▶ The integral is

ˆ 1

0

Öˆ 1

0

Ñˆ 1

0

x2yexyz dz
é

dy

è
dx =

ˆ 1

0

Ñˆ 1

0

x(exy − 1) dy
é

dx

=

ˆ 1

0

(ex − x− 1)dx

= e− 5

2
.

◀ s

13.8. Surface Integrals

588 Definition
A 2-dimensional oriented manifold of R3 is simply a smooth surfaceD ∈ R3, where the+ orientation
is in the direction of the outward normal pointing away from the origin and the − orientation is in the
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13. Integration of Forms

direction of the inward normal pointing towards the origin. A general oriented 2-manifold inR3 is a union
of surfaces.

The surface−Σ has opposite orientation toΣ and
ˆ
−Σ

ω = −
ˆ
Σ

ω.

In this section, unless otherwise noticed, we will choose the positive orientation for the re-
gions considered. This corresponds to using the ordered basis

{dy ∧ dz, dz ∧ dx, dx ∧ dy}.

589 Definition
Let f : R3 → R. The integral of f over the smooth surface Σ (oriented in the positive sense) is given by
the expression ˆ

Σ

f
∥∥∥d2x

∥∥∥.
Here ∥∥∥d2x

∥∥∥ = »(dx ∧ dy)2 + (dz ∧ dx)2 + (dy ∧ dz)2
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13.8. Surface Integrals

is the surface area element.
590 Example

Evaluate
ˆ

Σ

z
∥∥∥d2x

∥∥∥whereΣ is the outer surface of the section of the paraboloid z = x2 + y2, 0 ≤ z ≤ 1.

Solution: ▶ We parametrise the paraboloid as follows. Let x = u, y = v, z = u2+ v2.Observe that the
domainD ofΣ is the unit disk u2 + v2 ≤ 1. We see that

dx ∧ dy = du ∧ dv,

dy ∧ dz = −2udu ∧ dv,

dz ∧ dx = −2vdu ∧ dv,

and so ∥∥∥d2x
∥∥∥ = √1 + 4u2 + 4v2du ∧ dv.

Now, ˆ

Σ

z
∥∥∥d2x

∥∥∥ = ˆ
D

(u2 + v2)
√
1 + 4u2 + 4v2dudv.

To evaluate this last integral we use polar coordinates, and soˆ

D

(u2 + v2)
√
1 + 4u2 + 4v2dudv =

ˆ 2π

0

ˆ 1

0

ρ3
»
1 + 4ρ2dρdθ

=
π

12
(5
√
5 +

1

5
).
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◀

591 Example
Find the area of that part of the cylinder x2 + y2 = 2y lying inside the sphere x2 + y2 + z2 = 4.

Solution: ▶ We have

x2 + y2 = 2y ⇐⇒ x2 + (y − 1)2 = 1.

We parametrise the cylinder by putting x = cosu, y − 1 = sinu, and z = v. Hence

dx = − sinudu, dy = cosudu, dz = dv,

whence

dx ∧ dy = 0, dy ∧ dz = cosudu ∧ dv, dz ∧ dx = sinudu ∧ dv,

and so ∥∥∥d2x
∥∥∥ =

»
(dx ∧ dy)2 + (dz ∧ dx)2 + (dy ∧ dz)2

=
√

cos2 u+ sin2 u du ∧ dv

= du ∧ dv.

The cylinder and the sphere intersect when x2+y2 = 2y and x2+y2+ z2 = 4, that is, when z2 = 4−2y,
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13.8. Surface Integrals

i.e. v2 = 4− 2(1 + sinu) = 2− 2 sinu. Also 0 ≤ u ≤ π. The integral is thus

ˆ

Σ

∥∥∥d2x
∥∥∥ =

ˆ π

0

ˆ √
2−2 sinu

−
√
2−2 sinu

dvdu =

ˆ π

0

2
√
2− 2 sinudu

= 2
√
2

ˆ π

0

√
1− sinu du

= 2
√
2
(
4
√
2− 4

)
.

◀

592 Example
Evaluate ˆ

Σ

xdydz + (z2 − zx)dzdx− xydxdy,

whereΣ is the top side of the triangle with vertices at (2, 0, 0), (0, 2, 0), (0, 0, 4).

Solution: ▶ Observe that theplanepassing through the threegivenpointshasequation2x+2y+z = 4.
We project this plane onto the coordinate axes obtaining

ˆ

Σ

xdydz =
ˆ 4

0

ˆ 2−z/2

0

(2− y − z/2)dydz = 8

3
,
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13. Integration of Forms ˆ

Σ

(z2 − zx)dzdx =

ˆ 2

0

ˆ 4−2x

0

(z2 − zx)dzdx = 8,

−
ˆ

Σ

xydxdy = −
ˆ 2

0

ˆ 2−y

0

xydxdy = −2

3
,

and hence ˆ

Σ

xdydz + (z2 − zx)dzdx− xydxdy = 10.

◀

Homework
593 Problem

Evaluate
ˆ

Σ

y
∥∥∥d2x

∥∥∥whereΣ is the surface z = x+ y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

594 Problem
Consider the cone z =

√
x2 + y2. Find the surfaceareaof thepart of the conewhich lies between theplanes

z = 1 and z = 2.
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13.9. Green’s, Stokes’, and Gauss’ Theorems
595 Problem

Evaluate
ˆ

Σ

x2
∥∥∥d2x

∥∥∥whereΣ is the surface of the unit sphere x2 + y2 + z2 = 1.

596 Problem
Evaluate

ˆ
S

z
∥∥∥d2x

∥∥∥ over the conical surface z = √x2 + y2 between z = 0 and z = 1.

597 Problem
You put a perfectly spherical egg through an egg slicer, resulting in n slices of identical height, but you
forgot to peel it first! Shew that the amount of egg shell in any of the slices is the same. Your argument
must use surface integrals.

598 Problem
Evaluate ˆ

Σ

xydydz − x2dzdx+ (x+ z)dxdy,

whereΣ is the top of the triangular region of the plane 2x+ 2y + z = 6 bounded by the first octant.

13.9. Green’s, Stokes’, and Gauss’ Theorems

We are now in position to state the general Stoke’s Theorem.
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13. Integration of Forms

599 Theorem (General Stoke’s Theorem)
LetM be a smooth orientedmanifold, having boundary ∂M . If ω is a differential form, then

ˆ
∂M

ω =

ˆ
M

dω.

InR2, if ω is a 1-form, this takes the name of Green’s Theorem.

600 Example
Evaluate

˛
C

(x− y3)dx+ x3dy whereC is the circle x2 + y2 = 1.

Solution: ▶ Wewill first use Green’s Theorem and then evaluate the integral directly. We have

dω = d(x− y3) ∧ dx+ d(x3) ∧ dy

= (dx− 3y2dy) ∧ dx+ (3x2dx) ∧ dy

= (3y2 + 3x2)dx ∧ dy.
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13.9. Green’s, Stokes’, and Gauss’ Theorems

The regionM is the area enclosed by the circle x2 + y2 = 1. Thus by Green’s Theorem, and using polar
coordinates, ˛

C

(x− y3)dx+ x3dy =

ˆ
M

(3y2 + 3x2)dxdy

=

ˆ 2π

0

ˆ 1

0

3ρ2ρdρdθ

=
3π

2
.

Aliter: We can evaluate this integral directly, again resorting to polar coordinates.

˛
C

(x− y3)dx+ x3dy =

ˆ 2π

0

(cos θ − sin3 θ)(− sin θ)dθ + (cos3 θ)(cos θ)dθ

=

ˆ 2π

0

(sin4 θ + cos4 θ − sin θ cos θ)dθ.

To evaluate the last integral, observe that 1 = (sin2 θ+cos2 θ)2 = sin4 θ+2 sin2 θ cos2 θ+cos4 θ, whence
the integral equals

ˆ 2π

0

(sin4 θ + cos4 θ − sin θ cos θ)dθ =

ˆ 2π

0

(1− 2 sin2 θ cos2 θ − sin θ cos θ)dθ

=
3π

2
.

◀
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In general, let
ω = f(x, y)dx+ g(x, y)dy

be a 1-form inR2. Then

dω = df(x, y) ∧ dx+ dg(x, y) ∧ dy

=

(
∂

∂x
f(x, y)dx+ ∂

∂y
f(x, y)dy

)
∧ dx+

(
∂

∂x
g(x, y)dx+ ∂

∂y
g(x, y)dy

)
∧ dy

=

(
∂

∂x
g(x, y)− ∂

∂y
f(x, y)

)
dx ∧ dy

which gives the classical Green’s Theorem
ˆ

∂M

f(x, y)dx+ g(x, y)dy =

ˆ

M

(
∂

∂x
g(x, y)− ∂

∂y
f(x, y)

)
dxdy.

InR3, if ω is a 2-form, the above theorem takes the name of Gauss or the Divergence Theorem.

601 Example
Evaluate

ˆ
S

(x− y)dydz + zdzdx− ydxdy where S is the surface of the sphere

x2 + y2 + z2 = 9

and the positive direction is the outward normal.
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13.9. Green’s, Stokes’, and Gauss’ Theorems

Solution: ▶ The regionM is the interior of the sphere x2 + y2 + z2 = 9. Now,

dω = (dx− dy) ∧ dy ∧ dz + dz ∧ dz ∧ dx− dy ∧ dx ∧ dy

= dx ∧ dy ∧ dz.

The integral becomes ˆ

M

dxdydz =
4π

3
(27)

= 36π.

Aliter: We could evaluate this integral directly. We have
ˆ
Σ

(x− y)dydz =
ˆ
Σ

xdydz,

since (x, y, z) 7→ −y is an odd function of y and the domain of integration is symmetric with respect to
y. Now, ˆ

Σ

xdydz =

ˆ 3

−3

ˆ 2π

0

|ρ|
»
9− ρ2dρdθ

= 36π.

Also ˆ
Σ

zdzdx = 0,
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13. Integration of Forms

since (x, y, z) 7→ z is an odd function of z and the domain of integration is symmetric with respect to z.
Similarly ˆ

Σ

−ydxdy = 0,

since (x, y, z) 7→ −y is an odd function of y and the domain of integration is symmetric with respect to
y. ◀

In general, let

ω = f(x, y, z)dy ∧ dz + g(x, y, z)dz ∧ dx+ h(x, y, z)dx ∧ dy

be a 2-form inR3. Then

dω = df(x, y, z)dy ∧ dz + dg(x, y, z)dz ∧ dx+ dh(x, y, z)dx ∧ dy

=

(
∂

∂x
f(x, y, z)dx+ ∂

∂y
f(x, y, z)dy + ∂

∂z
f(x, y, z)dz

)
∧ dy ∧ dz

+

(
∂

∂x
g(x, y, z)dx+ ∂

∂y
g(x, y, z)dy + ∂

∂z
g(x, y, z)dz

)
∧ dz ∧ dx

+

(
∂

∂x
h(x, y, z)dx+ ∂

∂y
h(x, y, z)dy + ∂

∂z
h(x, y, z)dz

)
∧ dx ∧ dy

=

(
∂

∂x
f(x, y, z) +

∂

∂y
g(x, y, z) +

∂

∂z
h(x, y, z)

)
dx ∧ dy ∧ dz,
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13.9. Green’s, Stokes’, and Gauss’ Theorems

which gives the classical Gauss’s Theorem

ˆ

∂M

f(x, y, z)dydz+g(x, y, z)dzdx+h(x, y, z)dxdy =

ˆ

M

(
∂

∂x
f(x, y, z) +

∂

∂y
g(x, y, z) +

∂

∂z
h(x, y, z)

)
dxdydz.

Using classical notation, if

a =


f(x, y, z)

g(x, y, z)

h(x, y, z)

 , dS =


dydz

dzdx

dxdy

 ,

then ˆ

M

(∇ · a)dV =

ˆ

∂M

a · dS.

The classical Stokes’ Theorem occurs when ω is a 1-form inR3.

602 Example
Evaluate

˛
C

ydx+ (2x− z)dy+ (z− x)dz whereC is the intersection of the sphere x2 + y2 + z2 = 4 and

the plane z = 1.
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Solution: ▶ We have

dω = (dy) ∧ dx+ (2dx− dz) ∧ dy + (dz − dx) ∧ dz

= −dx ∧ dy + 2dx ∧ dy + dy ∧ dz + dz ∧ dx

= dx ∧ dy + dy ∧ dz + dz ∧ dx.

Since on C, z = 1, the surface Σ on which we are integrating is the inside of the circle x2 + y2 + 1 = 4,

i.e., x2 + y2 = 3. Also, z = 1 implies dz = 0 and so

ˆ

Σ

dω =

ˆ

Σ

dxdy.

Since this is just the area of the circular region x2 + y2 ≤ 3, the integral evaluates to

ˆ

Σ

dxdy = 3π.

◀
In general, let

ω = f(x, y, z)dx+ g(x, y, z)dy ++h(x, y, z)dz

634



13.9. Green’s, Stokes’, and Gauss’ Theorems

be a 1-form inR3. Then

dω = df(x, y, z) ∧ dx+ dg(x, y, z) ∧ dy + dh(x, y, z) ∧ dz

=

(
∂

∂x
f(x, y, z)dx+ ∂

∂y
f(x, y, z)dy + ∂

∂z
f(x, y, z)dz

)
∧ dx

+

(
∂

∂x
g(x, y, z)dx+ ∂

∂y
g(x, y, z)dy + ∂

∂z
g(x, y, z)dz

)
∧ dy

+

(
∂

∂x
h(x, y, z)dx+ ∂

∂y
h(x, y, z)dy + ∂

∂z
h(x, y, z)dz

)
∧ dz

=

(
∂

∂y
h(x, y, z)− ∂

∂z
g(x, y, z)

)
dy ∧ dz

+

Ç
∂

∂z
f(x, y, z)− ∂

∂x
h(x, y, z)

å
dz ∧ dx(

∂

∂x
g(x, y, z)− ∂

∂y
f(x, y, z)

)
dx ∧ dy
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which gives the classical Stokes’ Theorem

ˆ

∂M

f(x, y, z)dx+ g(x, y, z)dy + h(x, y, z)dz

=

ˆ

M

(
∂

∂y
h(x, y, z)− ∂

∂z
g(x, y, z)

)
dydz

+

Ç
∂

∂z
g(x, y, z)− ∂

∂x
f(x, y, z)

å
dxdy

+

(
∂

∂x
h(x, y, z)− ∂

∂y
f(x, y, z)

)
dxdy.

Using classical notation, if

a =


f(x, y, z)

g(x, y, z)

h(x, y, z)

 , dr =


dx

dy

dz

 , dS =


dydz

dzdx

dxdy

 ,

then ˆ

M

(∇× a) · dS =

ˆ

∂M

a · dr.
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13.9. Green’s, Stokes’, and Gauss’ Theorems

Homework
603 Problem

Evaluate
˛
C

x3ydx+ xydy whereC is the square with vertices at (0, 0), (2, 0), (2, 2) and (0, 2).

604 Problem
Consider the triangle△with verticesA : (0, 0),B : (1, 1), C : (−2, 2).

Ê IfLPQ denotes the equation of the line joining P andQ findLAB ,LAC , andLBC .

Ë Evaluate ˛
△
y2dx+ xdy.

Ì Find ˆ

D

(1− 2y)dx ∧ dy

whereD is the interior of△.

605 Problem
Problems 1 through 4 refer to the differential form

ω = xdy ∧ dz + ydz ∧ dx+ 2zdx ∧ dy,
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and the solidM whose boundaries are the paraboloid z = 1−x2−y2, 0 ≤ z ≤ 1 and the discx2+y2 ≤ 1,
z = 0. The surface ∂M of the solid is positively oriented upon considering outward normals.

1. Prove that dω = 4dx ∧ dy ∧ dz.

2. Prove that in Cartesian coordinates,
ˆ
∂M

ω =

ˆ 1

−1

ˆ √
1−x2

−
√
1−x2

ˆ 1−x2−y2

0

4dzdydx.

3. Prove that in cylindrical coordinates,
ˆ
M

dω =

ˆ 2π

0

ˆ 1

0

ˆ 1−r2

0

4rdzdrdθ.

4. Prove that
ˆ
∂M

xdydz + ydzdx+ 2zdxdy = 2π.

606 Problem
Problems 1 through 4 refer to the box

M = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2},

the upper face of the box

U = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 2},

the boundary of the box without the upper top S = ∂M \ U , and the differential form

ω = (arctan y − x2)dy ∧ dz + (cosx sin z − y3)dz ∧ dx+ (2zx+ 6zy2)dx ∧ dy.
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1. Prove that dω = 3y2dx ∧ dy ∧ dz.

2. Prove that
ˆ
∂M

(arctan y−x2)dydz+(cosx sin z−y3)dzdx+(2zx+6zy2)dxdy =

ˆ 2

0

ˆ 1

0

ˆ 1

0

3y2dxdydz =
2. Here the boundary of the box is positively oriented considering outward normals.

3. Prove that the integralon theupper faceof thebox is
ˆ
U

(arctan y−x2)dydz+(cosx sin z−y3)dzdx+

(2zx+ 6zy2)dxdy =

ˆ 1

0

ˆ 1

0

4x+ 12y2dxdy = 6.

4. Prove that the integral on the open box is
ˆ
∂M\U

(arctan y − x2)dydz + (cosx sin z − y3)dzdx +

(2zx+ 6zy2)dxdy = −4.

607 Problem
Problems 1 through 3 refer to a triangular surface T in R3 and a differential form ω. The vertices of T are
atA(6, 0, 0),B(0, 12, 0), andC(0, 0, 3). The boundary of of the triangle ∂T is oriented positively by start-
ing at A, continuing to B, following to C, and ending again at A. The surface T is oriented positively by
considering the top of the triangle, as viewed from a point far above the triangle. The differential form is

ω = (2xz + arctan ex) dx+
Ä
xz + (y + 1)y

ä
dy +

(
xy +

y2

2
+ log(1 + z2)

)
dz.

1. Prove that the equation of the plane that contains the triangle T is 2x+ y + 4z = 12.
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2. Prove that dω = ydy ∧ dz + (2x− y) dz ∧ dx+ zdx ∧ dy.

3. Prove that
ˆ
∂T

(2xz + arctan ex) dx+
Ä
xz + (y + 1)y

ä
dy+

(
xy +

y2

2
+ log(1 + z2)

)
dz =

ˆ 3

0

ˆ 12−4z

0

ydydz+
ˆ 6

0

ˆ 3−x/2

0

2xdzdx=108.

608 Problem
Use Green’s Theorem to prove that ˆ

Γ

(x2 + 2y3)dy = 16π,

where Γ is the circle (x− 2)2 + y2 = 4. Also, prove this directly by using a path integral.

609 Problem
Let Γ denote the curve of intersection of the plane x + y = 2 and the sphere x2 − 2x + y2 − 2y + z2 = 0,
oriented clockwise when viewed from the origin. Use Stoke’s Theorem to prove that

ˆ

Γ

ydx+ zdy + xdz = −2π
√
2.

Prove this directly by parametrising the boundary of the surface and evaluating the path integral.
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610 Problem

Use Green’s Theorem to evaluate
˛
C

(x3 − y3)dx+ (x3 + y3)dy,

whereC is the positively oriented boundary of the region between the circles x2+ y2 = 2 and x2+ y2 = 4.
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14.
Answers and Hints
106 Since polynomials are continuous functions and the image of a connected set is connected for a continuous
function, the image must be an interval of some sort. If the image were a finite interval, then f(x, kx) would be
bounded for every constant k, and so the image would just be the point f(0, 0). The possibilities are thus

1. a single point (take for example, p(x, y) = 0),

2. a semi-infinite interval with an endpoint (take for example p(x, y) = x2 whose image is [0;+∞[),

3. a semi-infinite intervalwith noendpoint (take for examplep(x, y) = (xy−1)2+x2whose image is ]0;+∞[),

4. all real numbers (take for example p(x, y) = x).
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14. Answers and Hints

120 0

121 2

122 c = 0.

123 0

126 By AM-GM,
x2y2z2

x2 + y2 + z2
≤ (x2 + y2 + z2)3

27(x2 + y2 + z2)
=

(x2 + y2 + z2)2

27
→ 0

as (x, y, z)→ (0, 0, 0).

138 0

139 2

140 c = 0.

141 0

144 By AM-GM,
x2y2z2

x2 + y2 + z2
≤ (x2 + y2 + z2)3

27(x2 + y2 + z2)
=

(x2 + y2 + z2)2

27
→ 0

as (x, y, z)→ (0, 0, 0).
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172 We have

F (x + h)− F (x) = (x + h)× L(x + h)− x × L(x)

= (x + h)× (L(x) + L(h))− x × L(x)

= x × L(h) + h × L(x) + h × L(h)

Now, we will prove that
||h × L(h)||
∥h∥ → 0 as h→ 0. For let

h =
n∑

k=1

hkek,

where the ek are the standard basis forRn. Then

L(h) =
n∑

k=1

hkL(ek),

and hence by the triangle inequality, and by the Cauchy-Bunyakovsky-Schwarz inequality,

||L(h)|| ≤ ∑n
k=1 |hk|||L(ek)||

≤
Ä∑n

k=1 |hk|2
ä1/2 Ä∑n

k=1 ||L(ek)||2
ä1/2

= ∥h∥(∑n
k=1 ||L(ek)||2)1/2,
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whence, again by the Cauchy-Bunyakovsky-Schwarz Inequality,

||h × L(h)|| ≤ ||h||||L(h)| ≤ ||h||2|||L(ek)||2)1/2

And so
||h × L(h)||
∥h∥ ≤ || ||h||

2|||L(ek)||2)1/2

∥h∥ → 0

184 Observe that

f(x, y) =


x if x ≤ y2

y2 if x > y2

Hence

∂

∂x
f(x, y) =


1 if x > y2

0 if x > y2

and

∂

∂y
f(x, y) =


0 if x > y2

2y if x > y2

185 Observe that

g(1, 0, 1) = (30) , f′(x, y) =

 y2 2xy

2xy x2

 , g′(x, y) =

1 −1 2

y x 0

 ,
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and hence

g′(1, 0, 1) =

1 −1 2

0 1 0

 , f′(g(1, 0, 1)) = f′(3, 0) =

0 0

0 9

 .
This gives, via the Chain-Rule,

(f ◦ g)′(1, 0, 1) = f′(g(1, 0, 1))g′(1, 0, 1) =

0 0

0 9


1 −1 2

0 1 0

 =

0 0 0

0 9 0

 .
The composition g ◦ f is undefined. For, the output of f isR2, but the input of g is inR3.

186 Since f(0, 1) = (01), the Chain Rule gives

(g ◦ f)′(0, 1) = (g′(f(0, 1)))(f′(0, 1)) = (g′(0, 1))(f′(0, 1)) =


1 −1

0 0

1 1


1 0

1 1

 =


0 −1

0 0

2 1


189 We have

∂

∂x
(x+ z)2 +

∂

∂x
(y + z)2 =

∂

∂x
8 =⇒ 2(1 +

∂z

∂x
)(x+ z) + 2

∂z

∂x
(y + z) = 0.

At (1, 1, 1) the last equation becomes

4(1 +
∂z

∂x
) + 4

∂z

∂x
= 0 =⇒ ∂z

∂x
= −1

2
.
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219 a) Here∇T = (y+ z)i+(x+ z)j+(y+x)k. Themaximum rate of change at (1, 1, 1) is |∇T (1, 1, 1)| = 2
√
3

and direction cosines are

∇T
|∇T |

=
1√
3

i + 1√
3

j + 1√
3

k = cosαi + cosβj + cos γk

b) The required derivative is

∇T (1, 1, 1)• 3i− 4k
|3i− 4k| = −

2

5

220 a) Here∇ϕ = F requires∇× F = 0which is not the case here, so no solution.
b) Here∇× F = 0 so that

ϕ(x, y, z) = x2y + y2z + z + c

221 ∇f(x, y, z) = (eyz, xzeyz, xyeyz) =⇒ (∇f)(2, 1, 1) = (e, 2e, 2e).

222 (∇× f)(x, y, z) = (0, x, yexy) =⇒ (∇× f)(2, 1, 1) =
Ä
0, 2, e2

ä
.

224 The vector (1,−7, 0) is perpendicular to the plane. Put f(x, y, z) = x2 + y2 − 5xy + xz − yz + 3. Then
(∇f)(x, y, z) = (2x− 5y + z, 2y − 5x− zx− y). Observe that ∇f(x, y, z) is parallel to the vector (1,−7, 0),
and hence there exists a constant a such that

(2x− 5y + z, 2y − 5x− zx− y) = a (1,−7, 0) =⇒ x = a, y = a, z = 4a.
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Since the point is on the plane

x− 7y = −6 =⇒ a− 7a = −6 =⇒ a = 1.

Thus x = y = 1 and z = 4.

227 Observe that
f(0, 0) = 1, fx(x, y) = (cos 2y)ex cos 2y =⇒ fx(0, 0) = 1,

fy(x, y) = −2x sin 2yex cos 2y =⇒ fy(0, 0) = 0.

Hence
f(x, y) ≈ f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) =⇒ f(x, y) ≈ 1 + x.

This gives f(0.1,−0.2) ≈ 1 + 0.1 = 1.1.

228 This is essentially the product rule: duv = udv + vdu, where∇ acts the differential operator and× is the
product. Recall that when we defined the volume of a parallelepiped spanned by the vectors a, b, c, we saw that

a • (b × c) = (a × b) • c.

Treating∇ = ∇u +∇v as a vector, first keeping v constant and then keeping u constant we then see that

∇u • (u × v) = (∇× u) • v, ∇v • (u × v) = −∇ • (v × u) = −(∇× v) • u.

Thus

∇ • (u × v) = (∇u +∇v) • (u × v) = ∇u • (u × v) +∇v • (u × v) = (∇× u) • v− (∇× v) • u.
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231 An angle of
π

6
with the x-axis and

π

3
with the y-axis.

323 Let


x

y

z

 be a point on S. If this point were on the xz plane, it would be on the ellipse, and its distance to the

axis of rotation would be |x| = 1

2

√
1− z2. Anywhere else, the distance from


x

y

z

 to the z-axis is the distance of

this point to the point


0

0

z

 :
√
x2 + y2. This distance is the same as the length of the segment on the xz-plane

going from the z-axis. We thus have »
x2 + y2 =

1

2

√
1− z2,

or

4x2 + 4y2 + z2 = 1.
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324 Let


x

y

z

 be a point on S. If this point were on the xy plane, it would be on the line, and its distance to the axis

of rotation would be |x| = 1

3
|1− 4y|. Anywhere else, the distance of


x

y

z

 to the axis of rotation is the same as the

distance of


x

y

z

 to


0

y

0

, that is
√
x2 + z2. Wemust have

√
x2 + z2 =

1

3
|1− 4y|,

which is to say

9x2 + 9z2 − 16y2 + 8y − 1 = 0.

325 A spiral staircase.

326 A spiral staircase.
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328 The planes A : x + z = 0 and B : y = 0 are secant. The surface has equation of the form f(A,B) =

eA
2+B2 −A = 0, and it is thus a cylinder. The directrix has direction i− k.

329 Rearranging,

(x2 + y2 + z2)2 − 1

2
((x+ y + z)2 − (x2 + y2 + z2))− 1 = 0,

and so we may takeA : x + y + z = 0, S : x2 + y2 + z2 = 0, shewing that the surface is of revolution. Its axis is
the line in the direction i + j + k.

330 Considering the planesA : x− y = 0, B : y − z = 0, the equation takes the form

f(A,B) =
1

A
+

1

B
− 1

A+B
− 1 = 0,

thus the equation represents a cylinder. To find its directrix, we find the intersection of the planesx = y and y = z.

This gives


x

y

z

 = t


1

1

1

. The direction vector is thus i + j + k.

331 Rearranging,
(x+ y + z)2 − (x2 + y2 + z2) + 2(x+ y + z) + 2 = 0,

so wemay takeA : x+ y + z = 0, S : x2 + y2 + z2 = 0 as our plane and sphere. The axis of revolution is then in
the direction of i + j + k.
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332 After rearranging, we obtain
(z − 1)2 − xy = 0,

or
− x

z − 1

y

z − 1
+ 1 = 0.

Considering the planes
A : x = 0, B : y = 0, C : z = 1,

we see that our surface is a cone, with apex at (0, 0, 1).

333 The largest circle has radius b. Parallel cross sections of the ellipsoid are similar ellipses, hence we may in-
crease the size of these bymoving towards the centre of the ellipse. Every plane through the origin whichmakes a
circular cross section must intersect the yz-plane, and the diameter of any such cross section must be a diameter

of the ellipse x = 0,
y2

b2
+

z2

c2
= 1. Therefore, the radius of the circle is atmost b. Arguing similarly on the xy-plane

shews that the radius of the circle is at least b. To shew that circular cross section of radius b actually exist, one
may verify that the two planes given by a2(b2 − c2)z2 = c2(a2 − b2)x2 give circular cross sections of radius b.

334 Any hyperboloid oriented like the one on the figure has an equation of the form

z2

c2
=

x2

a2
+

y2

b2
− 1.

When z = 0wemust have
4x2 + y2 = 1 =⇒ a =

1

2
, b = 1.
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Thus
z2

c2
= 4x2 + y2 − 1.

Hence, letting z = ±2,

4

c2
= 4x2 + y2 − 1 =⇒ 1

c2
= x2 +

y2

4
− 1

4
= 1− 1

4
=

3

4
,

since at z = ±2, x2 + y2

4
= 1. The equation is thus

3z2

4
= 4x2 + y2 − 1.

572

1. LetL1 : y = x+ 1,L2 : −x+ 1. Then

ˆ
C
xdx+ ydy =

ˆ
L1

xdx+ ydy +
ˆ
L2

xdx+ ydy

=

ˆ 1

−1
xdx(x+ 1)dx+

ˆ 1

0
xdx− (−x+ 1)dx

= 0.
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Also, both onL1 and onL2 we have ∥dx∥ =
√
2dx, thusˆ

C
xy∥dx∥ =

ˆ
L1

xy∥dx∥+
ˆ
L2

xy∥dx∥

=
√
2

ˆ 1

−1
x(x+ 1)dx−

√
2

ˆ 1

0
x(−x+ 1)dx

= 0.

2. We put x = sin t, y = cos t, t ∈
î
−π

2 ; π2

ó
. Then

ˆ
C
xdx+ ydy =

ˆ π/2

−π/2
(sin t)(cos t)dt− (cos t)(sin t)dt

= 0.

Also, ∥dx∥ =
»
(cos t)2 + (− sin t)2dt = dt, and thus

ˆ
C
xy∥dx∥ =

ˆ π/2

−π/2
(sin t)(cos t)dt

=
(sin t)2

2

∣∣∣∣π/2
−π/2

= 0.

573 Let Γ1 denote the straight line segment path from O to A = (2
√
3, 2) and Γ2 denote the arc of the circle

centred at (0, 0) and radius 4 going counterclockwise from θ =
π

6
to θ =

π

5
.
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Observe that the Cartesian equation of the line
←→OA is y =

x√
3
. Then on Γ1

xdx+ ydy = xdx+
x√
3

d x√
3
=

4

3
xdx.

Hence ˆ
Γ1

xdx+ ydy =

ˆ 2
√
3

0

4

3
xdx = 8.

On the arc of the circle we may put x = 4 cos θ, y = 4 sin θ and integrate from θ =
π

6
to θ =

π

5
. Observe that

there

xdx+ ydy = (cos θ)dcos θ + (sin θ)dsin θ = − sin θ cos θdθ + sin θ cos θdθ = 0,

and since the integrand is 0, the integral will be zero.

Assembling these two pieces,
ˆ
Γ
xdx+ ydy =

ˆ
Γ1

xdx+ ydy +
ˆ
Γ2

xdx+ ydy = 8 + 0 = 8.

Using the parametrisations from the solution of problem ??, we find on Γ1 that

x∥dx∥ = x
»
(dx)2 + (dy)2 = x

 
1 +

1

3
dx =

2√
3
xdx,
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whence ˆ
Γ1

x∥dx∥ =
ˆ 2

√
3

0

2√
3
xdx = 4

√
3.

On Γ2 that
x∥dx∥ = x

»
(dx)2 + (dy)2 = 16 cos θ

»
sin2 θ + cos2 θdθ = 16 cos θdθ,

whence ˆ
Γ2

x∥dx∥ =
ˆ π/5

π/6
16 cos θdθ = 16 sin π

5
− 16 sin π

6
= 4 sin π

5
− 8.

Assembling these we gather that
ˆ
Γ
x∥dx∥ =

ˆ
Γ1

x∥dx∥+
ˆ
Γ2

x∥dx∥ = 4
√
3− 8 + 16 sin π

5
.

574 The curve lies on the sphere, and to parametrise this curve, we dispose of one of the variables, y say, from
where y = 1− x and x2 + y2 + z2 = 1 give

x2 + (1− x)2 + z2 = 1 =⇒ 2x2 − 2x+ z2 = 0

=⇒ 2
Ä
x− 1

2

ä2
+ z2 = 1

2

=⇒ 4
Ä
x− 1

2

ä2
+ 2z2 = 1.

So we now put

x =
1

2
+

cos t
2

, z =
sin t√

2
, y = 1− x =

1

2
− cos t

2
.
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Wemust integrate on the side of the plane that can be viewed from the point (1, 1, 0) (observe that the vector


1

1

0


is normal to the plane). On the zx-plane, 4

Ä
x− 1

2

ä2
+ 2z2 = 1 is an ellipse. To obtain a positive parametrisation

we must integrate from t = 2π to t = 0 (this is because when you look at the ellipse from the point (1, 1, 0) the
positive x-axis is to your left, and not your right). Thus

˛
Γ
zdx+ xdy + ydz =

ˆ 0

2π

sin t√
2

d
Ç
1

2
+

cos t
2

å
+

ˆ 0

2π

Ç
1

2
+

cos t
2

å
d
Ç
1

2
− cos t

2

å
+

ˆ 0

2π

Ç
1

2
− cos t

2

å
d
Ç

sin t√
2

å
=

ˆ 0

2π

Ç
sin t

4
+

cos t
2
√
2
+

cos t sin t

4
− 1

2
√
2

å
dt

=
π√
2
.

593 Weparametrise the surface by letting x = u, y = v, z = u+v2.Observe that the domainD ofΣ is the square
[0; 1]× [0; 2]. Observe that

dx ∧ dy = du ∧ dv,

dy ∧ dz = −du ∧ dv,
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dz ∧ dx = −2vdu ∧ dv,

and so ∥∥∥d2x
∥∥∥ = √

2 + 4v2du ∧ dv.

The integral becomes ˆ

Σ

y
∥∥∥d2x

∥∥∥ =

ˆ 2

0

ˆ 1

0
v
√
2 + 4v2dudv

=

(ˆ 1

0
du
)(ˆ 2

0
y
√
2 + 4v2dv

)

=
13
√
2

3
.

594 Using x = r cos θ, y = r sin θ, 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, the surface area is

√
2

ˆ 2π

0

ˆ 2

1
rdrdθ = 3π

√
2.

595 We use spherical coordinates, (x, y, z) = (cos θ sinϕ, sin θ sinϕ, cosϕ). Here θ ∈ [0; 2π] is the latitude and
ϕ ∈ [0;π] is the longitude. Observe that

dx ∧ dy = sinϕ cosϕdϕ ∧ dθ,

dy ∧ dz = cos θ sin2 ϕdϕ ∧ dθ,

dz ∧ dx = − sin θ sin2 ϕdϕ ∧ dθ,
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and so ∥∥∥d2x
∥∥∥ = sinϕdϕ ∧ dθ.

The integral becomes ˆ

Σ

x2
∥∥∥d2x

∥∥∥ =

ˆ 2π

0

ˆ π

0
cos2 θ sin3 ϕdϕdθ

=
4π

3
.

596 Put x = u, y = v, z2 = u2 + v2. Then

dx = du, dy = dv, zdz = udu+ vdv,

whence
dx ∧ dy = du ∧ dv, dy ∧ dz = −u

z
du ∧ dv, dz ∧ dx = −v

z
du ∧ dv,

and so ∥∥∥d2x
∥∥∥ =

»
(dx ∧ dy)2 + (dz ∧ dx)2 + (dy ∧ dz)2

=

 
1 +

u2 + v2

z2
du ∧ dv

=
√
2 du ∧ dv.

Hence ˆ

Σ

z
∥∥∥d2x

∥∥∥ = ˆ

u2+v2≤1

√
u2 + v2

√
2 dudv =

√
2

ˆ 2π

0

ˆ 1

0
ρ2 dρdθ =

2π
√
2

3
.
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597 If the egg has radius R, each slice will have height 2R/n. A slice can be parametrised by 0 ≤ θ ≤ 2π, ϕ1 ≤
ϕ ≤ ϕ2, with

R cosϕ1 −R cosϕ2 = 2R/n.

The area of the part of the surface of the sphere in slice is
ˆ 2π

0

ˆ ϕ2

ϕ1

R2 sinϕdϕdθ = 2πR2(cosϕ1 − cosϕ2) = 4πR2/n.

This means that each of the n slices has identical area 4πR2/n.

598 We project this plane onto the coordinate axes obtaining
ˆ

Σ

xydydz =

ˆ 6

0

ˆ 3−z/2

0
(3− y − z/2)ydydz =

27

4
,

−
ˆ

Σ

x2dzdx = −
ˆ 3

0

ˆ 6−2x

0
x2dzdx = −27

2
,

ˆ

Σ

(x+ z)dxdy =

ˆ 3

0

ˆ 3−y

0
(6− x− 2y)dxdy =

27

2
,

and hence ˆ

Σ

xydydz − x2dzdx+ (x+ z)dxdy =
27

4
.
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603 Evaluating this directly would result in evaluating four path integrals, one for each side of the square. We will
use Green’s Theorem. We have

dω = d(x3y) ∧ dx+ d(xy) ∧ dy

= (3x2ydx+ x3dy) ∧ dx+ (ydx+ xdy) ∧ dy

= (y − x3)dx ∧ dy.

The regionM is the area enclosed by the square. The integral equals
˛
C
x3ydx+ xydy =

ˆ 2

0

ˆ 2

0
(y − x3)dxdy

= −4.

604 We have

Ê LAB is y = x;LAC is y = −x, andLBC is clearly y = −1

3
x+

4

3
.

Ë We have ˆ
AB

y2dx+ xdy =

ˆ 1

0
(x2 + x)dx =

5

6ˆ
BC

y2dx+ xdy =

ˆ −2

1

ÑÇ
−1

3
x+

4

3

å2

− 1

3
x

é
dx = −15

2ˆ
CA

y2dx+ xdy =

ˆ 0

−2
(x2 − x)dx =

14

3
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Adding these integrals we find ˛
△
y2dx+ xdy = −2.

Ì We have ˆ

D

(1− 2y)dx ∧ dy =

ˆ 0

−2

(ˆ −x/3+4/3

−x
(1− 2y)dy

)
dx

+

ˆ 1

0

(ˆ −x/3+4/3

x
(1− 2y)dy

)
dx

= −44

27
− 10

27

= −2.

608 Observe that

d(x2 + 2y3) ∧ dy = 2xdx ∧ dy.

Hence by the generalised Stokes’ Theorem the integral equals

ˆ

{(x−2)2+y2≤4}

2xdx ∧ dy =

ˆ π/2

−π/2

ˆ 4 cos θ

0
2ρ2 cos θdρ ∧ dθ = 16π.
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To do it directly, put x− 2 = 2 cos t, y = 2 sin t, 0 ≤ t ≤ 2π. Then the integral becomes

ˆ 2π

0
((2 + 2 cos t)2 + 16 sin3 t)d2 sin t =

ˆ 2π

0
(8 cos t+ 16 cos2 t

+8 cos3 t+ 32 cos t sin3 t)dt

= 16π.

609 At the intersection path

0 = x2 + y2 + z2 − 2(x+ y) = (2− y)2 + y2 + z2 − 4 = 2y2 − 4y + z2 = 2(y − 1)2 + z2 − 2,

which describes an ellipse on the yz-plane. Similarly we get 2(x− 1)2 + z2 = 2 on the xz-plane. We have

d(ydx+ zdy + xdz) = dy ∧ dx+ dz ∧ dy + dx ∧ dz = −dx ∧ dy − dy ∧ dz − dz ∧ dx.

Since dx ∧ dy = 0, by Stokes’ Theorem the integral sought is

−
ˆ

2(y−1)2+z2≤2

dydz −
ˆ

2(x−1)2+z2≤2

dzdx = −2π(
√
2).

(To evaluate the integrals youmay resort to the fact that the area of the elliptical region
(x− x0)

2

a2
+
(y − y0)

2

b2
≤ 1

is πab).
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If we were to evaluate this integral directly, we would set

y = 1 + cos θ, z =
√
2 sin θ, x = 2− y = 1− cos θ.

The integral becomes
ˆ 2π

0
(1 + cos θ)d(1− cos θ) +

√
2 sin θd(1 + cos θ) + (1− cos θ)d(

√
2 sin θ)

which in turn

=

ˆ 2π

0
sin θ + sin θ cos θ −

√
2 +
√
2 cos θdθ = −2π

√
2.
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15. GNU Free Documentation License

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs freedocumentation: a freeprogramshould comewithmanuals providing the same freedoms that
the softwaredoes. But this License is not limited to softwaremanuals; it canbeused for any textualwork,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
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herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in
a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with re-
lated matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in thenotice that says that theDocument is releasedunder this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Documentmay contain zero Invariant Sections. If theDocument does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
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A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straight-
forwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file formatwhosemarkup, or absence ofmarkup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies includeplain ASCIIwithoutmarkup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming sim-
ple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not gener-
ally available, and themachine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in for-
mats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.
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A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Doc-
ument means that it remains a section “Entitled XYZ” according to this definition.

The Documentmay includeWarranty Disclaimers next to the notice which states that this License ap-
plies to the Document. TheseWarranty Disclaimers are considered to be included by reference in this Li-
cense, but only as regards disclaimingwarranties: any other implication that theseWarrantyDisclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
Youmay copy and distribute the Document in anymedium, either commercially or noncommercially,

provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. Youmay not use technicalmeasures to obstruct or control the reading or further copying
of the copies youmake or distribute. However, youmay accept compensation in exchange for copies. If
you distribute a large enough number of copies youmust also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.
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3. COPYING IN QUANTITY
If youpublishprinted copies (or copies inmedia that commonlyhaveprinted covers) of theDocument,

numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front covermust present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must ei-
ther include amachine-readable Transparent copy alongwith eachOpaque copy, or state in orwith each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of addedmaterial. If you use the latter option, youmust take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessi-
ble at the stated locationuntil at least one year after the last time youdistribute anOpaque copy (directly
or through your agents or retailers) of that edition to the public.
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It is requested, but not required, that you contact the authors of theDocumentwell before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections

2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version towhoever possesses a copy of it. In addition, youmust do these things in theModified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
themodifications in theModified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Addanappropriate copyrightnotice for yourmodificationsadjacent to theother copyrightnotices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous ver-
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sions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the orig-
inal publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Sec-
tion numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain nomaterial copied from the Document, youmay at your option designate some or
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all of these sections as invariant. Todo this, add their titles to the list of Invariant Sections in theModified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangementmade by the same entity you are acting on behalf of, youmay not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms

defined in section 4 above formodified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
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The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. Youmust delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this Li-
cense, and replace the individual copies of this License in the various documents with a single copy that
is included in the collection, provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.
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7. AGGREGATIONWITH INDEPENDENTWORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyondwhat
the individualworkspermit. When theDocument is included in anaggregate, this Licensedoesnot apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Documentwithin the aggregate, or the electronic equivalent of covers if the Doc-
ument is in electronic form. Otherwise they must appear on printed covers that bracket the whole ag-
gregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but youmay include translations of some or all Invariant Sections in addi-
tion to theoriginal versionsof these Invariant Sections. Youmay includea translationof this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
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the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be similar in spirit to the present version, butmay differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, youmay choose any version ever published (not as a draft) by the Free Software
Foundation.

682



Bibliography

[1] E. Abbott. Flatland. 7th edition. New York: Dover Publications, Inc., 1952.

[2] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications. Volume 75.
Springer Science & Business Media, 2012.

[3] H. Anton and C. Rorres. Elementary Linear Algebra: Applications Version. 8th edition. New York:
John Wiley & Sons, 2000.

[4] T. M. Apostol. Calculus, Volume I. John Wiley & Sons, 2007.

[5] T. M. Apostol. Calculus, Volume II. John Wiley & Sons, 2007.

683



BIBLIOGRAPHY

[6] V. Arnold.Mathematical Methods of Classical Mechanics. New York: Springer-Verlag, 1978.

[7] M. Bazaraa, H. Sherali, and C. Shetty.Nonlinear Programming: Theory and Algorithms. 2nd edition.
New York: John Wiley & Sons, 1993.

[8] R. L. Bishop and S. I. Goldberg. Tensor analysis onmanifolds. Courier Corporation, 2012.

[9] A. I. Borisenko, I. E. Tarapov, and P. L. Balise. “Vector and tensor analysis with applications”. In:
Physics Today 22.2 (1969), pages 83–85.

[10] F. Bowman. Introduction to Elliptic Functions, with Applications. New York: Dover, 1961.

[11] M. A. P. Cabral. Curso de Cálculo de Uma Variável. 2013.

[12] M. P. do Carmo Valero. Riemannian geometry. 1992.

[13] A. Chorin and J. Marsden. A Mathematical Introduction to Fluid Mechanics. New York: Springer-
Verlag, 1979.

[14] M. Corral et al. Vector Calculus. Citeseer, 2008.

[15] R. Courant. Differential and Integral Calculus. Volume 2. John Wiley & Sons, 2011.

[16] P. Dawkins. Paul’s Online Math Notes. (Visited on 12/02/2015).

[17] B. Demidovitch. Problemas e Exercícios de Análise Matemática. 1977.

[18] T. P. Dence and J. B. Dence. Advanced Calculus: A Transition to Analysis. Academic Press, 2009.

684



BIBLIOGRAPHY

[19] M. P. Do Carmo. Differential forms and applications. Springer Science & Business Media, 2012.

[20] M.P.DoCarmoandM.P.DoCarmo.Differentialgeometryof curvesandsurfaces. Volume2.Prentice-
hall Englewood Cliffs, 1976.

[21] C. H. Edwards and D. E. Penney. Calculus and Analytic Geometry. Prentice-Hall, 1982.

[22] H. M. Edwards. Advanced calculus: a differential forms approach. Springer Science & Business Me-
dia, 2013.

[23] t. b. T. H. Euclid. Euclid’s Elements. Santa Fe, NM: Green Lion Press, 2002.

[24] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 2nd edition.
San Diego, CA: Academic Press, 1990.

[25] P. Fitzpatrick. Advanced Calculus. Volume 5. American Mathematical Soc., 2006.

[26] W. H. Fleming. Functions of several variables. Springer Science & Business Media, 2012.

[27] D. Guichard, N. Koblitz, and H. J. Keisler. Calculus: Early Transcendentals. Whitman College, 2014.

[28] H. L. Guidorizzi. Um curso de Cálculo, vol. 2. Grupo Gen-LTC, 2000.

[29] H. L. Guidorizzi. Um curso de Cálculo, vol. 3. Grupo Gen-LTC, 2000.

[30] H. L. Guidorizzi. Um Curso de Cálculo. Livros Técnicos e Científicos Editora, 2001.

685



BIBLIOGRAPHY

[31] D. Halliday and R. Resnick. Physics: Parts 1&2 Combined. 3rd edition. New York: JohnWiley & Sons,
1978.

[32] G. Hartman. APEX Calculus II. 2015.

[33] E. Hecht. Optics. 2nd edition. Reading, MA: Addison-Wesley Publishing Co., 1987.

[34] P. Hoel, S. Port, and C. Stone. Introduction to Probability Theory. Boston, MA: HoughtonMifflin Co.,
1971 (cited on page 273).

[35] J. H. Hubbard and B. B. Hubbard. Vector calculus, linear algebra, and differential forms: a unified
approach. Matrix Editions, 2015.

[36] J. Jackson. Classical Electrodynamics. 2nd edition. New York: John Wiley & Sons, 1975 (cited on
page 54).

[37] L. G. Kallam and M. Kallam. “An Investigation into a Problem-Solving Strategy for Indefinite Inte-
gration and Its Effect on Test Scores of General Calculus Students.” In: (1996).

[38] D. Kay. Schaum’s Outline of Tensor Calculus. McGraw Hill Professional, 1988.

[39] M. Kline. Calculus: An Intuitive and Physical Approach. Courier Corporation, 1998.

[40] S. G. Krantz. The Integral: a Crux for Analysis. Volume 4. 1. Morgan & Claypool Publishers, 2011,
pages 1–105.

686



BIBLIOGRAPHY

[41] S.G.KrantzandH.R.Parks.The implicit function theorem:history, theory,andapplications. Springer
Science & Business Media, 2012.

[42] J. Kuipers. Quaternions and Rotation Sequences. Princeton, NJ: Princeton University Press, 1999.

[43] S. Lang. Calculus of several variables. Springer Science & Business Media, 1987.

[44] L. Leithold. The Calculus with Analytic Geometry. Volume 1. Harper & Row, 1972.

[45] E. L. Lima. Análise Real Volume 1. 2008.

[46] E. L. Lima. Analise real, volume 2: funções de n variáveis. Impa, 2013.

[47] I. Malta, S. Pesco, and H. Lopes. Cálculo a Uma Variável. 2002.

[48] J. Marion. Classical Dynamics of Particles and Systems. 2nd edition. New York: Academic Press,
1970.

[49] J. E. Marsden and A. Tromba. Vector calculus. Macmillan, 2003.

[50] P. C. Matthews. Vector calculus. Springer Science & Business Media, 2012.

[51] P. F. McLoughlin. “When Does a Cross Product on Rn Exist”. In: arXiv preprint arXiv:1212.3515 (2012)
(cited on page 55).

[52] P. R. Mercer.More Calculus of a Single Variable. Springer, 2014.

[53] C. Misner, K. Thorne, and J. Wheeler. Gravitation. New York: W.H. Freeman & Co., 1973.

687



BIBLIOGRAPHY

[54] J. R. Munkres. Analysis onmanifolds. Westview Press, 1997.

[55] S. M. Musa and D. A. Santos. Multivariable and Vector Calculus: An Introduction. Mercury Learning
& Information, 2015.

[56] B. O’Neill. Elementary Differential Geometry. New York: Academic Press, 1966.

[57] O. de Oliveira et al. “The Implicit and Inverse Function Theorems: Easy Proofs”. In: Real Analysis
Exchange 39.1 (2013), pages 207–218.

[58] A. Pogorelov. Analytical Geometry. Moscow: Mir Publishers, 1980.

[59] J. Powell and B. Crasemann. Quantum Mechanics. Reading, MA: Addison-Wesley Publishing Co.,
1961.

[60] M. Protter and C. Morrey. Analytic Geometry. 2nd edition. Reading, MA: Addison-Wesley Publishing
Co., 1975.

[61] J. Reitz, F.Milford, andR. Christy. Foundations of Electromagnetic Theory. 3rd edition. Reading,MA:
Addison-Wesley Publishing Co., 1979.

[62] W. Rudin. Principles of Mathematical Analysis. 3rd edition. New York: McGraw-Hill, 1976.

[63] H. Schey. Div, Grad, Curl, and All That: An Informal Text on Vector Calculus. New York: W.W. Norton
& Co., 1973.

[64] A. H. Schoenfeld. Presenting a Strategy for Indefinite Integration. JSTOR, 1978, pages 673–678.

688



BIBLIOGRAPHY

[65] R. Sharipov. “Quick introduction to tensor analysis”. In: arXiv preprint math/0403252 (2004).

[66] G. F. Simmons. Calculus with Analytic Geometry. Volume 10. 1985, page 12.

[67] M. Spivak. Calculus onmanifolds. Volume 1. WA Benjamin New York, 1965.

[68] M. Spivak. Calculus. 1984.

[69] M. Spivak. The Hitchhiker’s Guide to Calculus. Mathematical Assn of America, 1995.

[70] J. Stewart. Calculus: Early Transcendentals. Cengage Learning, 2015.

[71] E. W. Swokowski. Calculus with Analytic Geometry. Taylor & Francis, 1979.

[72] S. Tan. Calculus: Early Transcendentals. Cengage Learning, 2010.

[73] A. Taylor and W. Mann. Advanced Calculus. 2nd edition. New York: John Wiley & Sons, 1972.

[74] J. Uspensky. Theory of Equations. New York: McGraw-Hill, 1948.

[75] H. Weinberger. A First Course in Partial Differential Equations. New York: John Wiley & Sons, 1965.

[76] K. Wilfred. Advanced calculus. 2002.

[77] S. Winitzki. Linear algebra via exterior products. Sergei Winitzki, 2010.

689





Index

Mx,My, 253
Mxy,Mxz,Myz, 257
x̄, 253
ȳ, 253
z̄, 257
δ(x, y), 253
∂(x, y, z)

∂(u, v, w)
, 245

˝
S

, 234
˜

, 216˜
R

, 226

ε-neighborhood, 80
k-differential form field inRn, 595
k-th exterior power, 494
n-forms, 498
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n-vectors, 495
1-form, 466

curl, 161
derivative of f at a, 128
differentiable, 128, 129
directional derivative of f in the direction of v at

the point x, 163
directional derivative of f in the direction of v at

the point x, 162
distance, 9
divergence, 157
dot product, 8
gradient, 152
gradient operator, 152
Jacobi matrix, 138
locally invertible on S, 178
partial derivative, 135
repeated partial derivatives, 140
scalar multiplication, 4

star-shaped domains, 613
the tensor product, 519

a dual bilinear form, 512
acceleration, 119
alternating, 487
antisymmetric, 487, 492
antisymmetric tensor, 495
antisymmetric tensors, 495
apex, 296
area element, 226, 618

basis, 18
Beta function, 252
bivector, 493
bivectors, 493
boundary, 352, 368
boundary point, 85
boundary, 85
bounded, 368
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bounded, 104

canonical ordered basis, 6
center of mass, 253
centroid, 256
change of variable, 239, 242
charge density, 175
classC1, 151
classC2, 151
classC∞, 152
classCk, 152
clockwise, 352
closed, 82, 281, 368
closed surfaces, 412
closure of the dual space, 469
closure, 85
compact, 105
component functions, 111
components, 473
conductivity tensor, 586

cone, 296
conservative force, 319, 330
conservative vector field, 330
continuous at t0, 101
continuously differentiable, 151
continuously differentiable, 148
contravariant, 475
contravariant basis, 438
converges to the limit, 84
coordinate change, 432
coordinates, 22, 473

curvilinear, 44
cylindrical, 45
polar, 45, 247
spherical, 45

correlation, 275
counter clockwise, 352
covariance, 275
covariant, 475
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covariant basis, 438
covector, 466
curl of F, 159
current density, 175
curve, 280
curvilinear coordinate system, 433
cylinder, 294

density, 253
derivative, 112
deviator stress, 587
diameter, 104
differentiable, 112
differential form, 315
dilatational, 587
dimension, 19
directrix, 294
distribution function, 262

joint, 267
normal, 265

Divergence Theorem, 630
domain, 88, 110
double integral, 216, 225

polar coordinates, 247
dual space, 467
dummy index, 504

ellipsoid, 252, 303
elliptic paraboloid, 300
even, 68
exact, 612
expected value, 271
exterior, 85
exterior derivative, 597
exterior product, 491, 494

origin of the name, 497
exterior, 85

force, 119
free, 15
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free index, 505
fundamental vector product, 366

Gauss, 630
generate, 16
geodesics, 572
gradient field, 328
gravitational constant, 318
Green’s Theorem, 344
Green’s Theorem., 628

helicoid, 51
helix, 111
Helmholtz decomposition, 423, 425
Hodge

Star, 499
homomorphism, 29
hydrostatic, 587
hyperbolic paraboloid, 301
hyperboloid of one sheet, 298, 302

hyperboloid of two sheets, 301
hypercube, 107
hypersurface, 234
hypervolume, 234

improper integral, 231
in a continuous way, 391
independent, 317
inertia tensor, 578
inner product, 8
integral

double, 216, 225
improper, 231
iterated, 215
multiple, 207
surface, 369, 373, 386
triple, 234

inverse of f restricted to S, 177
inverse, 177
irrotational, 333
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isolated point, 85
isomers, 524
iterated integral, 216
iterated limits of f as (x, y)→ (x0, y0), 97

Jacobian, 244
joint distribution, 267

Kelvin–Stokes Theorem, 400

lamina, 253
length, 9
length scales, 436
level curve, 59
limit point, 85
line integral, 314
line integral with respect to arc-length, 322
linear combination, 15
linear function, 466
linear functional, 465
linear homomorphism, 29

linear transformation, 29
linearly dependent, 15
linearly independent, 15
locally invertible, 178

manifold, 305
mass, 253
matrix

transition, 25
matrix representation of the linear map L with

respect to thebasis{xi}i∈[1;m], {yi}i∈[1;n].,
31

meridian, 297
mesh size, 208
moment, 253, 257
momentum, 119
multilinear map, 474
multiple integral, 207

negative, 5
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negatively oriented curve, 343
norm, 9
normal, 398

odd, 68
one-to-one, 176
open, 81
open ball, 79
open box, 80
opposite, 5
ordered basis, 22
orientation, 280
orientation-preserving, 320
orientation-reversing, 320
oriented area, 489
oriented surface, 391
origin, 6
orthogonal, 20, 437
orthonormal, 20
outward pointing, 391

parametric line, 7
parametrization, 280
parametrized surface, 288, 363
path integral of f along Γ., 607
path-independent, 328
permutation, 68
piecewiseC1, 285, 286
piecewise differentiable, 285
polygonal curve, 88
position vector, 117, 118, 120
positively oriented curve, 343
probability, 261
probability density function, 263

random variable, 261
rank of an (r, s)-tensor, 477
real function of a real variable, 109
regular, 280, 365
regular parametrized surface, 292, 365
regular point, 292
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regular value, 292
reparametrization, 320
restriction of f to S, 177
Riemann integrable, 210, 212
Riemann integral, 210, 212
Riemann sum, 208
right hand rule, 408
right-handed coordinate system, 33

saddle, 301
sample space, 261
scalar, 4
scalar field, 58, 109
secondmoment, 275
simple closed curve, 281
simply connected, 88, 330
simply connected domain, 88
single-term exterior products, 493
smooth, 152
space of tensors, 476

span, 16
spanning set, 16
spherical spiral, 117
standard normal distribution, 265
star, 499
surface area element, 623
surface integral, 369, 373, 386, 393
surface of revolution., 297
symmetric, 487

tangent “plane”, 307
tangent space, 307
tangent vector, 113
tensor, 474
tensor field, 544
tensor of type (r, s), 475
tensor product, 477
tied, 15
torus, 373
totally antisymmetric, 494
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transition matrix, 25
triple integral, 234

cylindrical coordinates, 250
spherical coordinates, 250

unbounded, 104
uniform density, 253
uniform distribution, 264
uniformly distributed, 262
unit vector, 10
upper unit normal, 383

variance, 275
vector

tangent, 113
vector field, 58, 110

smooth, 344
vector functions, 393
vector space, 6
vector sum, 4

vector-valued function
antiderivative, 120
indefinite integral, 120

vector-valued function of a real variable, 109, 110
vectors, 4, 6
velocity, 119
versor, 10
volume element, 234, 620

wedge product, 491
winding number, 331
work, 313

zenith angle, 45
zero vector, 4
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