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Differential Vector Calculus






Multidimensional Vectors

1.1. Vectors Space

In this section we introduce an algebraic structure for R", the vector space in n-dimensions.
We assume that you are familiar with the geometric interpretation of members of R? and R? as
the rectangular coordinates of points in a plane and three-dimensional space, respectively.
Although R™ cannot be visualized geometrically if n > 4, geometric ideas from R, R?, and R3
often help us to interpret the properties of R™ for arbitrary n.

Definition

-—h

The n-dimensional space, R™, is defined as the set

R" = {(z1,22,...,2p) : o € R}.

Elements v € R™ will be called vectors and will be written in boldface v. In the blackboard the
vectors generally are written with an arrow 4.

2 | Definition

Ifx andy are two vectors in R™ their vector sum x + y is defined by the coordinatewise addition

x+y=(@1+yLr2+y2,.. -, Tn+Yn)- (1.1)

Note that the symbol “+” has two distinct meanings in (1.1): on the left, “+” stands for the newly
defined addition of members of R™ and, on the right, for the usual addition of real numbers.

The vector with all components 0 is called the zero vector and is denoted by 0. It has the property
that v + 0 = v for every vector v; in other words, 0 is the identity element for vector addition.

3 | Definition
Areal number A € R will be called a scalar. If A € R and x € R™ we define scalar multiplication
of a vector and a scalar by the coordinatewise multiplication

AX = (Az1, AT2,. .., Axy) . (1.2)
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The space R™ with the operations of sum and scalar multiplication defined above will be called
n dimensional vector space.

The vector (—1)x is also denoted by —x and is called the negative or opposite of x

We leave the proof of the following theorem to the reader.

4| Theorem
Ifx,z,andy are in R™ and X\, \{ and A, are real numbers, then

0 x + z = z + x (vector addition is commutative).
(x+2z)+y =x+ (z+Yy) (vector addition is associative).

There is a unique vector 0, called the zero vector, such that x + 0 = x for all x in R™.

2]
(3]
O Foreachx inR™ there is a unique vector —x such that x + (—x) = 0.
O )\ (Max) = (A1 A\2)x.

0O (A1 + A2)x = Mx + Aox.

O \(x+12z)=Xx+ )z

0 1x =x.

Clearly,0 = (0,0,...,0) and, ifx = (z1,z2,...,x,), then
—Xx = (=21, —T2,...,—Tp).

We write x + (—z) as x — z. The vector 0 is called the origin.

In a more general context, a nonempty set V, together with two operations +, - is said to be a
vector space if it has the properties listed in Theorem 4. The members of a vector space are called
vectors.

When we wish to note that we are regarding a member of R™ as part of this algebraic structure,
we will speak of it as a vector; otherwise, we will speak of it as a point.

5 | Definition
The canonical ordered basis for R"™ is the collection of vectors
{e1,€2,...,€e,}
with
e, = 0,...,1,...,0)
a linthe k slot and 0’s everywhere else
Observe that .
kaek:(vl,UQ,---,'Un)~ (13)
k=1

This means that any vector can be written as sums of scalar multiples of the standard basis. We
will discuss this fact more deeply in the next section.
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Definition

Let a, b be distinct points in R™ and let x = b — a # 0. The parametric line passing through a in

the direction of x is the set
{reR":r=a+tx teR}.

Example

Find the parametric equation of the line passing through the points (1,2, 3) and (-2,

Solution: » The line follows the direction
(1-(=2),2—(~1),3-0) =(3,3,3).

The desired equation is
(x,y,2) = (1,2,3) +t(3,3,3).

Equivalently
(x,y,2) = (-2,-1,0) +¢(3,3,3).

Length, Distance, and Inner Product

~1,0).

Definition
Given vectors x,y of R", their inner product or dot product is defined as

n
Xey = Y Tpyk-
k=1

9 |Theorem
Forx,y,z € R", and a and 3 real numbers, we have:

O (ax+ fy)z = a(x+z) + B(y~2)
B Xy = yex
O xx>0

O xex =0ifandonlyifx =0

The proof of this theorem is simple and will be left as exercise for the reader.

The norm or length of a vector x, denoted as ||x||, is defined as

[ = vxex
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10 | Definition

1

-t

12

13

Given vectors x,y of R", their distance is

dx,y) =[x -y = VE =9 =) = 3" (@ — )2

i=1

If n = 1, the previous definition of length reduces to the familiar absolute value, forn = 2 and
n = 3, the length and distance of Definition 10 reduce to the familiar definitions for the two and
three dimensional space.

Definition
A vector x is called unit vector

|| = 1.

Definition
Let x be a non-zero vector, then the associated versor (or normalized vector) denoted X is the unit

vector

. X
X =

<l

We now establish one of the most useful inequalities in analysis.

Theorem (Cauchy-Bunyakovsky-Schwarz Inequality)
Letx and'y be any two vectors in R™. Then we have

ey | < [IxI[[lyll

Proof. Since the norm of any vector is non-negative, we have

Ix+ty]| >0 <= (x+ty)s(x+ty)>0
= XX + 2txey + t2ysy > 0

= |x||* + 2txey + 2||y||* > 0.

This last expression is a quadratic polynomialin ¢ which is always non-negative. As such its discrim-
inant must be non-positive, that is,

(2xy)? = A(Ix[*)(IyI*) <0 <= |x=y| < Ix]|y]l,

giving the theorem.
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The Cauchy-Bunyakovsky-Schwarz inequality can be written as

. 2, 1/2
(£4) (E4) »
k=1 k=1

Letx and'y be any two vectors in R™. Then we have

n
> Tk
k=1

for real numbers xy, ;.

14 |Theorem (Triangle Inequality)

%+ yll < Il + llyll-

Proof.
Ix+yl? = (x+y)ex+y)
= XoX + 2Xey + Yoy
< I+ 2l Iyl + [yl
= (Il + Iyl
from where the desired result follows. ]

15 Corollary
Ifx,y,and zarein R™, then
x -yl <|x—z|+]z—yl

Proof. Write
x—y=(x-2z)+(z-y),

and apply Theorem 14. ]
16 | Definition
Let x and y be two non-zero vectors in R™. Then the angle (;,?) between them is given by the
relation
——  xey
00V = iyl

This expression agrees with the geometry in the case of the dot product for R? and R3.

17 | Definition
Let x and y be two non-zero vectors in R™. These vectors are said orthogonal if the angle between

them is 90 degrees. Equivalently, if: xey = 0.

Let Py = (p1,p2,---,Pn),andn = (ny,na, ..., n,) be a nonzero vector.
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18 | Definition

The hyperplane defined by the point Py and the vector n is defined as the setof points P : (x1,,x2, ..., xy,) €
R™, such that the vector drawn from Py to P is perpendicular to n.

Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that
the desired hyperplane can be described as the set of all points P such that

ne(P —Py) =0.
Expanded this becomes
ni(r1 —p1) + na(z2 —p2) + - + nu(@n — pn) =0,
which is the point-normal form of the equation of a hyperplane. This is just a linear equation
ni1x1 + noxo + - - - Npxy +d =0,
where

d = —(nip1 + napa + - -+ + nppr)-

1.2. Basis and Change of Basis

1.2.1. Linear Independence and Spanning Sets

19 | Definition
Let \; € R,1 < ¢ < n. Then the vectorial sum

n
D Ax;
j=1

is said to be a linear combination of the vectors x; € R",1 < i < n.

20 | Definition
The vectors x; € R™ 1 < i < n, are linearly dependent or tied if

3(A1, Az, -+, An) € R™\ {0} such that Y \jx; =0,
j=1

that is, if there is a non-trivial linear combination of them adding to the zero vector.

21 | Definition

)

The vectorsx; € R", 1 < i < n,arelinearly independent or free if they are not linearly dependent.
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Thatis, if \; € R,1 < i < nthen

Z)\ijZO == M =X=---=),=0.
j=1

A family of vectors is linearly independent if and only if the only linear combination of

them giving the zero-vector is the trivial linear combination.
22 Example
{(17 27 3) ’ (47 5) 6) ) (77 87 9)}

is a tied family of vectors in R3, since

(1) (1,2,3) + (=2) (4,5,6) + (1) (7,8,9) = (0,0,0) .

23 | Definition
A family of vectors {x1, Xa, . . .
be written as a linear combination of the x;’s.

Xk, - - -, } € R™js said to span or generate R" if every x € R" can

24 Example
Since

n
kaek = (v1,v2,...,Up).
k=1

This means that the canonical basis generate R™.

25 [Theorem
If{x1,%X2,...,Xk, ..., } € R"spansR", then any superset
{y,x1,X2,...,Xg,...,} CR"
also spans R™,

Proof. This follows at once from

l l
Z Aix; = 0y + Z NiX;.
i=1 i=1

26 Example

The family of vectors
{i=(1,0,0),j=1(0,1,0),k = (0,0,1)}

spans R3 since given (a, b, c) € R3 we may write

(a,b,¢) = ai+ bj + ck.
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28

29

30
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Example
Prove that the family of vectors

{t1 =(1,0,0),to = (1,1,0) ,t3 = (1,1,1)}
spans R,
Solution: » This follows from the identity

(a,b,¢) = (a—b) (1,0,0) + (b—¢) (1,1,0) + c(1,1,1) = (a — b)t; + (b — c)ta + ct3.

Basis

Definition
Afamily E = {x1,%2,...,Xg, ...} € R"jssaid to be a basis of R"™ if

©Q arelinearly independent,

@ theyspanR".

Example
The family

e; =(0,...,0,1,0,...,0),

where there is a 1 on the i-th slot and 0’s on the other n — 1 positions, is a basis for R™.

Theorem
All basis of R™ have the same number of vectors.

Definition

The dimension of R" js the number of elements of any of its basis, n.

Theorem

Let{x1,...,x,} beafamily of vectorsinR™. Then the x’s form a basis if and only if the n. x n matrix
A formed by taking the x’s as the columns of A is invertible.

Proof. Since we have the right number of vectors, it is enough to prove that the x’s are linearly
independent. Butif X = (Aq, Ag,..., A), then

A1X1 4+ -+ Apx, = AXL

If Aisinvertible,then AX =0, = X = A~'0 = 0, meaningthat \; = \y = --- \,, = 0, so the
x’s are linearly independent.

The reciprocal will be left as a exercise. ]

10
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1.2. Basis and Change of Basis

Definition
O Abasis E = {x1,Xa,...,X} of vectors in R" is called orthogonal if
xi*x; =0
foralli # j.
® An orthogonal basis of vectors is called orthonormal if all vectors in E are unit vectors, i.e,
have norm equalto1.
Coordinates
Theorem
Let E = {ej1,ea,...,e,} beabasis for a vector space R". Then any x € R™ has a unique represen-
tation
X = a1e] + azex + - -+ anen.
Proof. Let

X = bjey + boey + - - - + bpe,

be another representation of x. Then

0 = (a1 —b1)er + (a2 — b2)ea + -+ - + (an — by)en.

Since {ej, eq,...,e,} forms a basis for R", they are a linearly independent family. Thus we must
have

ap —by=azs—by=---=a,— by = O,
thatis

a; = byyaz = bo;- -+ jan = by,

proving uniqueness. n
Definition
Anordered basis E = {e;, ey, ..., e,} of avector space R™ is a basis where the order of the x;, has
been fixed. Given an ordered basis {e1, e, . .., ey} of a vector space R", Theorem 34 ensures that
there are unique (a1, as, . . ., a,) € R™ such that

X =aje] +agses + - -+ anen,.

The ay’s are called the coordinates of the vector x.

n



1. Multidimensional Vectors

We will denote the coordinates the vector x on the basis E by

x]E

or simply [x].

Example

The standard ordered basis for R® is E = {i,j,k}. The vector (1,2,3) € R? for example, has co-
ordinates (1,2, 3)g. If the order of the basis were changed to the ordered basis F' = {i,k, j}, then
(1,2,3) € R3 would have coordinates (1,3,2) .

Usually, when we give a coordinate representation for a vector x € R", we assume that
we are using the standard basis.

Example
Consider the vector (1,2, 3) € R3 (given in standard representation). Since

(1,2,3) = —1(1,0,0) — 1(1,1,0) + 3(1,1,1),

under the ordered basis E = {(1,0,0),(1,1,0),(1,1,1)}, (1,2,3) has coordinates (—1,—1, 3) .
We write

(1,2,3) = (—=1,-1,3) 5.

Example
The vectors of

E={(11),(1,2)}

are non-parallel, and so form a basis for R2. So do the vectors

F={(21),(1,-1)}.

Find the coordinates of (3,4) ;; in the base F.

Solution: » We are seeking x, y such that

2 1 1 1 3 2 1
3(1,1)+4(1,2):$ +y d = (xay)F
1 -1 1 2| |4 1 -1

12



1.2. Basis and Change of Basis

Thus
- -1
2 1 1 1 (3
('Iay)F:
1 -1 1 2| |4
BRI RP
- |t 3
- — |1 2| |4
13 3
_213
:31
—— —1| |4
L 3
6
-5
L JdF

Let us check by expressing both vectors in the standard basis of R?:
(3,4)p=3(1,1)+4(1,2) = (7,11),

(6,—5), = 6(2,1) —5(1,—1) = (7,11).

In general let us consider basis E', F' for the same vector space R™. We want to convert Xz to Y.
We let A be the matrix formed with the column vectors of E in the given order an B be the matrix
formed with the column vectors of F'in the given order. Both A and B are invertible matrices since
the I/, F are basis, in view of Theorem 32. Then we must have

AXp = BYr = Yp=B lAX.

Also,
Xp = A"'BYp.

This prompts the following definition.

39 | Definition

Let E = {x1,x9,...,Xp}and F' = {y1,y2,...,yYn} be two ordered basis for a vector space R".
Let A € M, (R) be the matrix having the x’s as its columns and let B € M,,x,,(R) be the matrix
having the y’s as its columns. The matrix P = B~!A is called the transition matrix from E to F
and the matrix P~ = A~ B is called the transition matrix from F to E.

40 Example
Consider the basis of R?
E= {(1’ 1, 1) ) (17 170) ) (17070)} )

F={(1,1,-1),(1,-1,0),(2,0,0)} .

Find the transition matrix from E to F and also the transition matrix from F to E. Also find the coor-
dinates of (1,2, 3) , in terms of F..

13



1. Multidimensional Vectors

Solution: » Let

A=111 0|, B=]1 -1 0

The transition matrix from E to F'is

L 1 1 00
L2 2
-1 0 0
= [-2 -1 -0
1
2 1 —
L 2
The transition matrix from F' to E'is
-1
-1 0 0 -1 0 O
Pl=|-2 -1 0| =|2 -1 0
2 1 L 0 2 2
2
Now,
-1 0 0] |1 -1
Yr=]-2 -1 0] |2| =|-4
1 11
2 1 =113 —
2 E 21F

As a check, observe that in the standard basis for R3
[1,2,3}}5 =1 {1,1,1} +2 {1,1,0} +3 {1,0,0} = {6,3, 1} ,

11

11
{—1,—4, } =-1 [1,1,—1} -4 {1,—1,0} + = {2,0,0} = [6,3, 1} .
21F 2

14



1.3. Linear Transformations and Matrices

1.3. Linear Transformations and Matrices

41 | Definition
A linear transformation or homomorphism between R"™ and R™

R” — R™

x = L(x)

L:

is a function which is
m Additive: L(x +y) = L(x) + L(y),

m Homogeneous: L(\x) = \L(x), for A € R.

It is clear that the above two conditions can be summarized conveniently into
L(x+ \y) = L(x) + AL(y).

Assume that {x; };c(1,y) is an ordered basis for R", and E' = {y; };c[1,,, an ordered basis for R"™.
Then

a1l

a91
L(Xl) = a11y1+a21y2+ -+ amiym =

L(x2) = ai2y1+ay2+- -+ am2ym =

L(xp,) = aipy1+amy2+ -+ amnym =

15



1. Multidimensional Vectors

42 | Definition
The m x n matrix
air a2 -+ Glp
a1 a2 - A2p
My =
Gml Am2 - Qmn

formed by the column vectors above is called the matrix representation of the linear map L with

respect to the basis {X; }ic[1.m], {¥i}ic[1;n)-

43 Example

Consider L : R?® — R3,
L(z,y,2)=(x—y—z,x2+y+2,2).

Clearly L is a linear transformation.
1. Find the matrix corresponding to L under the standard ordered basis.
2. Findthe matrix corresponding to L under the ordered basis (1,0,0), (1,1,0),(1,0,1) , for both

the domain and the image of L.

Solution: »
1. The matrix will be a 3 x 3 matrix. We have L (1,0,0) = (1,1,0), L (0,1,0) = (—1,1,0), and

L(0,0,1) = (—1,1,1), whence the desired matrix is

1 -1 -1
1 1 1
0 O 1

2. Call this basis E. We have
L(l,0,0) = (17170) = 0(17070) +1 (17170) +0(1707 1) = (07170)E7

L(1,1,0)=(0,2,0) =-2(1,0,0)+2(1,1,0) +0(1,0,1) = (—2,2,0) 5,

and
L(1,0,1)=(0,2,1) = -3(1,0,0) +2(1,1,0) +1(1,0,1) = (-3,2,1) 5,

whence the desired matrix is

0 -2 -3
1 2 2
0 0 1

16



1.4. Three Dimensional Space

44 | Definition

The column rank of Ais the dimension of the space generated by the columns of A, while the row rank
of A is the dimension of the space generated by the rows of A.

Afundamental resultin linear algebra is that the column rank and the row rank are always equal.

This number (i.e., the number of linearly independent rows or columns) is simply called the rank of
A.

1.4. Three Dimensional Space

In this section we particularize some definitions to the important case of three dimensional space

45 | Definition
The 3-dimensional space is defined and denoted by

R3={r=(z,y,2):2€R, y€R, 2 €R}.

Having oriented the z axis upwards, we have a choice for the orientation of the the x and y-axis.
We adopt a convention known as a right-handed coordinate system, as in figure 1.1. Let us explain.
Put

i=(1,0,0), j=1(0,1,0), k =(0,0,1),
and observe that

r=(x,y,2) = zi+yj + zk.

Figure 1.1. Right-handed system. Figure 1.3. Left-handed system.
Figure 1.2. Right Hand.

1.4.1. Cross Product

The cross product of two vectors is defined only in three-dimensional space R?. We will define a
generalization of the cross product for the n dimensional space in the section 1.5.
The standard cross product is defined as a product satisfying the following properties.

17



1. Multidimensional Vectors

46 | Definition
Letx,y,z be vectors in R, and let A € R be a scalar. The cross product X is a closed binary opera-
tion satisfying

O Anti-commutativity: x X y = —(y X x)
® Bilinearity:

(x+z)Xy=xXy+zXy and xX (z4+y)=xXz+XXYy

® Scalar homogeneity: (Ax) X y =x X (A\y) = A(x X y)
O xxx=0

® Right-hand Rule:
ixj=k, jxk=i kxi=j.

It follows that the cross product is an operation that, given two non-parallel vectors on a plane,
allows us to “get out” of that plane.

47 Example
Find
(1,0,—-3) x (0,1,2).

Solution: » We have

(i—-3k)x (j+2k) = ixj+2ixk—-3kxj—6kxk
= k—-2j+3i+0
= 3i-2j+k
Hence
(1,0,-3) x (0,1,2) = (3,-2,1).
<

The cross product of vectors in R? is not associative, since
ix(ixj)=ixk=-j

but
(ixi)xj=0xj=0.

Operating as in example 47 we obtain

18



1.4. Three Dimensional Space

XXy

Dy

»

Il

Figure 1.4. Theorem 51. Figure 1.5. Area of a parallelogram

48 |Theorem
Letx = (21,72, 23) andy = (y1,v2,y3) be vectors in R3. Then

X Xy = (22y3 — w3y2)i + (w3y1 — 2193)j + (w12 — 2201 k.

Proof. Sincei X i=j X j =k X k = 0, we only worry about the mixed products, obtaining,

x Xy = (zii+x2)+ k) X (y1i+ yoj + ysk)
= xyol X j+x1ys3i X k+ zoy1j X i+ x0ysj X k
+xz3y1k X i+ x3y0k X j
= (z1y2 —122)i X j+ (2293 — 2312)j X kK + (2391 — 2193)k X i

= (z1y2 — iz2)k + (22ys — z3y2)i+ (z3y1 — z1y3)],

proving the theorem. L]

The cross product can also be expressed as the formal/mnemonic determinant

i j k

uxv= Ul U2 U3

v1 V2 U3
Using cofactor expansion we have
Uz ug|, us  ui|, U U2
uxv= i+ j+ k
V2 U3 U3 U1 V1 V2

Using the cross product, we may obtain a third vector simultaneously perpendicular to two other
vectors in space.

19
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1. Multidimensional Vectors

Theorem
x L (x Xxy)andy L (x X y), thatis, the cross product of two vectors is simultaneously perpen-

dicular to both original vectors.

Proof. We will only check the first assertion, the second verification is analogous.

xXe(x Xy) = (x1i+ xoj + xsk)e((z2y3 — z3y2)i
+(z3y1 — T1y3)j + (21y2 — 22y1)k)

= T1%2Y3 — T1X3Y2 + T2T3Y1 — T2T1Y3 + T3T1Y2 — T3X2Y1

= 0,
completing the proof. n
Although the cross product is not associative, we have, however, the following theorem.
Theorem
a X (b X c) = (asc)b — (asb)c.
Proof.
ax (bxc) = (a1i+ agj+ ask) X ((bacs — bgco)it
+(bgcr — bicg)j + (bica — bacy k)
= ai1(bgcr — bies)k — a1(breg — bacy)j — az(bacs — byca)k
+as(bica — baci)i + az(bacz — bzca)j — az(bscr — bics)i
= (aic1 + agez + azez)(bri + boj + b3i)+
(—a1by — agba — agbs)(c1i + coj + c3i)
= (a«c)b — (a<b)c,
completing the proof. n
Them

Let (x,y) € [0; ] be the convex angle between two vectors x and'y. Then

[ X yll = [Ixllllyllsin (x,y).
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red Diensional Space

~

|

[
_A
D

=
- -

Yy
4
< B
Figure 1.6. Theorem 497. Figure 1.7. Example 22.
Proof. We have
|[x % YH2 = (w2y3 — 3333/2)2 + (w391 — x1y3)2 + (T1y2 — 1‘21/1)2
= 23Y3 — 22y3x3y2 + T35 + 23yT — 2o3y101y3+
+ay3 + 27Y3 — 2x1y2m2y1 + T3Y7
= (a1 + 23 +23) (¥ + 93 +y3) — (w1y1 + 222 + w3y3)°
= [[x[]Pllyl]* = (xy)?
= |Ixl Pyl =[xl Pyl cos® (x, y)
= |Ix|lly ]I sin® (x, ),
whence the theorem follows. ]

Theorem 51 has the following geometric significance: ||x X y|| is the area of the parallelogram

formed when the tails of the vectors are joined. See figure 1.5.

The following corollaries easily follow from Theorem 51.

Corollary

Two non-zero vectors X,y satisfy x X y = 0ifand only if they are parallel.

Corollary (Lagrange’s Identity)

2 2
[l x yII* = [IxIlly [l — (x=y)?.

The following result mixes the dot and the cross product.

Theorem

Letx, y, z, be linearly independent vectors in R3. The signed volume of the parallelepiped spanned

by themis (x X y) o z.

Proof. See figure 1.6. The area of the base of the parallelepiped is the area of the parallelogram

determined by the vectors x and y, which has area ||x X y||. The altitude of the parallelepiped is

||z|| cos @ where 6 is the angle between z and x X y. The volume of the parallelepiped is thus

1% X ylll|z] cos 6 = (x X y)-z,

proving the theorem.
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1. Multidimensional Vectors

Since we may have used any of the faces of the parallelepiped, it follows that
(x X y)oz = (y X 2)sx = (2 X X)°y.
In particular, itis possible to “exchange” the cross and dot products:

xe(y X z) = (X X y)z

1.4.2. Cylindrical and Spherical Coordinates

Let B = {x1,x2,x3} be an ordered basis for R3. As we have al-

ready seen, forevery v € R" thereisaunique linear combination P
of the basis vectors that equals v:
v /\363
e ;
v = TX1 + YX2 + 2X3. e Arey
O T
. . . . ;/e 2 ; ,;’:)\282
The coordinate vector of v relative to E is the sequence of coordinates 67% V;
Y
S K

g = (z,y, 2).

In this representation, the coordinates of a point (x, y, z) are determined by following straight
paths starting from the origin: first parallel to x1, then parallel to the xs, then parallel to the x3, as
in Figure 1.7.1.

In curvilinear coordinate systems, these paths can be curved. We will provide the definition of
curvilinear coordinate systems in the section 3.10 and 8. In this section we provide some examples:
the three types of curvilinear coordinates which we will consider in this section are polar coordi-
nates in the plane cylindrical and spherical coordinates in the space.

Instead of referencing a point in terms of sides of a rectangular parallelepiped, as with Cartesian
coordinates, we will think of the point as lying on a cylinder or sphere. Cylindrical coordinates are
often used when there is symmetry around the z-axis; spherical coordinates are useful when there
is symmetry about the origin.

Let P = (z,y, z) beapointin Cartesian coordinatesin R3, and let P, = (z, 3, 0) be the projection
of P upon the zy-plane. Treating (z, y) asa pointin R2, let (r, §) be its polar coordinates (see Figure
1.7.2). Let p be the length of the line segment from the origin to P, and let ¢ be the angle between
that line segment and the positive z-axis (see Figure 1.7.3). ¢ is called the zenith angle. Then the
cylindrical coordinates (7, 6, z) and the spherical coordinates (p, 0, ¢) of P(x,y, z) are defined
as follows:'

'This “standard” definition of spherical coordinates used by mathematicians results in a left-handed system. For this
reason, physicists usually switch the definitions of 8 and ¢ to make (p, 8, ¢) a right-handed system.
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Cylindrical coordinates (7, 0, z):

x =rcost r =22+ y>?

y =rsinf 0 = tan~! (—)

4z P(x,y,2)

zZ=Zz zZ=Zz

where 0 <0<z if y>0 and m <0 <2 if y<O

T P(x,y,2)
Spherical coordinates (p, 0, ¢): 2
0 y
x = psin ¢ cosf p=\x?+y?+22 )
” Figure 1.9.
o : a1 (Y . .
y = psin ¢ sin 6 0 = tan <x> ( Spherlcal‘@)%gy?ages

-1 z
Z = pcos =cos | ——=m———xs
pcos ¢ ¢ ( o 22>

where 0 <0<rw if y>0 and n <O <2n if y<0

Both 6§ and ¢ are measured in radians. Note thatr > 0,0 < 0 < 2w, p > 0and 0 < ¢ < 7. Also,
0 is undefined when (z,y) = (0,0), and ¢ is undefined when (z,y, z) = (0,0, 0).

Example
Convert the point (—2, —2, 1) from Cartesian coordinates to (a) cylindrical and (b) spherical coordi-
nates.

—2 )
Solution: » (a)r = /(—2)2 +(-2)2 = 2V/2,0 = tan~! () = tan~ (1) = Iﬂ, since
y=-2<0.

L (r,0,2) = (2\/5, %ﬂ, 1>

(b) p = \/(—2)2 +(-2)2+12=+/9=3,¢ =cos! (;) ~ 1.23 radians.
- (p,0,¢) = (3,?,1.23)
<

For cylindrical coordinates (, 0, z), and constants r, 6, and z,, we see from Figure 8.3 that the
surface r = r, is a cylinder of radius r, centered along the z-axis, the surface § = 0, is a half-plane
emanating from the z-axis, and the surface z = z, is a plane parallel to the zy-plane.

The unit vectors 7, 8, k at any point P are perpendicular to the surfaces » = constant, § = con-
stant, z = constant through P in the directions of increasing r, 6, z. Note that the direction of the
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1. Multidimensional Vectors

(a)r =10 (b) 6 = 6, (€) z = 2o

Figure1.10. Cylindrical coordinate surfaces

unit vectors 7, 6 vary from point to point, unlike the corresponding Cartesian unit vectors.

r = 7y surface

Y
¢ = ¢1 plane

For spherical coordinates (p, 8, ¢), and constants p,, 6, and ¢,, we see from Figure 1.1 that the
surface p = p, is a sphere of radius p, centered at the origin, the surface § = 6, is a half-plane
emanating from the z-axis, and the surface ¢ = ¢, is a circular cone whose vertex is at the origin.

(@) p=po (b) 0 = 0, (€)= oo

Figure1.11.  Spherical coordinate surfaces

Figures 8.3(a) and 1.11(a) show how these coordinate systems got their names.
Sometimes the equation of a surface in Cartesian coordinates can be transformed into a simpler
equation in some other coordinate system, as in the following example.
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1.4. Three Dimensional Space

Example
Write the equation of the cylinder 2% + y? = 4 in cylindrical coordinates.

Solution: » Sincer = /2 + y2, then the equation in cylindrical coordinatesis r = 2. «
Using spherical coordinates to write the equation of a sphere does not necessarily make the
equation simpler, if the sphere is not centered at the origin.

Example
Write the equation (x — 2)? + (y — 1)? + 22 = 9 in spherical coordinates.

Solution: » Multiplying the equation out gives

22+ 4+ 22 -4 —2y+5=9,s0weget
P> —A4psing cosh — 2psing sinfd —4 =0, or
p° —2sing (2cosf —sinf)p—4=0

after combining terms. Note that this actually makes it more difficult to figure out what the surface
is, as opposed to the Cartesian equation where you could immediately identify the surface as a
sphere of radius 3 centered at (2, 1,0). «

Example
Describe the surface given by 8 = z in cylindrical coordinates.

Solution: » This surface is called a helicoid. As the (vertical) z coordinate increases, so does the
angle 6, while the radius r is unrestricted. So this sweeps out a (ruled!) surface shaped like a spiral
staircase, where the spiral has an infinite radius. Figure 1.12 shows a section of this surface restricted
to0<z<4rand0<r <2. «

Figure1.12. Helicoidd = 2
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1. Multidimensional Vectors

Exercises

A
For Exercises 1-4, find the (a) cylindrical and (b) spherical coordinates of the point whose Cartesian
coordinates are given.

1. (2,2V3,-1) 3. (vV21,-/7,0)
2. (=5,5,6) 4. (0,4/2,2)

For Exercises 5-7, write the given equation in (a) cylindrical and (b) spherical coordinates.
5 22+ 1y2+22=25 7. 22+ y? + 922 =36

6. 22 +y? =2y

B
8. Describe the intersection of the surfaces whose equations in spherical coordinatesare§ = —
7T
and ¢ = —.
¢ 4

9. Show that for a # 0, the equation p = 2asin ¢ cos 6 in spherical coordinates describes a
sphere centered at (a, 0, 0) with radius|a/.

10. Let P = (a, 6, ¢) be a point in spherical coordinates, witha > 0and 0 < ¢ < m. Then
P lies on the sphere p = a. Since 0 < ¢ < m, the line segment from the origin to P can
be extended to intersect the cylinder given by » = a (in cylindrical coordinates). Find the
cylindrical coordinates of that point of intersection.

11. Let P, and P, be points whose spherical coordinates are (p,, 6., ¢,) and (p,, 6, ¢,), respec-
tively. Let v, be the vector from the origin to P,, and let v, be the vector from the origin to P..
For the angle -y between

COS7Y = COS ¢, COS P, + sin ¢, sin ¢, cos( O, — 6, ).

This formula is used in electrodynamics to prove the addition theorem for spherical harmon-
ics, which provides a general expression for the electrostatic potential at a point due to a unit
charge. See pp. 100-102 in [36].

12. Show that the distance d between the points P, and P, with cylindrical coordinates (74, 6, z;)
and (75, 6,, ), respectively, is

d: \/T%+T§*27‘17‘2(308(92*91)+(22721)2.

13. Show that the distance d between the points P, and P, with spherical coordinates (p,, 6,, ¢,)
and (ps, 0, ¢, ), respectively, is

d=1/p? + p?2 — 2p\ pa[sin ¢, sin é, cos(, — 6, ) + cos ¢, cos ).
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1.5. % Cross Product in the n-Dimensional Space

1.5. %« Cross Product in the n-Dimensional Space

In this section we will answer the following question: Can one define a cross product in the n-
dimensional space so that it will have properties similar to the usual 3 dimensional one?

Clearly the answer depends which properties we require.

The most direct generalizations of the cross product are to define either:

m a binary product x : R” x R™ — R™ which takes as input two vectors and gives as output a
vector;

m an — l-ary product x : R™ x --- x R” — R™ which takes as input n — 1 vectors, and gives
—— ——

n—1times
as output one vector.

Under the correct assumptions it can be proved that a binary product exists only in the dimen-
sions 3 and 7. A simple proof of this fact can be found in [51].

In this section we focus in the definition of the n — 1-ary product.

59 | Definition
Letvy,...,v,_1 bevectorsinR"™, andlet A € R be ascalar. Then we define their generalized cross
product v,, = vi X -+ X v,_1 asthe (n — 1)-ary product satisfying

O Anti-commutativity: vi X -+ V; X Vg1 X+ - X V] = —V] X - V1] X Vj X+« X V1,
i.e, changing two consecutive vectors a minus sign appears.

@ Bilinearity: vi X + - V; + X X Vig] X + - X Vo] = V] X -+ V; X Vigp1 X -+ X V1 + V] X

"'XXVZ‘+1><"'><VTL71
© Scalarhomogeneity: vi X -+ - AVy X Vip1 X+ X V1] = AV] X -+ V; X Vi) X o+ XV

@ Right-handRule: e; x - --xe,_1 = e,, eax---Xxe, = e1,andso forth for cyclic permutations

of indices.

We will also write

X(Viyeo oy V1) 5= VI X -V X Vi X oo X Vi1

In coordinates, one can give a formula for this (n — 1)-ary analogue of the cross product in R"
by:
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60 Proposition

Leteq,...,e, bethe canonical basis of R™ and let v+, . .., v,_1 be vectors in R™, with coordinates:
vi = (v11, - .- V1n) (1.6)

(1.7)

vi = (Vi1, - - - Vin) (1.8)

(1.9)

Vi = (Uni, - Unn) (1.10)

in the canonical basis. Then

V11 VUin
X(V17 v 7Vn—1) -
Upn—11 " Un—1n
e]_ ... en

This formula is very similar to the determinant formula for the normal cross product in R? except
that the row of basis vectors is the last row in the determinant rather than the first.
The reason for this is to ensure that the ordered vectors

(Vl, s Vi1, ><(V1, ---,anl))

have a positive orientation with respect to

61 Proposition
The vector product have the following properties:

The vector X(v1,...,v,—1) is perpendicular to v;,

@ the magnitude of X(v1,...,vy,_1)is the volume of the solid defined by the vectors vy, ...v;_1
Vi1t Ulp

O v,V X XVp_1=
Un—11 - Un—1n

Unl te Unn

1.6. Multivariable Functions

Let A C R™. For most of this course, our concern will be functions of the form

f:ACR" - R™
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1.6. Multivariable Functions

If m = 1, we say that f is a scalar field. If m > 2, we say that f is a vector field.

We would like to develop a calculus analogous to the situation in R. In particular, we would like to
examine limits, continuity, differentiability, and integrability of multivariable functions. Needless
to say, the introduction of more variables greatly complicates the analysis. For example, recall that
the graph of a function f : A — R™, A C R". is the set

{(x, f(x)) : x € A)} CR™™,

If m+n > 3, we have an object of more than three-dimensions! In the case n = 2, m = 1, we have
a tri-dimensional surface. We will now briefly examine this case.

62 | Definition
Let A C R%andlet f : A — R be a function. Given c € R, the level curve at = = c is the curve
resulting from the intersection of the surface z = f(x,y) and the plane z = ¢, if there is such a

curve.

63 Example
The level curves of the surface f(x,y) = x2 + 3y (an elliptic paraboloid) are the concentric ellipses

22+ 37 =, c> 0.

Figure 1.13. Level curves for f(z,y) = 2% + 3y

1.6.1. Graphical Representation of Vector Fields

In this section we present a graphical representation of vector fields. For this intent, we limit our-
selves to low dimensional spaces.

Avector field v : R? — R3 is an assignment of a vector v = v(z, 3, 2) to each point (z, y, z) of
asubset U C R3. Each vector v of the field can be regarded as a “bound vector” attached to the

corresponding point (z,y, z). In components

v(:c7y,z) = U1($,y, Z)i + v?(xaya Z)j + 'U3(x7y7 Z)k
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1. Multidimensional Vectors

64 Example

65

Sketch each of the following vector fields.

F = zi+ yj

F=—yi+zj

r =zi+yj+zk

Solution: »
a) The vectorfield is null at the origin; at other points, F is a vector pointing away from the origin;
b) This vector field is perpendicular to the first one at every point;

c) The vector field is null at the origin; at other points, F is a vector pointing away from the origin.
This is the 3-dimensional analogous of the first one. «

A NN SRR L R R T NN
YRR NMNAN A A A A A A AT F K Ko oot

A XXXXKXNN NN A A AAAAN 1| Y rreceeewX XX ]
XXX NX NN N A A A A A AT V¥ ¥ ¥ ree—<~x XXX
A S S NI I & & V¥ FFrre =~ LU N W \

U S~ NN\ 4 s s v R A A A R
-———- - = . . B YV b F e \L‘l‘kk\

of <= =« < - - - 0—+*§&0 04}}*—
P . N T G ““““\ ..... ,4414

R A B NN NN N I R T S NN A A A4 ]
A A& K ¥ F F N U N A A ATA NN s A AAA
VYN EEERERRER S SN NN s r sy AAA

PLAFFFAF VN0 T AN s sy A A4
FEFFF T T YO N A A A~y r A A

N III A EARERRERRY 3B NN AR~y y 7 A A
5 5 T o T p 3 5 B E] o i 2 3

Example

Suppose that an object of mass M is located at the origin of a three-dimensional coordinate system.
We can think of this object as inducing a force field g in space. The effect of this gravitational field
is to attract any object placed in the vicinity of the origin toward it with a force that is governed by

Newton’s Law of Gravitation.
GmM

2

F—
.

To find an expression for g, suppose that an object of mass m is located at a point with position
vectorr = xi+ yj + zk.

The gravitational field is the gravitational force exerted per unit mass on a small test mass (that
won'’t distort the field) at a point in the field. Like force, it is a vector quantity: a point mass M at the
origin produces the gravitational field

() GM
= r) = —71"
g=g 3
where r is the position relative to the origin and where r = ||r||. Its magnitude is
GM
g=— 2
,

and, due to the minus sign, at each point g is directed opposite to r, i.e. towards the central mass.

Exercises
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66 Problem

Sketch the level curves for the following maps.
1.

2.

(z,y) =z +y

(z,y) =y

(z,y) = min(|z], |y])
(v,y) = 23—z
(z,y) v 22 + 4y?
(z,y) > sin(2? + y?)

(z,y) — cos(z? — y?)

1.

2.

1.7. Levi-Civitta and Einstein Index Notation

Figure 1.14. Gravitational Field

67 Problem
Sketch the level surfaces for the following maps.

(x,y,2) »x+y+=z
(z,y,2) = Yz

(x,y,z) — min(|z|, |y, |z|)
(z,y,2) = 22 + 92

(2,1, 2) — 2% + 432
(z,,2) — sin(z — 22 — y?)

(z,y,2) = 22 4+ y* + 22

1.7. Levi-Civitta and Einstein Index Notation

We need an efficient abbreviated notation to handle the complexity of mathematical structure be-

fore us. We will use indices of a given “type” to denote all possible values of given index ranges. By
index type we mean a collection of similar letter types, like those from the beginning or middle of

the Latin alphabet, or Greek letters

a,b,c,...

AByye.

each index of which is understood to have a given common range of successive integer values. Vari-

ations of these might be barred or primed letters or capital letters. For example, suppose we are
looking at linear transformations between R™ and R™ where m # n. We would need two different
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1. Multidimensional Vectors

index ranges to denote vector components in the two vector spaces of different dimensions, say
i,k ...=1,2,...,nand \,5,7,...=1,2,...,m.

In order to introduce the so called Einstein summation convention, we agree to the following
limitations on how indices may appear in formulas. A given index letter may occur only once in a
given term in an expression (call this a “free index”), in which case the expression is understood to
stand for the set of all such expressions for which the index assumes its allowed values, or it may
occurtwice but only as a superscript-subscript pair (one up, one down) which will stand for the sum

over all allowed values (call this a “repeated index”). Here are some examples. Ifi7,5 = 1,...,n
then
A? «— n expressions : AL, A%, ... A",
n

Al «— Y~ A%, asingle expression with n terms
i—1
(this is called the trace of the matrix A = (A%))),

n n
AT N A S T A™, n expressions each of which has n terms in the sum,
i=1 =1
A;; <— no sum, just an expression for each 4, if we want to refer to a specific

diagonal component (entry) of a matrix, for example,
Aly; + Alw; = A'(v; + w;), 2 sums of n terms each (left) or one combined sum (right).

Arepeated index is a “dummy index,” like the dummy variable in a definite integral

/abf(a:) do = /abf(u) du.

We can change them at will: A%; = A7;.

In order to emphasize that we are using Einstein’s convention, we will enclose any
terms under consideration with " - _.

68 Example
Using Einstein’s Summation convention, the dot product of two vectors x € R"™ andy € R" can be
written as
n
Xey = Z iy = " Tpyp .
i=1
69 Example
Given that a;, b;, ¢y, d; are the components of vectors in R3, a, b, ¢, d respectively, what is the mean-
ing of
’_Cbibickko?
Solution: » We have
3 3
Ta;bjcpdg s = Z a;b;" crdi = a*b" ¢rdi = asb Z crdp = (asb)(ced).
i=1 k=1
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1.7. Levi-Civitta and Einstein Index Notation

70 Example
Using Einstein’s Summation convention, the ij-th entry (AB);; of the product of two matrices A €
M, xn(R) and B € M, (R) can be written as
n
(AB)ij = > AyBrj =" AyBjo.
k=1
71 Example
Using Einstein’s Summation convention, the trace tr (A) ofasquare matrix A € My, x,(R)istr (A) =
St Aw ="Ap .
72 Example
Demonstrate, via Einstein’s Summation convention, that if A, B are twon x n matrices, then

tr (AB) = tr (BA).
Solution: » We have
tr (AB) = tr ((AB)U) =tr ('_AZ-kBkj_n> =" Ay Bt oo,

and
tr (BA) = tr ((BA)U) =tr (rBikAij> = """ By Ag o,

from where the assertion follows, since the indices are dummy variables and can be exchanged. «

73 | Definition (Kronecker’s Delta)
The symbol 6;; is defined as follows:

0 ifi+#j
ij =
1 ifi=j.
74 Example
Itis easy to see that" §;x0k; 1 = S 3_; OirOkj = 0ij.
75 Example
We see that

3 3 3
"dijaibjo = Z Z dijab; = Z apbr = Xey.
k=1

i=1j=1
Recallthat a permutation of distinct objectsis a reordering of them. The 3! = 6 permutations of the
indexset {1, 2,3} can be classified into even or odd. We start with the identity permutation 123 and
sayitis even. Now, for any other permutation, we will say that it is even if it takes an even number of
transpositions (switching only two elements in one move) to regain the identity permutation, and
odd if it takes an odd number of transpositions to regain the identity permutation. Since

231 — 132 — 123, 312 — 132 — 123,
the permutations 123 (identity), 231, and 312 are even. Since
132 — 123, 321 — 123, 213 — 123,

the permutations 132, 321, and 213 are odd.
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7

78

79

1. Multidimensional Vectors

Definition (Levi-Civitta’s Alternating Tensor)
The symbol e ;1 is defined as follows:

1 2 3
—1 if is an odd permutation
Ejkl = J k1
1 2 3
+1 if is an even permutation
j k1

In particular, if one subindex is repeated we have ,..s = €5 = €5+ = 0. Also,

€123 = €231 = €312 = 1, €132 = €321 = €213 = — L.

Example
Using the Levi-Civitta alternating tensor and Einstein’s summation convention, the cross product can
also be expressed, ifi = eq1, j = eq, k = eg, then

XXy= rajkl(akbl)ejJ.
Example
If A = [a;]is a3 x 3 matrix, then, using the Levi-Civitta alternating tensor,

det A = reijkaliagjang.
Example

Letx,y,z be vectors in R3. Then

xe(y X z) ="xi(y X z)is = "zigi(yrz) o

Identities Involving ) and ¢
€ijk01i02;03K = €123 = 1 (1.11)

it Oim  0i
€ijk€imn = | 6j1 Ojm  Ojn | = Oil0jmOknT0im0jndki+0in0;i0km—0i10jn0km—0imd;10kn—0indjmOk

Okt Okm  Okn
(1.12)
dir  0;
€ijk€lmk = = 0i0jm — Oimbji (1.13)
oji 05

The last identity is very useful in manipulating and simplifying tensor expressions and proving vec-
tor and tensor identities.
€ijk€lik = 20 (114)

€ijk€ijk = 205 = 6 (1.15)
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1.7. Levi-Civitta and Einstein Index Notation
80 Example
Write the following identities using Einstein notation

. A-BxC)=C-(AxB)=B:-(CxA)
2 Ax(BxC)=B(A-C)-C(A:-B)
Solution: »

A- BxC)=C-(AxB)=B:-(CxA)
) ) (1.16)
EijkAiBjCk = 6kijCsziBj = fjkiBjCkAi
Ax(BxC)=B(A-C)-C(A-B)

i (1.17)
€ijkAjeimBICm = Bi (A Cry) — Ci (A1 By)

1.7.1. Common Definitions in Einstein Notation

The trace of a matrix A tensor is:

tr (A) = Ay (1.18)
For a 3 x 3 matrix the determinant is:
A Ap Az
det (A) = | Ay Aoy Aoz | = €ijrA1iAoj Asy = €5jp Ai1 Aja Ags (1.19)
Az1 Az Ass

where the last two equalities represent the expansion of the determinant by row and by column.
Alternatively

1
det (A) = geijkelmnAilAijkn (1.20)

For an n x n matrix the determinant is:

1
det (A) = €i1---inA1i1 ce Amn = 61‘1...1',1141‘11 ce Aznn = Eeil'”in €j1"'jnAilj1 . Ainjn (1.21)

The inverse of a matrix A is:
[A‘l} = Le-mn €ina A An (1.22)
i 2det (A) I PETTPTI

The multiplication of a matrix A by a vector b as defined in linear algebra is:

[Ab]; = Aj;b; (1.23)
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1. Multidimensional Vectors

The multiplication of two n x n matrices A and B as defined in linear algebra is:
[AB]zk = Aiijk (1.24)

Again, here we are using matrix notation; otherwise a dot should be inserted between the two ma-
trices.
The dot product of two vectors is:

A - B =0;;A;B; = A;B; (1.25)
The cross product of two vectors is:
[A x B|, = €, A; By, (1.26)
The scalar triple product of three vectors is:

Ay Ay Aj
A - (B X C) =| By By B3g|= ﬁijkAiBjCk (1.27)
C1 Cy Chs

The vector triple product of three vectors is:

[A x (B x C)|, = €jrekimA;BiCr, (1.28)

i

1.7.2. Examples of Using Einstein Notation to Prove Identities

81 Example
A- BxC)=C-(AxB)=B:-(CxA):

Solution: »

A - (B x C) = ¢, A;B;Cy, (Eq. 22)
= €rijAi B;Cy, (Eg. 10.40)
= €4ijCrA; Bj (commutativity)
=C- (A xB) (Eq. ??) (1.29)
= €1 Ai B;Cy, (Eq. 10.40)
= €1 BjCLA; (commutativity)
=B-(CxA) (Eq. 22)

The negative permutations of these identities can be similarly obtained and proved by changing
the order of the vectors in the cross products which results in a sign change.
<

82 Example
Show that A x (BxC)=B(A-C)—-C(A-B):
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Solution: »

1.7. Levi-Civitta and Einstein Index Notation

[A x (B x C)], = €14, [B x CJ,
= €k AjeuimBICm
= €jkekimA;B1Cn
= €ijk€imk A B1Cn
= (8adjm — Sim6j1) A;BiCr
= 500 jm A;BiCry — Simd ;1A BCly
= (64B1) (8jmA;Cm) — (0imCim) (645 B))

= B; (AnCy) —

[
B

Bi (A
(
(

C) -
B(A-C)], -

A-C)—

Ci (A4By)
Ci(A-B)
[C(A-B)]
C(A-B)

Eq. 7?)

Eq. 7?)
commutativity)
Eq. 10.40)

Eqg. 10.58)

(

(

(

(

(

(distributivity)
(commutativity and grouping)
(Eq. 10.32)
(Eq. 1.25)
(definition of index)
(

Eq. 77)
(1.30)

Because i is a free index the identity is proved for all components. Other variants of this identity

[e.g. (A x B) x C] can be obtained and proved similarly by changing the order of the factors in

the external cross product with adding a minus sign. «

Exercises

83 Problem

Letx,y,z be vectors in R3. Demonstrate that

"z = (X0y)z.
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Limits and Continuity

2.1. Some Topology

84 | Definition
Leta € R™ and let = > 0. An open ball centered at a of radius ¢ is the set

B.(a) ={xeR":||x—a| <e}.

An open box is a Cartesian product of open intervals

Jai; bi[x]ag; ba[x - - - X]an—1; bn—1[Xx]an; by,

where the ay,, by, are real numbers.

The set
B.(a) ={xeR":||x —a| <e}.

is also called the e-neighborhood of the point a.

AT
PEPAN
i ]

al, a 7
\( 1,0a2)

by — as

Figure 2.1. Open ball in R Figure 2.2. Open rectangle in R?.
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Figure 2.3. Open ball in R3. Figure 2.4. Open box in R3.

85 Example

An open ball in R is an open interval, an open ball in R? is an open disk and an open ball in R3 is

an open sphere. An open box in R is an open interval, an open box in R? is a rectangle without its
boundary and an open box in R3 is a box without its boundary.

86 | Definition

Aset A C R" is said to be open if for every point belonging to it we can surround the point by a

sufficiently small open ball so that this balls lies completely within the set. Thatis,Va € A Je > 0
such that B.(a) C A.

mmm——
.
.
e

......

.....

Figure 2.5. Open Sets

87 Example

Theopeninterval]—1; 1[isopeninR. Theinterval|—1; 1] is not open, however, as no interval centred
at 1 is totally contained in ] — 1; 1].

88 Example
The region | — 1;1[x]0; +-oc is open in R,

89 Example
The ellipsoidal region {(:Jc, y) € R?: 22 + 492 < 4} is open in R2.

The reader will recognize that open boxes, open ellipsoids and their unions and finite intersections
are open setsin R"™.

90 | Definition

Aset FF C R" is said to be closed in R"™ if its complement R™ \ F'is open.

91 Example

The closed interval [—1; 1] is closed in R, as its complement, R\ [—1; 1] =] — oco; —1[U]1; 400l is open
inR. The interval | — 1; 1] is neither open nor closed in R, however.
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2.1. Some Topology

92 Example
The region [—1; 1] x [0; +-00[x [0; 2] is closed in R3,

93 Lemma
Ifx1 and xg are in S, (x¢) for some r > 0, then so is every point on the line segment from x; to xs.

Proof. The line segmentis given by
x=txo+(1-t)x;, 0<t<l

Suppose thatr > 0. If

X1 —Xo| <7, |x2—x0| <,

and0 < t < 1, then

X — Xg| = [txo + (1 — t)x; — tx0 — (1 — t)x0| (2.1)
= |t(X2 — Xo) + (1 — t)(Xl — X0)| (2.2)
< t’XQ — Xo‘ + (1 — t)’Xl — Xo‘ (2.3)

<tr+(1—-t)r=r.

94 | Definition
A sequence of points {x; } in R™ converges to the limit X if

lim |x; —X| =0.
k—o0

In this case we write

lim x;, = X.
k—o0

The next two theorems follow from this, the definition of distance in R", and what we already
know about convergence in R.

95 |Theorem
Let
X = (fl,fg,. .. ,fn) and xi = (xlk,:vgk, - ,:L‘nk), k> 1.

Then lim xj = Xifand only if
k—o0
lim z;, =7;, 1<i<nm;
k—o00

thatis, a sequence {xy, } of points in R™ converges to a limit X if and only if the sequences of compo-

nents of {xy,} converge to the respective components of X.
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2. Limits and Continuity

96 | Theorem (Cauchy’s Convergence Criterion)
A sequence {x;} in R™ converges if and only if for each € > 0 there is an integer K such that

Ix, —xs|| <e if r,s>K.

97 | Definition
Let S be a subset of R. Then

1. xq is a limit point of S if every deleted neighborhood of xy contains a point of S.

2. x¢ is a boundary point of S if every neighborhood of xy contains at least one point in S and
onenotin S. The setof boundary points of S is the boundary of S, denoted by 9S. The closure
of S, denoted by S, is S = S U O8S.

3. xzgisanisolated pointof S if xq € S and there is a neighborhood of x( that contains no other
point of S.

4. xgisexteriorto S if xq is in the interior of S€. The collection of such points is the exterior of S.

98 Example
Let S = (—o0, —1] U (1,2) U {3}. Then

1. The set of limit points of S is (—oo, —1] U [1, 2].

2. 08 ={-1,1,2,3}and S = (—o0, —1] U [1,2] U {3}.
3. 3istheonly isolated point of S.

4. The exteriorof S'is (—1,1) U (2,3) U (3, 00).

99 Example
Forn > 1, let

I, = {1,1} and S = GIn'
2n+ 1" 2n =
Then
1. The set of limit points of S'is S U {0}.
2.0S={zlzr=00rx=1/n(n>2)}and S = SuU{0}.

3. S has no isolated points.

4. The exteriorof S is

o 1 1

o(1)
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2.1. Some Topology
100 Example

Let S be the set of rational numbers. Since every interval contains a rational number, every real num-
ber is a limit point of S; thus, S = R. Since every interval also contains an irrational number, every

real number is a boundary point of S; thus 9S = R. The interior and exterior of S are both empty,
and S has no isolated points. S'is neither open nor closed.

The next theorem says that S is closed if and only if S = S (Exercise 108).
101 |Theorem

Aset S is closed if and only if no point of S¢ is a limit point of S.

Proof. Suppose that .S is closed and xg € S€. Since S¢is open, there is a neighborhood of x that
is contained in S¢ and therefore contains no points of S. Hence, x( cannot be a limit point of S. For

the converse, if no point of S¢is a limit point of S then every pointin S¢ must have a neighborhood
contained in S€¢. Therefore, S¢is open and S is closed. n

Theorem 101 is usually stated as follows.
102 Corollary

Asetis closed if and only if it contains all its limit points.

A polygonal curve P is a curve specified by a sequence of points (A1, As, ..., A,) called its ver-
tices. The curve itself consists of the line segments connecting the consecutive vertices.

A, Az

—\

\
\

A \ \An

Figure 2.6. Polygonal curve

103 | Definition

Adomain is a path connected open set. A path connected set D means that any two points of this
set can be connected by a polygonal curve lying within D.

104 | Definition

A simply connected domain is a path-connected domain where one can continuously shrink any
simple closed curve into a point while remaining in the domain.

Equivalently a pathwise-connected domain U C R? is called simply connected if for every sim-
ple closed curve I' C U, there exists a surface 3 C U whose boundary is exactly the curveI'.

Exercises
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2. Limits and Continuity

(a) Simply connected domain

105 Problem
Determine whether the following subsets of R? Let p(z,v) be a polynomial with real coefficients
are open, closed, or neither, in R?.

CA={(z,y) eR?:
. B={(z,y) eR?:
. C={(z,y) € R?:
. D= {(z,y) eR?:
. E={(z,y) € R?:
. F={(z,y) e R?:

. G ={(x,y) e R?:

2.2. Limits

109

(b) Non-simply connected domain

Figure 2.7.

] <1, ly[ <1}
[ <1, ly[ < 1}

2] <1, [yl < 1}

ly| <9,z < y?}

We will start with the notion of limit.

106

107

108

Domains

Problem (Putnam Exam 1969)

in the real variables x and vy, defined over the en-
tire plane R2. What are the possibilities for the im-
age (range) of p(x, y)?

Problem (Putnam 1998)

Let F be a finite collection of open disks in R?
whose union contains a set E C R?. Shew that
there is a pairwise disjoint subcollection Dy, k >
1in F such that

EC |J3D;.
j=1

Problem
Aset S is closed if and only if no point of S€ is a
limit point of S.

Definition
Afunction f : R™ — R™ js said to have a limit L € R™ ata € R™ifVe > 0,3 > 0such that

In such a case we write,

0<[[x—all <§=||f(x)—L|| <e.

lim f

x—a

(x) =L.

44
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2.2. Limits

110 | Theorem
Afunction f: R™ — R™ have limit
}1{1%12l f(x) = L.
if and only if the coordinates functions f1, fa, ... fm have limits Ly, L2, ..., L,, respectively, i.e.,
fi — Li.
Proof.

m

We start with the following observation:
1£GO) = LI* = [f1(30) = La|* + |fa(x) = Lof* + - + [ fin(%) = Lun|*.
So, if
|f1(X) — L1| < &

|[f2(x) — Lo| <

|[fm(x) — L | < ¢

then ||f(t) — L|| < /me.
Now, if ||f(x) — L|| < e then
‘fl(x) — Ll‘ <e

|f2(X) - L2| <e€

|[fm(x) — Lip| < e

Limits in more than one dimension are perhaps trickier to find, as one must approach the test
point from infinitely many directions.

Example

2 5,,3
Find  lim ry_rY
(2,9)—=(0,0) \ 22 + 32" 26 + y4

2
Solution: » Firstwewill calculate  lim &We use the sandwich theorem. Observe that
(z.9)—(0,0) % + y?

0<a?<a2?+y%andso0 < ——— < 1.Thus
x4 +y
l'2y
lim 0< im ——— < lim lyl,
(z,9)—(0,0) (z,y)=(0,0) | 2= + Y (z,9)—(0,0)
and hence
%y

li i S
(e9)2(0,0) 72 + 32
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2. Limits and Continuity
2ByP
11m .
(2,9)(0,0) 26 + y*
Either |z| < |y| or |z| > |y|. Observe thatif |z| < |y|, then

Now we find

3353/3 <98_ 4
— I <l =gt
$6+y4 y4
Iyl < [z, then
Il P
26 4 yt| = 6
Thus
z°y? 4 2 4 2
P <max(y*,z*) <y  +2°—0,

as (z,y) — (0,0).
Aliter: Let X = 23, Y = ¢

X5/3y3/2
= X2 _|_Y2'

253
26 + gyt

Passing to polar coordinates X = pcos6,Y = psin 6, we obtain

5,3 5/3v73/2
Y| f{z +YY2 _ p5/3+3/272\ cosH\5/3|sin0\3/2 < 7% 50,

26 + o4

as (z,y) — (0,0).
<

112 Example

1
Find lim ——*TY
(2,9)=(0,0) 22— y?

Solution: » Wheny =0,

asxz — 0. Whenz = 0,

asy — 0. The limit does not exist. «

113 Example 6

Find  lim v
(2,y)—(0,0) 0 + ¥

Solution: » Puttingz = t* y = #3, we find

xy® Ll
v o0,
a6+ 98 212

ast — 0. Butwhen y = 0, the function is 0. Thus the limit does not exist. «

114 Example
e 1)% +y?)log, ((x — 1)* +y?)
(@,y)—(0,0) |z] + |y
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2.2. Limits

Figure 2.9. Example 115.
Figure 2.8. Example 114.

Figure 2.10. Example 116.

Figure 2.11. Example 113.
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2. Limits and Continuity

Solution: » When y = 0 we have

2z —1)°’In(1 —zf) 2z
|z kd

Y

and so the function does not have a limit at (0,0). «

115 Example . o
Find  lim Sn@)+sin()

(2,y)—(0,0) Vvt + oyt

Solution: » sin(z*) +sin(y*) < 2* + y* and so

sin(z*) 4 sin(y*)

<Vazit4yt—0,

as (z,y) — (0,0). «

116 Example

Find lim —,
(z,y)—(0,0) T — SIn Yy

sinx —y

Solution: » When y = 0 we obtain
sin T

— 1,
X

asx — 0. When y = z the function is identically —1. Thus the limit does not exist. «

If f : R? — R, it may be that the limits

lim (hm f(x,y)), lim (hm f(x,y)),

Y—Yyo \T—To T—T0 \Y—Yo

both exist. These are called the iterated limits of f as (x,y) — (x0, yo). The following possibilities
might occur.

1. If  lim  f(x,y)exists,then each of theiterated limits lim (lim f(a:,y)) and lim (lim f(x,y))

(z,y)—(z0,y0) Yy—yo \T—T0 z—To \Y—Yo
exists.

2. Iftheiterated limits existand lim (lim f(a:,y)) # lim (yanz} f(a:,y)) then lim fz,y)
0

Yy—Yo \T—To T—To (z,y)—=(z0,y0)
does not exist.

3. It may occur that ylim (hm f(a:,y)) = lim <lim f(:c,y)),but that lim f(z,y)

—yYo \T—To T—xo \Y—Yo (z,y)—(z0,y0)
does not exist.

4. It may occur that lim f(z,y) exists, but one of the iterated limits does not.
(z,y)—(zo,y0)

Exercises
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118

119

120

121

122

123

124

125

2030

Problem 126
Sketch the domain of definition of (z,y)
V4 — 22— 92
Problem
Sketch the domain of definition of (x,y) ~—
log(x + y). 127
Problem
Sketch the domain of definition of (x,y)
1
22+ y?
Problem )
Find lim (22 4 y?)sin —.
(z,y)—(0,0) xy
128
Problem )
Find  lim oY
(zy)—(02) T
Problem
For what c will the function
V1—a22 — 492 ifa? 4 49% <1,
flz,y) =
c, if 22 + 492 > 1
be continuous everywhere on the xy-plane?
Problem
Find 129
1
li V2 + y?si .
()00 ¥ TSy y?
Problem
Find
L max(el, yl)
(zy)—>(+o0,400) /at 4 y?
Problem
Find
. 222 siny? + yle 1l
11m
(z,9)—(0,0 Va2 +y?
Continuity

2.3. Continuity
Problem
Demonstrate that

m2y2z2

lim —_
(2,,2)—(0,0,0) T2 + y2 + 22

Problem
Prove that
lim (limx_y> =1=—1lim (hmx_y).
z—=0 \y—=0x + vy y—=0 \z—=0x + ¥y
. -y .
Does lim exist?.

(zy)—(0,0) T + Yy

Problem
Let
.1 1
rsin— +ysin— ifx#£0,y#0
f(z,y) = r Y
0 otherwise
Prove that  lim  f(x,y) exists, but that
(z,y)—(0,0)
the iterated limits lim (lim f(a;,y)) and
z—0 \ y—0
51_1% (ig% f(a:,y)) do not exist.
Problem
Prove that
2,2
lim | lim 22xy =0,
z—0 \ y—=0 z2y* + (:L' — y)2
and that
2,2
lim ( lim ———— =0,
y—0 \ z—0 x4y~ 4 (113 — y)2
2,9
but still  lim 55 Ty 5 does not ex-
(@9)—(0,0) 2y* + (z — )
ist.
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2. Limits and Continuity

130 | Definition
LetU c R™ be adomain, and f : U — R< be a function. We say f is continuous at a if%i_r}rb flx) =

f(a).

131 | Definition
If f is continuous at every point a € U, then we say f is continuous on U (or sometimes simply f is

continuous).

Again the standard results on continuity from one variable calculus hold. Sums, products, quo-
tients (with a non-zero denominator) and composites of continuous functions will all yield contin-
uous functions.

The notion of continuity is useful is computing the limits along arbitrary curves.

132 Proposition
Let f : RY — R be a function, and a € R%. Let~ : [0,1] — R? be a any continuous function with
v(0) = a, and ~(t) # aforallt > 0. /f%ig(ll f(z) = I, then we must have %g% f(y(t) =1

133 Corollary
Ifthere exists two continuous functions y1,¥o : [0, 1] — R%suchthatfori € {1,2} we have;(0) = a
and ~;(t) # aforallt > 0. /f%g% fn() # %1_13% f(v2(t)) then %1;% f(x) can not exist.

134 | Theorem
The vector function f : R4 — Ris continuous att, ifand only ifthe coordinates functions f1, fa, .. . f

are continuous at ty.

The proof of this Theorem is very similar to the proof of Theorem 110.

Exercises

135 Problem 138 Problem .
Sketch the domain of definition of (x,3) + Find lim (2% +y?)sin —.
Ty

x, 0,0

139 Problem )
136 Problem Find lim Smxy.

Sketch the domain of definition of (z,y) ()02
140 Problem
log(z + y).

For what c will the function

137 Problem

Sketch the domain of definition of (x,y) ) VI—a? 42, ifa? +4y* <1,
L,Y) =

;, c, if 22 4+ 49?2 > 1

x2 4 y?

be continuous everywhere on the xy-plane?
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142

143

144

145

2.4.

148

149

2.4. x Compactness

Problem 146 Problem
Find Let
1
li Va2 +y?sin ——. 1 1
()00 ¥ AR y? rsin— +ysin— ifzx#0,y#0
fla,y) = v y
Problem 0 otherwise
Find
. max(|z|, [y]) Prove that  lim  f(z,y) exists, but that
lim . 0,0
(z,y)—(+00,+0) \/lﬁy4 (2:4)=(0,0)
Problem the iterated limits ilg}) (7}% f(z, y)) and
Find lim (lim f(:z:,y)) do not exist.
y—0 \z—0
i 222 sin y? + yle 1ol
111 .
(2,y)—(0,0 Va2 +y? 147 Problem
Problem Prove that
Demonstrate that 9 9
. . 7y
1 1 =
. z?y?2? 0 (;L% 22y? + (z — y)2> "
lim &5 5 —
(2,y,2)—(0,0,0) 2 + y2 + 22
and that
Problem
Prove that . . 22y
lim | lim 55 =0,
y—0 \ z—0 z2y* + (:L' — y)2
. . Ty . . T=Y
lim | lim =1=—lim [ lim .
=0 \y=0x +y y—=0 \z=0x +y 332y2
B butstill  lim 5 5 does not ex-
Does  lim Y exist?. , @)=(00) 2%y + (2 = y)
(2.y)=(0,0) T +y Ist.
* Compactness
The next definition generalizes the definition of the diameter of a circle or sphere.
Definition

If S is a nonempty subset of R™, then
d(S)=sup{|x—-Y|}x,Ye S

is the diameter of S. If d(S) < oo, S is bounded; if d(S) = oo, S is unbounded.

Theorem (Principle of Nested Sets)
If S1, So, ... are closed nonempty subsets of R™ such that

S1 D085 D285 D
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2. Limits and Continuity

and

then the intersection

contains exactly one point.

Proof. Let {x,} be asequence suchthatx, € S, (r > 1). Because of (2.4),x, € S ifr > k, so
|x; —x5| < d(Sk) if r,s>k.

From (2.5) and Theorem 96, x, converges to a limit X. Since X is a limit point of every Sj and every
Sy, is closed, X is in every Sj. (Corollary 102). Therefore,x € I,so I # (). Moreover, X is the only
pointin I, sinceif Y € I, then

X —-Y| <d(Sg), k=>1,

and (2.5) impliesthat Y = x. n
We can now prove the Heine-Borel theorem for R™. This theorem concerns compact sets. As in

R, a compact setin R™ is a closed and bounded set.
Recall that a collection  of open sets is an open covering of a set S if

SCU{H}H € H.

150 |Theorem (Heine-Borel Theorem)
If H is an open covering of a compact subset S, then S can be covered by finitely many sets from H.

Proof. The proof is by contradiction. We first consider the case where n = 2, so that you can
visualize the method. Suppose that there is a covering  for .S from which it is impossible to select
a finite subcovering. Since S is bounded, S'is contained in a closed square

T={(z,y)la1 <z <ar+L,ay<x<apy+L}

with sides of length L (Figure 2?).
Bisecting the sides of T as shown by the dashed lines in Figure 22 leads to four closed squares,
7MW, 7R 76G) and T™, with sides of length L /2. Let

SO =gnTW  1<i<4.

Each S, being the intersection of closed sets, is closed, and

Moreover, H covers each S(), but at least one S() cannot be covered by any finite subcollection of
H, sinceifallthe S could be, then so could S. Let S; be a set with this property, chosen from SOR
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2.4. x Compactness

S 86) and S®. We are now back to the situation we started from: a compact set S; covered by
‘H, but not by any finite subcollection of H. However, S is contained in a square T} with sides of
length L /2 instead of L. Bisecting the sides of 77 and repeating the argument, we obtain a subset
So of S that has the same properties as S, except that it is contained in a square with sides of
length L /4. Continuing in this way produces a sequence of nonempty closed sets Sy (= S), S1, So,
..,suchthat S, O Sy.1and d(Sy) < L/2F"1/2(k > 0). From Theorem 149, there is a point X in
Nie; Sk- SinceX € S, there is an open set H in H that contains X, and this H must also contain
some e-neighborhood of X. Since every x in S}, satisfies the inequality

‘X - i| < 271£Jr1/2L7

it follows that S, C H for k sufficiently large. This contradicts our assumption on H, which led
us to believe that no Sy could be covered by a finite number of sets from 7{. Consequently, this
assumption must be false: H must have a finite subcollection that covers S. This completes the
proof forn = 2.

The idea of the proof is the same for n > 2. The counterpart of the square T' is the hypercube
with sides of length L:

T={(z1,29,...,xp)}a; <z; <a;+ L,i=1,2,...,n.

Halving the intervals of variation of the n coordinates x1, x9, ..., x,, divides T"into 2" closed hyper-
cubes with sides of length L /2:

T(Z) = {($1,$2,...,5L‘n)}bi <z Sbi—f—L/Q,l <i<n,

where b; = a; orb; = a; + L/2. If no finite subcollection of H covers S, then at least one of these
smaller hypercubes must contain a subset of S that is not covered by any finite subcollection of S.
Now the proof proceeds as for n = 2. ]

Theorem (Bolzano-Weierstrass)
Every bounded infinite set of real numbers has at least one limit point.

Proof. We will show that a bounded nonempty set without a limit point can contain only a finite
number of points. If S has no limit points, then S is closed (Theorem 101) and every point z of S
has an open neighborhood N, that contains no point of S other than z. The collection

H={N,}zeS

is an open covering for S. Since S is also bounded, implies that S can be covered by a finite collec-
tion of sets from ‘H, say N, ..., N, . Since these sets contain only z1, ..., x,, from S, it follows that
S={zx1,...,zn}. "
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Differentiation of Vector Function

In this chapter we consider functions f : R™ — R"™. This functions are usually classified based on
the dimensions n and m:

O if the dimensions n and m are equal to 1, such a function is called a real function of a real
variable.

® ifm = 1andn > 1 the function is called a real-valued function of a vector variable or, more
briefly, a scalar field.

® ifn =1andm > litis called a vector-valued function of a real variable.

® ifn > 1andm > 1litis called a vector-valued function of a vector variable, or simply a vector
field.

We suppose that the cases of real function of a real variable and of scalar fields have been studied
before.

This chapter extends the concepts of limit, continuity, and derivative to vector-valued function
and vector fields.

We start with the simplest one: vector-valued function.

3.1. Differentiation of Vector Function of a Real
Variable

152 | Definition

Avector-valued function of a real variable is a rule that associates a vector f(t) with a real number
t, where t is in some subset D of R (called the domain of f). We write f : D — R" to denote that fis
a mapping of D into R™.

f:R—-R"
f(t) = (f1(t), f2(t), ..., fu(?))
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3. Differentiation of Vector Function
with
fisfo, oo osfn i R—= R,

called the component functions of f.
In R3 vector-valued function of a real variable can be written in component form as

f(t) = fl(t)i + f2(t).] + f3(t)k

orin the form
f(t) = (fl(t)’ f2(t)a fs(t))

for some real-valued functions f,(t), f2(t), fs(t). The first form is often used when emphasizing
that f(¢) is a vector, and the second form is useful when considering just the terminal points of
the vectors. By identifying vectors with their terminal points, a curve in space can be written as a
vector-valued function.

Example

Forexample, f(t) = ti + t%j + t3k is a vector-valued function in R3, defined for all real numbers t. At
t = 1the value of the function is the vector i+ j + k, which in Cartesian coordinates has the terminal
point (1,1, 1).

Example
Define f : R — R3 by f(t) = (cost,sint,t).
This is the equation of a helix (see Figure 1.8.1). As the value of t increases, the terminal points of f(t)
trace out a curve spiraling upward. For each t, the x- and y-coordinates of f(t) are x = cost and
y = sint, so

z? +y2 = cos®t +sin’t = 1.

Thus, the curve lies on the surface of the right circular cylinder x? + y? = 1.

It may help to think of vector-valued functions of a real variable in R™ as a generalization of the
parametric functions in R? which you learned about in single-variable calculus. Much of the theory
of real-valued functions of a single real variable can be applied to vector-valued functions of a real
variable.

155 | Definition

Let f(t) = (fi(t), fo(t), ..., f.(t)) be a vector-valued function, and let a be a real number in its
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3.1. Differentiation of Vector Function of a Real Variable

f
domain. The derivative of £(t) at a, denoted by f'(a) or % (a), is the limit

f’(a) = }{%M

ifthat limit exists. Equivalently, ' (a) = (fi(a), fi(a), ..., f'(a)), ifthe component derivatives exist.

We say that £(t) is differentiable at a if ' (a) exists.

The derivative of a vector-valued function is a tangent vector to the curve in space which the
function represents, and it lies on the tangent line to the curve (see Figure 3.1).

’ o
f(a) /QX@
o ()
fla+h) Yy

T

Figure3.1. Tangentvector f'(a) and tangentline
L = f(a) + sf'(a)

Example

Let f(t) = (cost,sint,t). Thenf(t) = (—sint,cost, 1) for all t. The tangent line L to the curve at
f(2m) = (1,0,27m)is L = f(27) + sf'(27) = (1,0,27) + s(0,1,1), or in parametric form: x = 1,
y=3s82=2w+sfor—oco < s < oa.

Note that if u(t) is a scalar function and f(¢) is a vector-valued function, then their product, de-
fined by (uf)(t) = u(t) £(t) for all ¢, is a vector-valued function (since the product of a scalar with a
vector is a vector).

The basic properties of derivatives of vector-valued functions are summarized in the following

theorem.
Theorem
Let f(t) and g(t) be differentiable vector-valued functions, let u(t) be a differentiable scalar func-
tion, let k be a scalar, and let ¢ be a constant vector. Then
d
O —c=0
at’©
d df
O — (kf) = k—
dt (k) dt
d df dg
—(f _ =)
© e =g 4
d df dg
4 dt (f-g)= FTRT
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3. Differentiation of Vector Function

d du df
—(uf) = —f
© dt( ) dt s dt
d df dg
— (fog) = fo =
& dt( g) = dt g+ dt
d df dg
0E(fxg) a><g+f e

Proof. The proofs of parts (1)-(5) follow easily by differentiating the component functions and using
the rules for derivatives from single-variable calculus. We will prove part (6), and leave the proof of
part (7) as an exercise for the reader.

(6) Write £(¢) = (f.(¢), fo(t), fs(t)) and g(t) = (g1 (t), 92(t), g5(t)), where the component functions
fi(t), f2(1), f(t), g1 (t), g2(t), gs(t) are all differentiable real-valued functions. Then

SED(0) = 5 (002(0) + (1) () + Fi(0)95(0)
= LR 0a(0) + (D) 0a(0)) + (1) 95(1)

= L0000+ A0 0 + 20 0ul0) + () L)+ 0 0,0+ ) Tt

_ ((Zz(t), %(t}, %’(t))- (91(t): 92(1), g5(¢))

+OL0.50) (B0, 20, 0

.igt(t) for all .1 (3.2)

158 Example
Suppose £(t) is differentiable. Find the derivative of || £(t)||. Solution: »

Since ||f(t)| isa real-valued function of t, then by the Chain Rule for real-valued functions, we know
d )
that L 60) | = 20) | - 0.

But ||£(1)||* = £(t)+f(t), so —||f )| = (t)+f(t)). Hence, we have
2||£(¢ || Hf )| = %(f(t)- (t)) = £(t)=£(t) + £(t)f'(t) by Theorem 157(f), so

= 2f'(t)+£(t), so if || £(t)|| # O then
d _ F)-f(t)
= el

<
d
We know that ||£(t)|| is constant if and only if & |£(t)|| = Oforallt. Also, £(t) L f'(t)ifand only if
f'(t)+f(t) = 0. Thus, the above example shows this important fact:

159 Proposition
If||£(t)|| # 0, then ||(t)|| is constant if and only iff(t) L f'(¢) for all ¢.
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3.1. Differentiation of Vector Function of a Real Variable

This means that if a curve lies completely on a sphere (or circle) centered at the origin, then the
tangent vector f'(t) is always perpendicular to the position vector f(¢).

160 Example

The spherical spiral f(t) = ( cost sint iy

V1+a22 V14 a2 V1+ a2
Figure 3.2 shows the graph of the curve when a = 0.2. In the exercises, the reader will be asked to
show that this curve lies on the sphere 2 + y? 4 2% = 1 and to verify directly that £ (t)«f(t) = 0 for
allt.

), fora # 0.

Figure 3.2. Spherical spiral witha = 0.2

Just as in single-variable calculus, higher-order derivatives of vector-valued functions are ob-
tained by repeatedly differentiating the (first) derivative of the function:

() = %f’(t) : (1) = %f‘”(t) s

drf o d(d
den de \ dgn!

) (forn =2,3,4,...)

We can use vector-valued functions to represent physical quantities, such as velocity, accelera-
tion, force, momentum, etc. For example, let the real variable ¢ represent time elapsed from some
initial time (¢ = 0), and suppose that an object of constant mass m is subjected to some force so
that it moves in space, with its position (z, y, z) at time ¢ a function of ¢. Thatis, z = z(t),y = y(¢t),
z = z(t) for some real-valued functions z(t), y(t), z(t). Callr(t) = (x(t),y(t), z(t)) the position
vector of the object. We can define various physical quantities associated with the object as fol-
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3. Differentiation of Vector Function

lows:!

position: r(t) = (z(t),y(t), z(t))

velocity: v(t) = i(t) = r'(t) = %

— (@), 4/ (1), 2 (1)

acceleration: a(t) = v(t) = Vv/'(t) = %
d?r
=¥(t)=r"(t) = a2

= (2"(£),y" (), 2"(1))

momentum: p(t) = mv(t)
d
force: F(t) = p(t) = p'(t) = £ (Newton’s Second Law of Motion)
The magnitude ||v(¢)|| of the velocity vector is called the speed of the object. Note that since the
mass m is a constant, the force equation becomes the familiar F(t) = ma(t).

161 Example
Letr(t) = (5cost,3sint, 4sint) be the position vector of an object at time t > 0. Find its (a) velocity
and (b) acceleration vectors.

Solution: »
(@) v(t) = 1(t) = (—bsint,3cost,4cost)

(b)a(t) =v(t) = (—bcost, —3sint, —4sint)

Note that ||r(t)|| = v/25 cos? ¢ + 25sin? t = 5 for all £, so by Example 158 we know that r(t)si:(t) =
0 for all ¢ (which we can verify from part (a)). In fact, ||v(¢)|| = 5 for all ¢ also. And not only does
r(t) lie on the sphere of radius 5 centered at the origin, but perhaps not so obvious is that it lies
completely within a circle of radius 5 centered at the origin. Also, note that a(t) = —r(¢). It turns
out (see Exercise 16) that whenever an object moves in a circle with constant speed, the acceleration
vectorwill pointin the opposite direction of the position vector (i.e. towards the center of the circle).

<

3.1.1. Antiderivatives

162 | Definition
An antiderivative of a vector-valued function f is a vector-valued function F such that

The indefinite integral | f(t) dt of a vector-valued function f is the general antiderivative of £

and represents the collection of all antiderivatives of f.

'We will often use the older dot notation for derivatives when physics is involved.
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3.1. Differentiation of Vector Function of a Real Variable

The same reasoning that allows us to differentiate a vector-valued function componentwise ap-
plies to integrating as well. Recall that the integral of a sum is the sum of the integrals and also that
we can remove constant factors from integrals. So, given f(¢) = x(t) vi + y(t)j + z(t)k, it follows
that we can integrate componentwise. Expressed more formally,

Iff(t) = z(t)i + y(t)j + z(t)k, then

/f(t) dt = (/x(t) dt>i+ (/y(t) dt)j—l— (/z(t) dt) K.

Two antiderivarives of f(t) differs by a vector, i.e., if F(t) and G(t) are antiderivatives of f then exists
c € R" such that

Proposition

F(t) - G(t) =c

Exercises
Problem 3. For a constant vector ¢ # 0, the function
For Exercises 1-4, calculate £ (t) and find the tan- £(t) = tc represents a line parallel to c.

ent line at £(0).
7 ©) (a) Whatkind ofcurve doesg(t) = t3c rep-
1. f(t) = (t+1,t2+ 2. f(t) = (e + resent? Explain.

L7 +1) LeX 41, + 1) (b) What kind of curve does h(t) = elc

represent? Explain.
3. f(t) = (cos2t,sin2t,t) 4. f(t) = (sin2t,2sin’t,2cost)

(c) Compare £(0) and g'(0). Given your

For Exercises 5-6, find the velocity v(t) and accel- answer to part (a), how do you explain
eration a(t) of an object with the given position the difference in the two derivatives?
vectorr(t). d df d?f
. Showthat —( fx— | = fx—.
4. Show tha dt< th) th2
5 r(t) = (t,t — 6. r(t) = (3cost,2sint, 1)

sint, 1 — cost) 5. Let a particle of (constant) mass m have

position vector r(t), velocity v(t), acceler-

Problem ation a(t) and momentum p(t) at time t.
1. Let The angular momentum L(t) of the parti-
cos t sint i cle with respect to the origin at time t is de-
f(t) = <\/1 0 Vir R it a2t2)’ fined as L(t) = r(t)x p(t). IfF(t) is the
force acting on the particle at time t, then
with a # 0. . .

define the torque N(t) acting on the par-
(a) Show that ||f(t)|| = 1 forallt. ticle with respect to the origin as N(t) =

(b) Show directly that £ (t)f(t) = 0 for all r(t)xF(t). Show that L' (t) = N(2).

t.

d df
. f. =
6. Show that dt( (g xh)) v

2. Iff'(t) = 0foralltin some interval (a,b), dg dh
. . feo x h + fo gXxX—).
show that f(t) is a constant vector in (a, b). dt dt

*(gxh) +
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3. Differentiation of Vector Function

7. The Mean Value Theorem does not hold terval (0, 27) such that
for vector-valued functlons:' Show. that ifor £(2m) — £(0)
f(t) = (cost,sint,t), thereis notin the in- f(t) = Ton_0

3.2. Kepler Law

Why do planets have elliptical orbits? In this section we will solve the two body system problem,
i.e., describe the trajectory of two body that interact under the force of gravity. In particular we will
proof that the trajectory of a body is a ellipse with focus on the other body.

/

\

/ \
\

|

|

|

/
|
/

\

\

Figure 3.3. Two Body System
We will made two simplifying assumptions:

O The bodies are spherically symmetric and can be treated as point masses.

® There are no external or internal forces acting upon the bodies other than their mutual grav-
itation.

Two point mass objects with masses m; and ms and position vectors x; and x5 relative to some
inertial reference frame experience gravitational forces:

. —Gmima .
miX) = ———5—T1
r
. Gmima._.
MoXy = Tr

where x is the relative position vector of mass 1 with respect to mass 2, expressed as:
X =X1 — X9

andTis the unit vector in that direction and r is the length of that vector.
Dividing by their respective masses and subtracting the second equation from the first yields the
equation of motion for the acceleration of the first object with respect to the second:

¥ = -7 (3.3)
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3.2. Kepler Law

where p is the parameter:
p = G(my +mz)

With the versor r we can write r = r1 and with this notation equation 3.3 can be written
r=—=5r. (3.4)
For movement under any central force, i.e. a force parallel to r, the relative angular momentum
L=rxr
stays constant. This fact can be easily deduced:
L= L exi)=ixitrxi=04+0=0

dt

Since the cross product of the position vector and its velocity stays constant, they must lie in the
same plane, orthogonal to L. This implies the vector function is a plane curve.

From 3.4 it follows that
2 X

L:rXf:foa(rf):Tf‘X(Tf"+ff):r2(fxf")+rf(fxf):rrxr

Now consider

FXL=—5S8x (1% X 1) = —pf x (£ X T) = —p[(fef)f — (FoF)1]

Since #+f = |#|? = 1 we have that

.1 .. 1d

Substituting these values into the previous equation, we have:
¥ x L=pur

Now, integrating both sides:

rxL=pur+c

Where ¢ is a constant vector. If we calculate the inner product of the previous equation this with r
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3. Differentiation of Vector Function

yields an interesting result:

re(f X L) = re(uf + ¢) = pret + rec = pr(ter) + rccos(d) = r(u + ccos(h))

Where 6 is the angle between r and c. Solving forr:

re(ir x L) (rxri)eL |L|?

" ptccos(d)  p+ccos(d) -+ ccos()

Finally, we note that

(r,0)
are effectively the polar coordinates of the vector function. Making the substitutions p = E and
e= %, we arrive at the equation
P (3.5)

r= -

14+e-cosf

The Equation 3.5 is the equation in polar coordinates for a conic section with one focus at the
origin.

3.3. Definition of the Derivative of Vector Function

Observe that since we may not divide by vectors, the corresponding definition in higher dimensions
involves quotients of norms.

166 | Definition
Let A C R™ be an open set. A function f : A — R™ is said to be differentiable ata € A ifthereisa
linear transformation, called the derivative of f at a, D,(f) : R™ — R such that

o IEx) — @) = Da(H)(x — a)|

x—a |Ix — al|

=0.

If we denote by E(h) the difference (error)
E(h) :=f(a+h) — f(a) — Da(f)(a)(h).

Then may reformulate the definition of the derivative as

167 | Definition
Afunctionf: A — R™ issaid to be differentiable ata c A if there is a linear transformation D, (f)
such that

f(a+h) —f(a) = Da(f)(h) + E(h),
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3.3. Definition of the Derivative of Vector Function

[E@)]

= 0.
[l

with E(h) a function that satisfies limy,

The condition for differentiability at a is equivalent also to

f(x) — f(a) = Da(f)(x —a) + E(x - a)

[E(x —a)

= 0.
[l

with E(x — a) a function that satisfies limy,

168 |Theorem
The derivative D, ( f) is uniquely determined.

Proof. Let L : R®” — R™ be another linear transformation satisfying definition 166. We must
prove that Vv € R™, L(v) = D,(f)(v). Since Aiisopen, a + h € A for sufficiently small ||h]|. By
definition, we have

fla+h) —f(a) = Da(f)(h) + E1(h).

[ E1(h)|]

I=el o,
[l

with limy, o

and
f(a+h) —f(a) = L(h) + Ez(h).

B2 _

[l
Now, observe that

with limhﬁo

Da(f)(v) = L(v) = Da(f)(h) — f(a + h) + f(a) + f(a + h) — f(a) — L(h).

By the triangle inequality,

IDa(f)(v) = L(v)l|

IN

[Da(f)(h) — fla + h) + f(a)||
+||f(a+ h) — f(a) — L(h)||
= Ei(h) + Ez(h)

= Eg(h),
- Es(h)| [E1 + Ex(h)|
with limy, Hi =limp_,g ——————— = 0.
A - [l
This means that
[IL(v) = Da(f)(v)|| = 0,
i.e., L(v) = Da(f)(v), completing the proof. "

169 Example
If L : R™ — R™ js alinear transformation, then Do(L) = L, forany a € R™.
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3. Differentiation of Vector Function
Solution: » Since R™ is an open set, we know that D, (L) uniquely determined. Thus if L satisfies
definition 166, then the claim is established. But by linearity

IL(x) — L(a) — L(x — a)|| = [|L(x) — L(a) — L(x) + L(a)|| = [|0] = 0,

whence the claim follows. <«
170 Example

Let
R3xR?® — R
f:
(x,y) = xy
be the usual dot product in R3. Show that fis differentiable and that
Dx ) f(h, k) = xek + hey.
Solution: » We have
fx+hy+k) —flx,y) = (x+h)(y+k)—xy
= Xey + Xek + hey 4 hek — xey
= xek + hey + hek.
Since xek + hey is a linear function of (h, k) if we choose E(h) = hek, we have by the Cauchy-
Buniakovskii-Schwarz inequality, that |hek| < ||h||||k|| and
[Em)]
(hk)=(0,0 [h]]

< [[k[} = 0.

which proves the assertion. «
Just like in the one variable case, differentiability at a point, implies continuity at that point.

171 | Theorem
Suppose A C R"isopenand f: A — R"™is differentiable on A. Then fis continuous on A.

Proof. Givena € A, we must shew that

lim f(x) = f(a).

X—a

Since fis differentiable at a we have

f(x) — f(a) = Da(f)(x — a) + E(x — a).

Since limyp,_,q H]TTS’I’)H = Othenlimp_,0 ||[E(h)|| = 0. and so
f(x) — f(a) — 0,
asx — a, proving the theorem. n
Exercises
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3.4. Partial and Directional Derivatives
172 Problem 173 Problem
Let L : R® — R3 be alinear transformationand ~ Letf: R® — R,n > 1,f(x) = ||x|| be the usual

norm in R™, with ||x||* = xex. Prove that

R?® — R3
F: .
X — X X L(X) Dx(f)(V) _ ﬁ’
Shew that F is differentiable and that *
Dx(F)(h) =x x L(h) +h X L(x). forx # 0, but that fis not differentiable at 0.
3.4. Partial and Directional Derivatives
174 | Definition
Let A CR™ f: A— R™, andput
filzy, ..., 2n)
Ti,...,Tp
f(x) fa(z1 ‘ )
fm(z1, ... Tp)
. . .. Of; . .
Here f; : R™ — R. The partial derivative 3 (x) is defined as
€L
. Ofi o i, xp by xn) — fiwn, ., @5, Z0)
0,fiw) 1= 5 ()= Jmy : ,
whenever this limit exists.

To find partial derivatives with respect to the j-th variable, we simply keep the other variables
fixed and differentiate with respect to the j-th variable.

x; = cte
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3. Differentiation of Vector Function
175 Example
Iff: R — R, and f(x,y,2) = = + y? + 23 + 3zy%2> then

8f 2.3
=1
a:L,(ﬂc,y,Z) + 3y~ 2°,
0
a‘; (z,y,2) = 2y + 6zy2",
and
of

(z,y,2) = 322 + 9xy?2>.

0z

Let f(x) be a vector valued function. Then the derivative of f(x) in the direction u is defined as

Dyf(x) := Df(x)[u] = Lf; fv+a “)} -

for all vectors u.

176 Proposition

O /ff(x) = f1(x) + fo(x) then Dyf(x) = Dyufi(x) + Dyufa(x)

@ /ff(x) = fi(x) x f2(x) then Dyf(x) = (Dufi(x)) X fa(x) + f1(v) x (Dyfa(x))

3.5. The Jacobi Matrix

We now establish a way which simplifies the process of finding the derivative of a function at a given
point.

Since the derivative of a function f : R — R™ is a linear transformation, it can be represented
by aid of matrices. The following theorem will allow us to determine the matrix representation for
Da(f) under the standard bases of R™ and R™.

177 |Theorem

Let
fl(xl, g c .,.CCn)
f(x) _ fg(l’l, o g (En)
_fm(xl, . ,xn)_

Suppose A C R"™isanopensetandf : A — R™ js differentiable. Then each partial derivative

Ofi (x) exists, and the matrix representation of Dx( f) with respect to the standard bases of R™
&
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3.5. The Jacobi Matrix

and R™ js the Jacobi matrix
[ Of1 df1 df1 ]
O gy 2Ly . 22y
f'(X) _ | Oz 0xo o Oxy,
O . O Ofom
Ber ® Bz g, ®)

Proof. Lete;,1 < j < n, be the standard basis for R". To obtain the Jacobi matrix, we must
compute Dy (f)(e;), which will give us the j-th column of the Jacobi matrix. Let f(x) = (J;;), and

observe that -
Jlj
Jgj
Dy(f)(ej) = | .
Imj
and puty = x + cej, e € R. Notice that
|[£(y) — £(x) — Dx(f)(y —x)|
Iy —x||
_ [|[f(z1,...,xj+h,...,zn) — (21, ..., 25, ..., 2n) — eDx(f)(e))]|

el
Since the sinistral side — 0 as ¢ — 0, the so does the i-th component of the numerator, and so,

|fi(l‘1,...,$j+h,...,$n)—|]|ci(351,...,l‘j,...,ﬂfn) —{:‘Jij‘ .
g

This entails that
Jij — lim fi(l‘l,.‘.,l‘jﬁ—&,...,l‘n)—fi(ﬂfl,...,:ﬂj,...,ﬂ?n) _ afl (X)
e—0 I (‘)xj

This finishes the proof. ]

Strictly speaking, the Jacobi matrix is not the derivative of a function at a point. Itis
a matrix representation of the derivative in the standard basis of R”. We will abuse
language, however, and refer to f when we mean the Jacobi matrix of f.
178 Example
Let f: R? — R2 be given by
f(x,y) = (vy + yz,log, zy).

Compute the Jacobi matrix of f.

Solution: » The Jacobi matrix is the 2 x 3 matrix

Flr.y) = Oz fi(z,y) Oyfi(x,y) O.fi(z,y) _
8a;f2(x,y) 8yf2(x,y) azf2(.%',y)

SHEERS
< | = +
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3. Differentiation of Vector Function
179 Example

Let f(p,0,z) = (pcosb, psinb, z) be the function which changes from cylindrical coordinates to
Cartesian coordinates. We have
cosf —psinf 0O
f(p,0,2) = |sinf pcosh 0
0 0 1

180 Example

Let f(p, ¢,0) = (pcosfsin ¢, psin O sin ¢, p cos ¢) be the function which changes from spherical co-
ordinates to Cartesian coordinates. We have

cosfsing pcosfcosp —psingsind

f'(p,#,0) = |sinfsin psinfcos¢ pcosBsing
cos ¢ —psin ¢ 0

The concept of repeated partial derivatives is akin to the concept of repeated differentiation.
Similarly with the concept of implicit partial differentiation. The following examples should be self-
explanatory.

181 Example )

Let f(u,v,w) = e" v cos w. Determine 8u8vf(u’ v,w)at (1, —1, Z)
Solution: » We have
9 . . u u
8uav(e veosw) = %(e cosw) = e* cosw,

which is 6\2/5 at the desired point. «

182 Example

. 0z 0
The equation ™Y + (xy)? 4 xy?z3 = 3 defines z as an implicit function of x and y. Find —— and ¢z

ox oy
at(1,1,1).

Solution: » We have

gzzy — 9 ey log z
ox az
= |ylogz+ — —z
z Ox
9 1
z e?logzy
5 (ZY) a
= ( log xy + )
gw z° = 34 3xy?22 =
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3.5. The Jacobi Matrix

Hence, at (1,1, 1) we have

0z 0z 0z 1
Z41+143-=0 ==
Oz R ox - Oox 2
Similarly,
gzxy — Qexy log 2z
oy oy
= <x log z + 1:3/82) 2%y,
z Oy
0 0
7 z _— _Z zlogzy
3y (zy) ¢
= (az log zy + Z) (zy)*
Ay y ’
8—ymy223 = 2zyz’ + 3xy222§;,
Hence, at (1,1, 1) we have
0z 0z 0z 3
Z 414243 =0 = —=-".
dy i oy dy 4
<
Exercises
183 Problem 186 Problem
Let f : [0;400[%x]0;4+00]— R, f(r,t) = Let f(z,y) = (zyx+vy) and g(z,y) =
tne=r*/4 where n is a constant. Determine n (a: — yxylr + y) Find (g o £)(0,1).
such that
af 1 0 [ ,0f
ot r2or\" o) 187 Problem
. . 2 _ 2
184 Problem Assuming that the equation xy* + 3z = cosz
Let defines z implicitly as a function of x and vy, find
Oy 2.
f:R? > R, f(z,y) = min(z, y?).
- Of(x,y)  Of(z,y)
Find O and oy 188 Problem

ow
_ Luv _ - .
185 Problem Ifw=e"andu =r+s,v =rs, determine s

Letf:R? — R%2andg : R? — R? be given by

f(z,y) = (z2%),  glz,y,2) = (z — y 1882ppdblem

Compute (f o ¢)'(1,0,1), if at all defined. If un- Let z be an implicitly-defined function of x and y
; 2 2 _

defined, explain. Compute (g o f)'(1,0), ifat all througg the equation (z + 2) + (y + 2)° = 8.

defined. If undefined, explain. Find 75 ot (1,1,1).

11



3. Differentiation of Vector Function

3.6. Properties of Differentiable Transformations

Just like in the one-variable case, we have the following rules of differentiation.

190 | Theorem
Let A C R® B C R™beopensetsf,g: A — R™ o € R, be differentiable on A, h : B — R! be

differentiable on B, and f(A) C B. Then we have

m Addition Rule: Dx((f + ag)) = Dx(f) + aDx(g).

m Chain Rule: Dy((ho f)) = (Dg)(h)) o (Dx(f)).

Since composition of linear mappings expressed as matrices is matrix multiplication, the Chain
Rule takes the alternative form when applied to the Jacobi matrix.

(hof) = (h' o f)(f). (3.6)

191 Example
Let

f(u,v) = (ue’,u 4 v,uv),

h(z,y) = (2 +y,y+2).

Find (fo h)'(z,y).

Solution: » We have

e’ wue
fu,v)=11 11,
voou
and
2¢ 1 0
W (x,y) =
0 1 1

Observe also that
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3.6. Properties of Differentiable Transformations

Hence

(foh)(zy) = f(h(z,y)h'(z,y)

€y+z (:c2+y)€y+z
2 1 0
= 1 1

Y+ z :L‘2+y

20Vt (1 + 2% +y)evt® (2% +y)evt?
= 2x 2 1

2xy + 2xz 22+ 2+ 2 vy

|

192 Example
Let
f:R? >R, flu,v)=1u>+e",

u,v:R3 5 R u(z,y) = xz, v(z,y) =y + 2.

Put h(z,y) = f (u(z,y,2),v(z,y, 2)) . Find the partial derivatives of h.

Solution: » Putg: R? — R? g(z,y) = (u(z,y),v(z,y)) = (v2,y + 2). Observethath = fog.

Now,
z 0 =z
01 1|
U v) = 2u ev
{2302 ey“}
Thus
oh oh oh '
- - - = h'(x,
a:c(ac,y) ay(:r,y) az(-%‘,y)] (z,y)

= (f(g(z,9)(& (x,y))

= |2zz ey“]

z 0 x

011

= |2z2% eVt 2x22+ey+'z]
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194

3. Differentiation of Vector Function

Equating components, we obtain

Oh
a—x(x, y) = 2122,
oh
9y (@Y = eVt
oh
5, (.y) = 2272 4 V17,
<
Theorem
LetF = (f1, fo,..., fm) : R™ — R™ and suppose that the partial derivatives
8 .
i i<icm, 1<j<n, (3.7)
8.%']'
exist on a neighborhood of xy and are continuous at xq. Then F is differentiable at x¢.

We say that F is continuously differentiable on a set S if S is contained in an open set on which
the partial derivatives in (3.7) are continuous. The next three lemmas give properties of continu-
ously differentiable transformations that we will need later.

Lemma

SupposethatF : R™ — R™ is continuously differentiable on a neighborhood N of xq. Then, for every
€ > 0, thereisa d > 0such that

F(x) = F(y)l < (|F'(xo)ll + e))x —y| if A,y € Bs(xo). (3.8)
Proof. Consider the auxiliary function
G(x) = F(x) — F'(x0)x. (3.9)
The components of G are

gi(x) = fi(x) — zn: 9fi(%0)9z; :

=1 v

SO

9gi(x) _ 0fi(x)  Ofi(x0)
8:Ej 6xj al‘j '

Thus, 0g;/0x; is continuous on N and zero at xg. Therefore, thereisa ¢ > 0 such that

€

<
vmn

Now suppose that x,y € Bs(xg). By Theorem 22,

(‘%cj

for 1<i<m, 1<j<mn, if |x—xo<09. (3.10)

9i(x) —gi(y) =Y 89{;5‘%) (zj —yj), (3.11)
=1 9
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3.6. Properties of Differentiable Transformations

where x; is on the line segment from x to y, so x; € Bs(xg). From (3.10), (3.11), and Schwarz’s
inequality,

Jj=1

(9i(x) — gi(y))? < Enj 90iC) | x—yl* < i!x —yl
! ! - 0z m '
Summing this from i = 1 to ¢ = m and taking square roots yields
IG(x) - G(y)| <elx—y| if x,y € Bs(xo). (3.12)
To complete the proof, we note that
F(x) - F(y) = G(x) — G(y) + F'(x0)(x — ), (3.13)
50 (3.12) and the triangle inequality imply (3.8). ]
Lemma

Suppose that F : R™ — R"™ is continuously differentiable on a neighborhood of xo and ¥’(xq) is
nonsingular. Let

r= ; (3.14)
[[(F"(x0)) I '
Then, for every e > 0, thereis a § > 0 such that
F(x)-F(y)| = (r—e)lx—y| if x,y€ Bs(xo). (3.15)
Proof. Letx andy be arbitrary pointsin Dg and let G be asin (3.9). From (3.13),
[F(x) - F(y)| = \IF’(Xo)(X -y - 1Gx) - G|, (3.16)
Since
x —y = [F'(x0)] " 'F'(x0)(x — y),
(3.14) implies that
1
x =yl < [F'(x0)(x ~ ),
o)
[F'(x0)(x —y)| = rlx —yl. (3.17)
Now choose § > 0 so that (3.12) holds. Then (3.16) and (3.17) imply (3.15). n
Definition

A function f is said to be continuously differentiable if the derivative f exists and is itself a contin-
uous function.

Continuously differentiable functions are said to be of class C*. Afunction is of class C? if the first
and second derivative of the function both exist and are continuous. More generally, a function is
said to be of class C* if the first k derivatives exist and are continuous. If derivatives £™) exist for all
positive integers n, the function is said smooth or equivalently, of class C°.
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3. Differentiation of Vector Function

L

3.7. Gradients, Curls and Directional Derivatives

197

198

Definition
Let
R* — R
f:
x = f(x)
be a scalar field. The gradient of f is the vector defined and denoted by
Vf(x)=Df(x) = (01f (x),02f (x),...,0nf (x)).
The gradient operator is the operator
V =(01,02,...,0).
Theorem
Let A C R™ beopenandlet f : A — R be a scalar field, and assume that f is differentiable in A.
Let K € R be a constant. Then V f(x) is orthogonal to the surface implicitly defined by f(x) = K.
Proof. Let
R — R"
C:
t — c(t)

be a curve lying on this surface. Choose ¢y so that c(tg) = x. Then

(foc)(to) = f(c(t) = K,
and using the chain rule
D (e(to))De(to) = 0.
which translates to
(V£(x))+(c/(to)) = 0.

Since c/(tp) is tangent to the surface and its dot product with V f(x) is 0, we conclude that V f(x)
is normal to the surface. "

199 Remark

Now let c(t) be a curve in R™ (not necessarily in the surface).
And let 0 be the angle between V f(x) and c’(ty). Since

[(VF))+(c'(t))] = [[VS G| (to)]| cos b,

V f(x) is the direction in which f is changing the fastest.
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3.7. Gradients, Curls and Directional Derivatives

Example
Find a unit vector normal to the surface x> + y> + z = 4 at the point (1,1, 2).

Solution: » Here f(x,y,2) = 23 + 4> + 2 — 4 has gradient
Vi(z,y,2) = (327, 3%, 1)

which at (1,1, 2) is (3, 3, 1). Normalizing this vector we obtain

(v v vi)
<

Example
Find the direction of the greatest rate of increase of f(x,y, z) = xye* at the point (2,1, 2).

Solution: » The direction is that of the gradient vector. Here

Vf(z,y,z) = (ye*, xe*, xye®)

which at (2, 1, 2) becomes (62, 2e2, 2@2) . Normalizing this vector we obtain

1
NG (1,2,2).
<4

Example
Sketch the gradient vector field for f(z,y) = 2 + y? as well as several contours for this function.

Solution: » The contours for a function are the curves defined by,
flz,y) =k

for various values of k. So, for our function the contours are defined by the equation,
22+t =k

and so they are circles centered at the origin with radius vk . The gradient vector field for this
function is

Vf(z,y) = 2xi+2yj
Here is a sketch of several of the contours as well as the gradient vector field. «

Example

Let f : R3 — R be given by

f(x,y,z):x+y2—z2.

Find the equation of the tangent plane to f at (1,2, 3).
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3. Differentiation of Vector Function

PRy
PN,

Solution: » Avector normalto the planeis V (1,2, 3). Now

Vf(xayv Z) = (17 2ya _22)

which is
(1,4,-6)

at (1,2, 3). The equation of the tangent plane is thus

Iz —1)+4(y—2)—-6(2—3) =0,

or
x+4y — 62 = —9.
A |
Definition
Let
R* — R"
f:
x +— f(x)

be a vector field with
f(x) = (f1(x), f2(x), - ..
The divergence of fis defined and denoted by

7fn(X)) :

divf(x) = Vef(x) := Tr (Df(x)) := 01f1 (x) + 02 fa (X) + -+ 4+ Onfn (X).

Example
Iff(x,y, z)

(22,92, yeZQ) then

divf(x) =2z + 2y + 2yze” .

Mean Value Theorem for Scalar Fields The mean value theorem generalizes to scalar fields. The
trick is to use parametrization to create a real function of one variable, and then apply the one-
variable theorem.
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206

Theorem (Mean Value Theorem for Scalar Fields)
Let U be an open connected subset of R", and let f : U — R be a differentiable function. Fix points
x,y € U such that the segment connecting x to 'y lies in U. Then

fy) = f(x)=Vf(z) (y —x)

where z is a point in the open segment connecting x to'y.

207

208

Proof. Let U be an open connected subset of R” , and let f : U — R be a differentiable function.

Fix points x,y € U such that the segment connecting x to y liesin U , and define g(¢) := f((l —

t)x+ty). Since f is a differentiable function in U the function g is continuous functionin [0, 1] and

differentiable in (0, 1). The mean value theorem gives:

for some ¢ € (0,1). Butsince g(0) = f(x) and g(1) = f(y), computing ¢'(c) explicitly we have:
F3) ~ 1) = V(1 epxtey) (v~ x)

or
f¥) = f(x) =Vf(z)-(y —x)

where z is a point in the open segment connectingx toy (]

By the Cauchy-Schwarz inequality, the equation gives the estimate:

1) = 16| < [V ((1 = ox+ ey )| |y~ x|

<

Curl

Definition
IfF : R3 — R3 s a vector field with components F = (I, F», F3), we define the curl of F

OoF5 — 0355
VxFE|0F —0,F;
O Fy — O F

This is sometimes also denoted by curl(F).

Remark
A mnemonic to remember this formula is to write

o1 g
VXF= |9 X |F,
03 F3
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3. Differentiation of Vector Function

and compute the cross product treating both terms as 3-dimensional vectors.

209 Example
IfFF(z) = z/|z|>, then V x F = 0.

210 Remark

In the example above, F is proportional to a gravitational force exerted by a body at the origin. We

know from experience that when a ball is pulled towards the earth by gravity alone, it doesn’t start to

rotate; which is consistent with our computation V x F = (.

211 Example

Ifv(z,y,z) = (sinz,0,0), then V x v = (0, cos z,0).

212 Remark

Think of v above as the velocity field of a fluid between two plates placed at = = 0 and z = w. Asmall

ball placed closer to the bottom plate experiences a higher velocity near the top than it does at the

bottom, and so should start rotating counter clockwise along the y-axis. This is consistent with our

calculation of V x v.

The definition of the curl operator can be generalized to the n dimensional space.

213 | Definition

Lletgr : R" - R, 1 <k <n-—2be vector fields with gi = (gﬂ,gig, aoc

, gin)- Then the curl of

(915925 o 7gn—2)
(S31 €9 (S7%)
01 0o On
g11(x) g12(x) g1n(X)
curl(gi, g2, - - -, gn—2)(x) = det
go1(x) g22(x) gon(X)
9n-2)1(%X)  gn-2)2(x) Iin—2)n (%)
214 Example
Iff(z,y, z,w) = (€*9%,0,0,w?), g(z,y, z,w) = (0,0, z,0) then
€1 €y €3 €4
01 O 03 O
curl(f,9)(z,y, z,w) = det ! SR (z22e"%)ey.
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3.7. Gradients, Curls and Directional Derivatives

215 | Definition

Let A C R™beopenandletf: A — R be ascalar field, and assume that f is differentiable in A. Let
v € R™\ {0} besuchthatx + tv € A for sufficiently smallt € R. Then the directional derivative
of fin the direction of v at the point x is defined and denoted by

Dy f(x) = }ir% f(x + t\;) — f(x) .
—

Some authors require that the vector v in definition 215 be a unit vector.

216 [Theorem

Let A C R™beopenandletf: A — R be ascalar field, and assume that f is differentiable in A. Let
v € R"\ {0} be such thatx + tv € A for sufficiently smallt € R. Then the directional derivative
of fin the direction of v at the point x is given by

Vf(x)ev.

217 Example
Find the directional derivative of f(x, 3, z) = x3 + 3> — 2% in the direction of (1,2, 3).

Solution: » We have
Vf(fE, Y, Z) = (31‘27 3?/2, _22)

and so
Vf(z,y,2)v = 3z% + 6> — 62.

<
The following is a collection of useful differentiation formulae in R3.

218 |Theorem

Vepu = YVeu + usVop

V xyYu=9YV xu+ Vi x u

Veux v=veV xu—uV xv

V x (uxv)=veVu—uVv+u(Vev) — v(Veu)
V(uev) =uVv+veVu+ux (Vxv)+vx(Vxu)
V x (V) = curl (grad ) =0

Ve(V xu)=div (curl u)=0

Ve(Vip1 x Vipg) = 0

® ©6 ¢ © 6 6 © o @©

V x (Vxu)=curl (curl u)=grad (div u)— V?u

81



219

220

221

222

3. Differentiation of Vector Function

where
Af:V2f:V-Vf:gz};+ng§+gz
is the Laplacian operator and
Viu = (66;2 + 68; I aa;)(uxl +uyj +uk) = (3.18)

Finally, for the position vector r the following are valid

O Ver=3
O Vxr=0
O u-Vr=u

where u is any vector.

Exercises

Problem 223
The temperature at a pointin spaceisT = zy +
Yz + zx.

a) Find the direction in which the temperature
changes most rapidly with distance from (1,1, 1).
What is the maximum rate of change?

b) Find the derivative of T' in the direction of the

vector 3i — 4k at (1,1,1).

Problem
For each of the following vector functions F, dé->
termine whether V¢ = F has a solution and de-
termine it if it exists.

a) F = 2zy2%i — (2223 + 2y)j + 32%y2%k

b)F = 2zyi + (22 +2y2)j+ (¥* + Dk 226
Problem
Letf(x,y,z) = xe¥?. Find
(V)(2,1,1).
Problem 227

Letf(z,y,z) = (xz,e™, 2). Find

(Vx£)2,1,1).

82

Problem )
Find the tangent plane to the surface % T

z? = 0 at the point (2, —1, 1).

Problem
Find the point on the surface

2 +y? —Sry +az —yzr=—3

for which the tangent plane is x — Ty = —6.

Problem

Find a vector pointing in the direction in which
f(z,y, 2) = 3xy—9z2%+yincreases most rapidly
at the point (1,1,0).

Problem
Let Dyf(z, y) denote the directional derivative of
fat (z,y) in the direction of the unit vector u. If
Vf(1,2) =2i—j findD 3 4 £(1,2).

(535)
Problem
Use a linear approximation of the function
f(z,y) = e at (0, 0) to estimate £(0.1,0.2).



3.8. The Geometrical Meaning of Divergence and Curl

228 Problem 1. VeV = ¢pVeV + VeV
Prove that
2. VX ¢V =¢pV XV + (Vo) XV

Ve(uxv)=ve(Vxu)—ue(V Xv).
3 Vx(Vé)=0
229 Problem

Find the point on the surface 4. Vo(VX V) =0
5 V(UeV) = (UsV)V + (V-V)U + U x
(VXV)+4+V x (VxU)

20 +axy+yP +4r+8y—2+14=0

for which the tangent planeis 4z +y — z = 0'231 Problem

230 Problem Find the angles made by the gradient of f(x, y) =
Let ¢ : R? — R be a scalar field, and let U,V : V3 + y at the point (1,1) with the coordinate
R? — R3 be vector fields. Prove that axes.

3.8. The Geometrical Meaning of Divergence and Curl

In this section we provide some heuristics about the meaning of Divergence and Curl. This inter-
pretations will be formally proved in the chapters 6 and 7.

3.8.1. Divergence

—

Ve /4
b4 4
Va V4
e P
/o s
A /
A\Z
Ay
A
/ v
A 4
/ /4
< Az //
4
A 4

Figure 3.4. Computing the vertical contribution to
the flux.
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3. Differentiation of Vector Function

Consider a small closed parallelepiped, with sides parallel to the coordinate planes, as shown in
Figure 3.4. What is the flux of F out of the parallelepiped?

Consider first the vertical contribution, namely the flux up through the top face plus the flux
through the bottom face. These two sides each have area AA = Ax Ay, but the outward normal
vectors point in opposite directions so we get

Z FeAA = F(z + Az)sk Az Ay — F(2)sk Az Ay

top+bottom
~ (Fz(z + Az) — Fz(z)> Az Ay

N F.(z+ Az) — F.(z)
- Az

Ax Ay Az by Mean Value Theorem

Ax Ay Az

O,

z

where we have multiplied and divided by Az to obtain the volume AV = Ax Ay Az in the third
step, and used the definition of the derivative in the final step.

Repeating this argument for the remaining pairs of faces, it follows that the total flux out of the
parallelepiped is

total flux = Z FAA ~ ( o B s

palallelep'ped

Since the total flux is proportional to the volume of the parallelepiped, it approaches zero as the
volume of the parallelepiped shrinks down. The interesting quantity is therefore the ratio of the
flux to volume; this ratio is called the divergence.

At any point P, we can define the divergence of a vector field F, written VF, to be the flux of F
per unit volume leaving a small parallelepiped around the point P.

Hence, the divergence of F at the point P is the flux per unit volume through a small paral-
lelepiped around P, which is given in rectangular coordinates by

flux 0F, O0F, OF,
+ 2+

.F = =
v unit volume Ox oy 0z

Analogous computations can be used to determine expressions for the divergence in other coor-
dinate systems. These computations are presented in chapter 8.

Curl

Intuitively, curl is the circulation per unit area, circulation density, or rate of rotation (amount of
twisting at a single point).

Consider a small rectangle in the yz-plane, with sides parallel to the coordinate axes, as shown
in Figure 1. What is the circulation of F around this rectangle?

Consider first the horizontal edges, on each of which dr = Ay j. However, when computing
the circulation of F around this rectangle, we traverse these two edges in opposite directions. In
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3.8. The Geometrical Meaning of Divergence and Curl

Figure 3.5. Computing the horizontal contribution
to the circulation around a small rectangle.

particular, when traversing the rectangle in the counterclockwise direction, Ay < 0 on top and
Ay > 0 on the bottom.

Z Fedr ~ —F(z + Az)ej Ay + F(z)+j Ay (3.19)
top+bottom
~—(Fy(z+ 22~ Fy(2) Ay
 R(+A)-F)
- Az
9k,

N Ay Az by Mean Value Theorem
z

where we have multiplied and divided by Az to obtain the surface element AA = Ay Az in the

Ay Az

third step, and used the definition of the derivative in the final step.
Just as with the divergence, in making this argument we are assuming that F doesn’t change
much in the x and y directions, while nonetheless caring about the change in the z direction.
Repeating this argument for the remaining two sides leads to

> Fedr ~F(y + Ay)k Az — F(y)ek Az (3.20)

sides

~(Rl+a9 - R) A

Yy
_OF.

where care must be taken with the signs, which are different from those in (3.19). Adding up both

Ay Az

expressions, we obtain

OF. _0F,
oy 0z

total yz-circulation =~ ( ) Ax Ay (3.21)

Since thisis proportional to the area of the rectangle, it approaches zero as the area of the rectangle
converges to zero. The interesting quantity is therefore the ratio of the circulation to area.
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3. Differentiation of Vector Function

We are computing the i-component of the curl.

. yz-circulation OF, OF,
[(F)ei := = — .22
curl ()1 unit area oy 0z (3.22)

The rectangular expression for the full curl now follows by cyclic symmetry, yielding

(O OR\,, (0F OR\. (9F, OF,
curl(F)_(ay 3z)1+<8z 6:3)J+<8:v 8y>k (3.23)

which is more easily remembered in the form

i j k
_ —_lo o o
arl(F) =V xF=|2 2 2 (3.24)
T Fy Fz

Figure 3.6. Consider a small paddle wheel placed
in a vector field of position. If the v, component
is an increasing function of z , this tends to make
the paddle wheel want to spin (positive, counter-
clockwise) about the k -axis. If the v, component
is a decreasing function of y , this tends to make
the paddle wheel want to spin (positive, counter-
clockwise) about the & -axis. The net impulse to
spin around the k -axis is the sum of the two.
Source MIT

3.9. Maxwell’s Equations

Maxwell’s Equations is a set of four equations that describes the behaviors of electromagnetism.
Together with the Lorentz Force Law, these equations describe completely (classical) electromag-
netism, i. e., all other results are simply mathematical consequences of these equations.

To begin with, there are two fields that govern electromagnetism, known as the electric and mag-
netic field. These are denoted by E(r, t) and B(r, t) respectively.

To understand electromagnetism, we need to explain how the electric and magnetic fields are
formed, and how these fields affect charged particles. The last is rather straightforward, and is
described by the Lorentz force law.
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3.10. Inverse Functions

232 | Definition (Lorentz force law)
A point charge q experiences a force of

F =¢(E+1 xB).

The dynamics of the field itself is governed by Maxwell’s Equations. To state the equations, first

we need to introduce two more concepts.

233 |Definition (Charge and current density)

m p(r,t) is the charge density, defined as the charge per unit volume.

m j(r,t) is the current density, defined as the electric current per unit area of cross section.

Then Maxwell’s equations are

234 |Definition (Maxwell’s equations)

v.E="
€0
V-B=0
0B
E+—=0
V x +8t
OE
B — [1020— = 0]
V x Hogo 5~ = Hol,

where g is the electric constant (i.e, the permittivity of free space) and p is the magnetic constant

(i.e, the permeability of free space), which are constants.

3.10. Inverse Functions

Afunction fis said one-to-one if f(x;) and f(x3) are distinct whenever x; and x3 are distinct points

of Dom(f). In this case, we can define a function g on the image
Im(f) = {u|u = f(x) for some x € Dom(f) }

of fby defining g(u) to be the unique point in Dom(f) such that f(u) = u. Then
Dom(g) = Im(f) and Im(g) = Dom(f).

Moreover, g is one-to-one,
g(f(x)) =x, x € Dom(f),

and
f(g(u)) =u, wu e Dom(g).
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3. Differentiation of Vector Function

We say that g is the inverse of f, and write g = f~!. The relation between fand g is symmetric; that
is, fis also the inverse of g, and we write f = g~ 1.

Atransformation f may fail to be one-to-one, but be one-to-one on a subset S of Dom(f). By this
we mean that f(x;) and f(x2) are distinct whenever x; and x3 are distinct points of S. In this case,

fis notinvertible, but if f| 4 is defined on S by
flg(x) = f(x), x€S,

and left undefined for x ¢ S, then f| is invertible.

We say that f| ¢ is the restriction of f to .S, and that fgl is the inverse of f restricted to S. The
domain of f5 ' is f(.5).

The question of invertibility of an arbitrary transformation f : R™ — R is too general to have a
useful answer. However, there is a useful and easily applicable sufficient condition which implies
that one-to-one restrictions of continuously differentiable transformations have continuously dif-
ferentiable inverses.

Definition
If the function f is one-to-one on a neighborhood of the point xq, we say that f is locally invertible
at xq. If a function is locally invertible for every xg in a set S, then fis said locally invertible on S.

To motivate our study of this question, let us first consider the linear transformation

ailp a2 -+ Ain X1

a1 a2 -+ A2p x2
f(x) = Ax =

anl Aanp2 - dpp Tn

The function fis invertible if and only if A is nonsingular, in which case Im(f) = R™ and
fl(u) = At

Since A and A ! are the differential matrices of fand f~!, respectively, we can say that a linear
transformation is invertible if and only if its differential matrix f' is nonsingular, in which case the
differential matrix of f~! is given by

() = ()"
Because of this, it is tempting to conjecture that if f : R” — R™ is continuously differentiable and
A’(x) is nonsingular, or, equivalently, D(f)(x) # 0, for x in a set S, then f is one-to-one on S.
However, this is false. For example, if

f(w,y) = [¢ cosy, e* siny]
then
e*cosy —e¥siny

D(f)(z,y) = =¥ #0, (3.25)
e’siny  e®cosy
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3.711. Implicit Functions

but fis not one-to-one on R?. The best that can be said in general is that if fis continuously differ-
entiable and D(f)(x) # 0in an open set S, then fis locally invertible on S, and the local inverses
are continuously differentiable. This is part of the inverse function theorem, which we will prove
presently.

236 | Theorem (Inverse Function Theorem)

Iff: U — R" is differentiable at a and D, (f) is invertible, then there exists a domains U’, V' such
thata € U' C U, f(a) € V' and f: U' — V'is bijective. Further, the inverse functiong : V' — U’
is differentiable.

The proof of the Inverse Function Theorem will be presented in the Section ??2.
We note that the condition about the invertibility of D, (f) is necessary. If f has a differentiable
inverse in a neighborhood of a, then D, (f) must be invertible. To see this differentiate the identity

flg(z)) =«

3.11. Implicit Functions

Let U C R"*! beadomainand f : U — R be a differentiable function. If x € R” and y € R, we’ll
concatenate the two vectors and write (x, y) € Rt

237 |Theorem (Special Implicit Function Theorem)
Suppose ¢ = f(a,b) and 9, f(a,b) # 0. Then, there exists a domain U' > a and differentiable
function g : U' — Rsuch that g(a) = band f(x, g(x)) = cforallx € U'.

Further, there exists a domain V' > bsuch that

{(a:,y) ‘ relU yeV f(r,y) = c} = {(a:,g(w)) ’ T e U’}.

In other words, for all z € U’ the equation f(z,y) = ¢ has a unique solution in V' and is given
by y = g(x).
238 Remark
To see why 0, f # 0is needed, let f(x,y) = ax + Py and consider the equation f(x,y) = c. To
express y as a function of x we need 3 # 0 which in this case is equivalent to 9, f # 0.

239 Remark
Ifn = 1, one expects f(x,y) = c to some curve in R2. To write this curve in the form y = g(x)
using a differentiable function g, one needs the curve to never be vertical. Since V f is perpendicular
to the curve, this translates to V f never being horizontal, or equivalently 0, f # 0 as assumed in the
theorem.

240 Remark
For simplicity we choose y to be the last coordinate above. It could have been any other, just as long
as the corresponding partial was non-zero. Namely if 0;f(a) # 0, then one can locally solve the
equation f(x) = f(a) (uniquely) for the variable x; and express it as a differentiable function of the
remaining variables.
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Example
flz,y) = 2?2 +y? withc = 1.

Proof. [ofthe Speciallmplicit Function Theorem] Letf(z,y) = (z, f(=,y)),and observe D(f), 4 #
0. By the inverse function theorem f has a unique local inverse g. Note g must be of the form
g(z,y) = (x,9(z,y)). Also fo g = Id implies (z,y) = f(z,g(z,y)) = (z, f(x,g(z,y)). Hence
y = g(z,c) uniquely solves f(z,y) = cin asmall neighbourhood of (a, b). m

Instead of y € R above, we could have been fancier and allowed y € R™. In this case f needs to
beanR" valued function, and we need toreplace 9, f # 0 with the assumption that the . xn minor
in D(f) (corresponding to the coordinate positions of y) is invertible. This is the general version of
the implicit function theorem.

Theorem (General Implicit Function Theorem)

Let U C R™*" be a domain. Suppose f : R" x R™ — R™ js C'* on an open set containing (a, b)
where a € R™ and b € R™. Suppose f(a,b) = 0 and that the m x m matrix M = (D,,;f;(a,b))
is nonsingular. Then that there is an open set A C R™ containing a and an open set B C R™
containing b such that, for each = € A, there is a unique g(z) € B such that f(x,g(x)) = 0.
Furthermore, g is differentiable.

In other words: if the matrix M is invertible, then one can locally solve the equation f(x) =
f(a) (uniquely) for the variables z;,, ..., z;,, and express them as a differentiable function of the
remaining n variables.

The proof of the General Implicit Function Theorem will be presented in the Section ??2.

Example
Consider the equations

(x—124+y2+22=5 and (z+1)?+y>+22=5

for whichz = 0,y = 0, z = 2 is one solution. For all other solutions close enough to this point,
determine which of variables x, vy, z can be expressed as differentiable functions of the others.

Solution: » Leta = (0,0,1) and

(x—1)2 + 9% + 22

F(z,y,2) =
Observe
-2 0 4
DF, = )
2 0 4

and the 2 x 2 minor using the first and last column is invertible. By the implicit function theorem
this means that in a small neighborhood of a, x and z can be (uniquely) expressed in terms of y. <
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244 Remark
In the above example, one can of course solve explicitly and obtain

=0 and z=+\/4—1y2,

but in general we won’t be so lucky.

3.12. Common Differential Operations in Einstein
Notation

Here we present the most common differential operations as defined by Einstein Notation.

The operator V is a spatial partial differential operator defined in Cartesian coordinate systems

by:
0
The gradient of a differentiable scalar function of position f is a vector given by:
0
VI =Vif = 5h = o = fa
T

(3.26)

(3.27)

The gradient of a differentiable vector function of position A (which is the outer product, as de-

fined in S 10.3.3, between the V operator and the vector) is defined by:
[VA]z‘j = 8iAj
The gradient operation is distributive but not commutative or associative:
V((f+h)=Vf+Vh

VIf#IV
(V) h# Y (fh)
where f and h are differentiable scalar functions of position.
The divergence of a differentiable vector A is a scalar given by:

0A; 04;

= V;A; = 0;A; = A
The divergence of a differentiable A is a vector defined in one of its forms by:
[V - Al; = 04

and in another form by

These two different forms can be given, respectively, in symbolic notation by:

V-A & V-AT

(3.28)

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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3. Differentiation of Vector Function

where AT is the transpose of A.
The divergence operation is distributive but not commutative or associative:

V- (A+B)=V-A+V-B (3.36)
V-A#4A.V (3.37)
V- (fA)#Vf-A (3.38)

where A and B are differentiable vector functions of position.
The curl of a differentiable vector A is a vector given by:

0A
[V x Al = fijkT; = €k VjAr = €10 Ak = €1 Ak (3.39)
J

The curl operation is distributive but not commutative or associative:

Vx(A+B)=VxA+VxB (3.40)

VXA#AXYV (3.41)

Vx(AxB)#(VxA)xB (3.42)

The Laplacian scalar operator, also called the harmonic operator, acting on a differentiable scalar
fis given by:

I T Y S RN W (3.43)

gl 8%283}] N 8%8951
The Laplacian operator acting on a differentiable vector A is defined for each component of the
vector similar to the definition of the Laplacian acting on a scalar, that is

[V2A]. = 0;;4; (3.44)
The following scalar differential operator is commonly used in science (e.g. in fluid dynamics):
A - V=AV,= Aii = A;0; (3.45)
8xi

where A is a vector. As indicated earlier, the order of A; and 9; should be respected.
The following vector differential operator also has common applications in science:

[A X VL = €Z'j]€Ajak (3~46)

3.12.1. Common Identities in Einstein Notation

Here we present some of the widely used identities of vector calculus in the traditional vector nota-
tion and inits equivalent Einstein Notation. In the following bullet points, f and & are differentiable
scalar fields; A, B, C and D are differentiable vector fields; and r = x;e; is the position vector.

V.r=n
) (3.47)

8@'-%'1' =N
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3.12. Common Differential Operations in Einstein Notation

where n is the space dimension.

Vxr=0
() (3.48)

El'jka]wk =0

V(a-r)y=a
X (3.49)

(% (ajmj) = a;

where a is a constant vector.

V- (Vf)=V*f
) (3.50)

0; (0if) = Ouif

V- (VxA)=0
0 (3.51)

€ijk0;0; A =0

Vx(Vf)=0
(i (3.52)

€ijk0;O0kf =0
V (fh) = fVh+hVf
T (3.53)
0; (fh) = foih + ho; f
V-(JA)=fV-A+A-Vf
() (3.54)
0; (fAi) = fOiAi + AiOi f
VX (fA)=fVXA+VfxA
(i (3.55)
€ijk0j (fAr) = feijidj Ax + eiji (9;f) Ax
Ax(VxB)=(VB)-A—-A-VB
T (3.56)
€ijkerimAjO Bm = (0;By) Am — Ay (31B))
Vx(VxA)=V(V-A)-VA
i (3.57)
€ijk€kim001Am = 0; (OmAm) — O
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3. Differentiation of Vector Function
VA-B)=AXx (VxB)+Bx(VxA)+(A-V)B+(B-V)A
3 (3.58)
0i (A Bm) = €ijkA;j (€kimO1Bm) + €1 Bj (€kimO1Am) + (410)) B + (B10;) A;
V.- (AxB)=B-(VxA)-A-(VxB)
) (3.59)
0; <€ijkAjBk> = By, (QcijaiAj) —A; (ﬁjik3i3k>
Vx(AxB)=(B-V)A+(V-B)JA—-(V-A)B-(A-V)B
) (3.60)
€ijk€kim0j (A1Bm) = (BmOm) Ai + (0mBm) Ai — (0;4;) B; — (A;0;) B;

A-C A-D
(AxB) - (CxD)=
B-C B-D

| (3.61)
€ijkAj Br€iimCiDm = (AiC)) (B D) — (Am D) (BiCY)
(AxB)x(CxD)=[D-(AxB)]C—-[C-(AxB)]D
T (3.62)
€ijk€jmnAm BnéipgCpDg = (€gmnDgAmBn) Ci — (epmnCpAmBn) D;
In Einstein, the condition for a vector field A to be solenoidal is:
V-A=0
) (3.63)
0;A; =0
In Einstein, the condition for a vector field A to be irrotational is:
VxA=0

(i (3.64)
EijkajAk =0

3.12.2. Examples of Using Einstein Notation to Prove Identities

245 Example
Show thatV -r = n:

Solution: »

= 0 (Eqg. 10.36) (3.65)

94
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246 Example
Show thatV x r = 0O:

Solution: »
[V xr]; = €10jzp
= eijszskj

= €ijj

=0

(Eq. 3.39)
(Eq. 10.35)
(Eq. 10.32)
(

Eq. 10.27)

Since i is a free index the identity is proved for all components.

D |
247 Example
V(ar)=a

Solution: »
V(a-r)];, =0, (ajz)
= aj&xj + xj@-aj
= aj&:vj

= a;0ji

(Egs. 3.27 &1.25)
(product rule)
(aj is constant)
(Eg. 10.35)

(Eq. 10.32)

(

definition of index)

Since i is a free index the identity is proved for all components.

<
V- (Vf) = V2f:
V- (Vf)=0;[Vf],
= 0; (0if)
= 0;0; f
=0uf
= V?f
V- (VxA)=0:

V. (VxA)=8[V x Al
= 0; (€10, Ar)
= €5k 0;0; Ay,
= €;j10;0; Ai,
= —€j;ik0;0; Ay,
= —€;10i0; Ay
=0

(
(
(
(
(

Eqg. 3.32)
EqQ. 3.27)

r

ules of differentiation)

definition of 2nd derivative)

EqQ. 3.43)

(
(
(
(
(
(
(

EqQ. 3.32)

EqQ. 3.39)

0 not actingon ¢)

continuity condition)

Eg. 10.40)

relabeling dummy indices i and j)

since EijkaiajAk = —Eijkaiajz‘lk)

(3.66)

(3.67)

(3.68)

(3.69)
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3. Differentiation of Vector Function

This can also be concluded from line three by arguing that: since by the continuity condition 9; and
0; can change their order with no change in the value of the term while a corresponding change of
the order of i and j in ¢;;;, results in a sign change, we see that each term in the sum has its own
negative and hence the terms add up to zero (see Eq. 10.50).

Vx(Vf)=0:
[V x (VA)]; = €05 [V [ (EQ. 3.39)

= €ij10j (Ok f) (Eq. 3.27)
= €100 f (rules of differentiation)
= €jRO0k0; f (continuity condition) (3.70)
= —€kjOk0; f (Eqg. 10.40)
= —€;,0;0kf (relabeling dummy indices j and k)
=0 (since €;jx0; 0k f = —¢€j10;0k f)

This can also be concluded from line three by a similar argument to the one given in the previous
point. Because [V x (V f)], is an arbitrary component, then each component is zero.
V(fh) = fVh+hVf:

[V (fh)]; = 0; (fh) (Eqg. 3.27)
= fOih + ho; f (product rule)
— R+ V) (Ea.320) 7
= [fVh+ hV f]; (Eq. 7?)
Because i is a free index the identity is proved for all components.
V- (fA)=fV-A+A-Vf:
V- (fA)=0;[fA]; (Eq. 3.32)
=0; (fA;) (definition of index)
(3.72)
= f0;A; + A0 f (product rule)
=fV-A+A-Vf (Egs. 3.32 & 3.45)

Vx(fA)=fVXxA+VfxA:

[V x (fA)]; = €in0; [f A, Eq. 3.39)
= €105 (f Ay)

= feijud;Ar + €iji (0;f) Ak

definition of index)

product rule & commutativity)

(
(
( (3.73)
(
(
(

= feiju0j Ak + €iji [V f]; A Eq. 3.27)
=[fVXxA],+[VfxA] Egs. 3.39&2?)
—[fVxA+VfxA] Eq. 77)

Because i is a free index the identity is proved for all components.
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3.12. Common Differential Operations in Einstein Notation

Ax(VxB)=(VB)-A—A.VB:

[A X (V xB)]; = eijed; [V x By (Eq. 22)
= €;jkAj€rimO Bm (Eq. 3.39)
= €jk€kimA; O Bm (commutativity)
= €jk€imkA; 0 B, (EQ. 10.40)
= (0u0jm — Sim6;1) A;0 B (EG. 10.58) (3.74)
= 0i10jm A0 B — 0im 01 A;01 B, (distributivity)
= Ap0; By — A0, B; (EQ. 10.32)
= (0;Bm) Am — A1 (01 B;) (commutativity & grouping)

=[(VB)-A], — [A-VB],
=[(VB)-A - A VB], (Eq. 22)

Because i is a free index the identity is proved for all components.
Vx(VxA)=V(V-A)-V3A:

[V x (VxA)], =0 [V x A, (Eq. 3.39)
= €105 (ekimAAm) (Eq. 3.39)
= €jk€kim0; (O1Am) (0 not acting on ¢)
= €ik€imk0;01 Am (Eq. 10.40 & definition of derivative)
= (06m — Oimdj1) 0;01Am (EG. 10.58)
= 0i10jm0;01Am — 0im010;01 Am (distributivity)
= 0m0;Am — 0,01 A; (Eq. 10.32)
= 0; (OmAm) — O A; (O shift, grouping & Eq. ??)
= [V(V-A)], - [V?A], (Egs. 3.32,3.27 & 3.44)

= [V(V-A)-V?A], (Egs. 72)
(3.75)
Because i is a free index the identity is proved for all components. This identity can also be consid-
ered as an instance of the identity before the last one, observing that in the second term on the right
hand side the Laplacian should precede the vector, and hence no independent proof is required.
VA-B)=AXx (VxB)+Bx(VxA)+ (A-V) B+ (B-V)A:
We start from the right hand side and end with the left hand side

[Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A] =
[Ax(VxB)],+[Bx(VxA)] +[A )B]Z—i—[B V)A], = (Eq.7?)
€ijnd; [V x Bl + €ijuB; [V x Al + (Ai0)) Bi + (Bi&) A; = (Eqs. ?2,3.32 & indexing)
€ijkAj (€kimO1Bm) + €ijkBj (€kimO1Am) + (A101) Bi + (B191) A; = (Eq. 3.39)
€ijk€kimA;01Bm + €ijk€rimBjOiAm + (A10)) Bi + (B18;) A; = (commutativity)
€ijk€imk A0 Bm + €ijk€imi B0l Am + (A101) B; + (B19;) Ai = (Eq. 10.40)
(0510m — 0im0j1) A;01Bm + (0:105m — dimdj1) BjO1Am + (A10)) B; + (Bi19y) A; = (Eq. 10.58) (3.76)
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3. Differentiation of Vector Function

(8:18;m A; O B — 0im0;1A;01Bim) + (6:10m B0 Am — Sim0;1B;01Am) + (A10)) B; + (B1y) Ai =
0:10mA;0 B — A0y Bi + 6110im BjO1 Am — BIO| A + (A1) B + (B19) A; =

8:10jm A0y B — (A1) Bi + 8i18;m B0 Am — (B18y) A + (A1) Bi + (B19y) As =
6:10jmA; Oy Bun + 818 B0 A =

Am0iBy + Bn0i A =

(distributivity)

(Eq. 10.32)

(grouping)

(cancellation)

(Eq. 10.32)

0; (Am Bm) = (product rule)

[V (A-B)], (Egs. 3.27&3.32)

i

Because i is a free index the identity is proved for all components.

V.- (AxB)=B-(VxA)—A (VxB):

V. (A xB)=0A x B,
=0; (fz‘jkAjBk>
= €10 (AjBk>
= eiji (BrOiAj + A;0;By,)
= €k Br0;Aj + €1 A;0; By
= eri; BroiA; — €juA;0i By
= By, <€kij6iAj> — A <€jikain>
= By [V x Al — A; [V x B,
=B-(VxA)—A.(VxB)

(Eq. 3.32)

(Eq. 22)

(0 not acting on €)

(product rule)

(distributivity) (3.77)
(Eq. 10.40)

(commutativity & grouping)

(Eq. 3.39)

(Eq. 1.25)

Vx(AxB)=(B-V)A+(V-B)A—(V-A)B—(A-V)B:

[V x (A xB)], =€,;10; [A x BJ,

= €j10; (€kim A1 Bm)

= €ijk€kim0; (A1Bm)

= €ijrekim (Bm0j Ay + A10; B

= €jk€lmk <Bm8jAl + Azaij>

i

= (0u0jm — Sim6;1) (Bm0;j Al + A0; By

Eq. 3.39)
Eq. 7?)
0 not acting on ¢)

product rule)

Eq. 10.40)

= 0:0m Bm®j Ay + 610 jm A10j By, — 8im i1 Bmdj Ay — 8im0;1A10; By,
= BnOmAi + Aid By — BidjA; — A;0; B

= (BnOm) Ai + (0mBm) Ai — (9;4;) Bi — (4;0) B;

= [(B V) A]i + [(V -B) A]i o [(V ’ A)B]i o [(A V) B}
= [(B-V)A+(V-B)A—(V-A)B—(A-V)B]

i

i

Because i is a free index the identity is proved for all components.
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Eq. 10.32)
grouping)

Egs. 3.45&3.32)

Eq. 7?)
(3.78)

(
(
(
(
(
(Eg. 10.58)
(
(
(
(
(



3.12. Common Differential Operations in Einstein Notation

A-C A-D
(AxB)- (CxD)= :
B-C B-D
(AxB)-(CxD)=[AxBJ,[CxD]|, (Eq. 1.25)
= €k A; BreitmC1Dp, (Eq. 22)
= €;jk€iimA; BrCiDp, (commutativity)
= (8j16km — 6jm6k1) A; BrCiDp, (Egs. 10.40 & 10.58)
= jldkmAjBkCle — (Sjm(sklAjBk:ClD (dlStrIbUthlty)
= <5lejCl) (OkmBrDm,) — <5ijij) (651 BrCr) (commutativity & grouping)
= (AC1) (BmDm) = (Am D) (BiC1) (Eq. 10.32)
=(A-C)(B-D)—-(A-D)(B-C) (Eq. 1.25)
A-C A'D
= (definition of determinant)
B-C B-D

(3.79)
(AxB)x (CxD)=[D-(AxB)]C—[C-(AxB)]D:
Eq. 7?)
Eqg. 7?)

[(A xB) x (C xD)]; = e [A x B, [C x D],
= €ijk€jmnAm BrekpgCpDyg
= €ijk€kpq€imnAm BnCpDq
= €ijkepgk€imnAm BnCpDq
= (5ip5jq - 5iq§jp> €jmnAm BnCpDy
= (5ip5jq€jmn - 5iq5jp€jmn) AmBnCpDy

(
(
(commutativity)
(
(
(
= (ip€qmn — ig€pmn ) AmBnCpDy (EG. 10.32)
(
(
(
(
(
(

Eqg. 10.40)

Eqg. 10.58)
distributivity)
= Oip€qmnAmBnCp Dy — digepmnAm BnCpDy distributivity)
= €gmnAmBnCiDgq — €pmnAmBnCpD;

= €gmnDgAmBnCi — €pmnCp A BnD;

= (€gmnDgAmBn) Ci = (€pmnCpAmBy) D

Eg. 10.32)
commutativity)
grouping)

Eq. 7?)

[D-(AxB)]C;—[C- (A xB)| D,
[[D- (A xB)] c}—[[c-(AxB)]DL
[D-(AxB)]C-[C-(AxB)]D| (Eq. 72)

definition of index)

(3.80)
Because i is a free index the identity is proved for all components.
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Integral Vector Calculus
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4.1.

Multiple Integrals

In this chapter we develop the theory of integration for scalar functions.

Recall also that the definite integral of a nonnegative function f(z) > 0 represented the area

“under” the curve y = f(x). As we will now see, the double integral of a nonnegative real-valued

function f(x,y) > 0 represents the volume “under” the surface z = f(x,y).

Double Integrals

Let R = [a, b]x[c,d] C R?bearectangle,and f : R — Rbe continuous. Let P = {xzo, ..

< TM>YOs - - -

wherea =g <21 < - <zpyy =bandec=yg < y1 < --- < yy = d. The set P determines a

partition of Rinto a grid of (non-overlapping) rectangles R; ; = [z, Zi+1] X [y;, yj+1]for0 < i < M
and 0 < j < N. Given P, choose a collection of points M = {&J} sothat§; ; € R; j foralli, j.

Z )

N
Yo o o

,,,,,,
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4. Multiple Integrals

248

Definition
The Riemann sum of f with respect to the partition P and points M is defined by

M-1N-1

1N—
R(f, P,M) d” Z (&j)area(Rij) = > > f(&ij)(@ivr — i) (i1 — )

i=0 j=0

249

Definition
The mesh size of a partition P is defined by

||l = max {1 — = Jufvm -y [0<i< N}

250

Definition
The Riemann integral of f over the rectangle R is defined by

// f(w,y)dwdyd—ef”h”m R(f, P,M),
R

provided the limit exists and is independent of the choice of the points M. A function is said to be
Riemann integrable over R if the Riemann integral exists and is finite.

251 Remark
A few other popular notation conventions used to denote the integral are

252

253

254

//RfdA, //Rfdxdy, //Rfd:clde, and //Rf.
Remark

The double integral represents the volume of the region under the graph of f. Alternately, if f(x,y) is
the density of a planar body at point (x, y), the double integral is the total mass.

Theorem
Any bounded continuous function is Riemann integrable on a bounded rectangle.

Remark
Most bounded functions we will encounter will be Riemann integrable. Bounded functions with rea-
sonable discontinuities (e.g. finitely many jumps) are usually Riemann integrable on bounded rect-
angle. An example of a “badly discontinuous” function that is not Riemann integrable is the function

flz,y) = lifx,y € Qand0 otherwise.

Now suppose U C R?is an nice bounded' domain,and f : U — Ris a function. Find a bounded
rectangle R O U, and as before let P be a partition of R into a grid of rectangles. Now we define

'We will subsequently always assume U is “nice”. Namely, U is open, connected and the boundary of U is a piecewise
differentiable curve. More precisely, we need to assume that the “area” occupied by the boundary of U is 0. While
you might suspect this should be true for all open sets, it isn’t! There exist open sets of finite area whose boundary

occupies an infinite area!
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4.1. Double Integrals

the Riemann sum by only summing over all rectangles R; ; that are completely contained inside U.

Explicitly, let
1 R; CU
Xij = )
0 otherwise.
and define
def M—-1N-1
R(f,P,M,U = Z ZXJf gz,] xz-i-l_xz)(y]-&-l Y; )
i=0 j=0

Definition
The Riemann integral of f over the domain Uis defined by

| t@yydedy® 1 R(5PMD),
U [|1P||—0

provided the limit exists and is independent of the choice of the points M. A function is said to be
Riemann integrable over R if the Riemann integral exists and is finite.

Theorem
Any bounded continuous function is Riemann integrable on a bounded region.

257 Remark

258 | Definition

As before, most reasonable bounded functions we will encounter will be Riemann integrable.

To deal with unbounded functions over unbounded domains, we use a limiting process.

Let U C R? be a domain (which is not necessarily bounded) and f : U — R be a (not necessarily

bounded) function. We say f is integrable if

lim // Xrl|f] dA
R—o0 JJUunB(0,R)

exists and is finite. Here x p(x) = 1if| f(z)| < R and 0 otherwise.

259 Proposition

If f is integrable on the domain U, then

lim // xrfdA
R—o00 JJUunB(0,R)

exists and is finite.

260 Remark

If f is integrable, then the above limit is independent of how you expand your domain. Namely, you
can take the limit of the integral over U N [— R, R)? instead, and you will still get the same answer.
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4. Multiple Integrals

Definition
If f is integrable we define

//fdxdy: lim // XrfdA
U R—o0 JJUunB(0,R)

Iterated integrals and Fubini’s theorem

Let f(x,y) be a continuous function such that f(x,y) > 0 for all (z,y) on the rectangle R =
{(z,y) :a <2 <b, c<y<d}inR2 Wewill often write thisas R = [a, b] x [c, d]. For any number
x*in the interval [a, b], slice the surface z = f(x,y) with the plane z = xx parallel to the yz-plane.
Then the trace of the surface in that plane is the curve f(x*,y), where xx is fixed and only y varies.
The area A under that curve (i.e. the area of the region between the curve and the zy-plane) as y
varies over the interval [c, d] then depends only on the value of zx*. So using the variable z instead
of zx, let A(x) be that area (see Figure 4.1).

z

Figure 4.1. Thearea A(z) varies with

d
Then A(z) = / f(z,y) dy since we are treating x as fixed, and only y varies. This makes sense

since for a fixed o the function f(z,y) is a continuous function of y over the interval [c, d], so we
know that the area under the curve is the definite integral. The area A(x) is a function of x, so by
the “slice” or cross-section method from single-variable calculus we know that the volume V" of the
solid under the surface z = f(z,y) but above the xy-plane over the rectangle R is the integral over
[a, b] of that cross-sectional area A(x):

Vo= /:A(m)dx _ /ab Ucdf(a;,y)dy] do (4.1)

We will always refer to this volume as “the volume under the surface”. The above expression uses
what are called iterated integrals. First the function f(x, y) isintegrated as a function of y, treating
the variable z as a constant (this is called integrating with respect to ). That is what occurs in the
“inner” integral between the square brackets in equation (4.1). This is the first iterated integral.
Once that integration is performed, the result is then an expression involving only z, which can
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4.2. lterated integrals and Fubini’s theorem

then be integrated with respect to x. That is what occurs in the “outer” integral above (the second
iterated integral). The final result is then a number (the volume). This process of going through two
iterations of integrals is called double integration, and the last expression in equation (4.1) is called
a double integral.

Notice that integrating f(z,y) with respect to y is the inverse operation of taking the partial
derivative of f(x,y) with respect to y. Also, we could just as easily have taken the area of cross-
sections under the surface which were parallel to the xz-plane, which would then depend only on
the variable y, so that the volume V would be

V = /Cd [/abf(a:,y)da;] dy . (4.2)

It turns out that in general due to Fubini’s Theorem the order of the iterated integrals does not
matter. Also, we will usually discard the brackets and simply write

V- /Cd/:ﬂx,y)dwdy, (43)

where it is understood that the fact that dx is written before dy means that the function f(z,y)
is first integrated with respect to = using the “inner” limits of integration a and b, and then the
resulting function is integrated with respect to y using the “outer” limits of integration cand d. This
order of integration can be changed if it is more convenient.

Let U C R2 be a domain.

Definition
For x € R, define

SxU:{y)(x,y) EU} and T,U = {x ‘ (z,y) EU}

Example
IfU = [a,b] X [c,d] then

Y d E b b 9 b E 9 d
sylled veld o el veld
0 z ¢ la,b] 0 y & [c,d].
For domains we will consider, S, U and T, U will typically be an interval (or a finite union of in-
tervals).
Definition

Given a function f : U — R, we define the two iterated integrals by

/I€R</yeSmU f(z,y) dy) dx and yeR(/xeTyU f(z,y) da;) dy,

with the convention that an integral over the empty set is 0. (We included the parenthesis above for
clarity; and will drop them as we become more familiar with iterated integrals.)
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4. Multiple Integrals
\

Suppose f(z,y) represents the density of a planar body at point (z, y). Forany z € R,

/ f.y) dy
yeSU

represents the mass of the body contained in the vertical line through the point (x,0). It’s only
natural to expect that if we integrate this with respect to y, we will get the total mass, which is
the double integral. By the same argument, we should get the same answer if we had sliced it
horizontally first and then vertically. Consequently, we expect both iterated integrals to be equal
to the double integral. This is true, under a finiteness assumption.

Theorem (Fubini’s theorem)
Suppose f : U — Riis a function such that either

/EER(AGSZU{f($7y)| dy) <00 or /yeR(/weT U}f(%y” da:) dy < o0, (4.4)

then f is integrable over U and

//U fdA = :ce]R(/yESxU f(z,y) dy) da = /yGR(/xGTyU fz,y) d:n) dy.

Without the assumption (4.4) the iterated integrals need not be equal, even though both may

exist and be finite.

Example
Define
1Y z? — yQ
) = =00y 107 (0) = oo
Then
1 1 - 1 1 -
/ / f(z,y)dydz =~ and / f(z,y)dedy = ——
z=0Jy=0 4 y=0 J =0 4
Example

Let f(z,y) = (x —y)/(x +y)®ifz,y > 0and 0 otherwise, and U = (0,1)2. The iterated integrals
of f over U both exist, but are not equal.

Example
Define

1 ye(z,x+1)andx >0
flx,y) =4 -1 ye(r—1,z)andxz >0
0 otherwise.

Then the iterated integrals of f both exist and are not equal.

Example
Find the volume V under the plane = = 8x + 6y over the rectangle R = [0, 1] x [0, 2].
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4.2. lterated integrals and Fubini’s theorem

Solution: » We seethat f(z,y) =8z + 6y > 0for0 <z <land0 <y < 2,so:

1
V = / /(8x+6y)dmdy
o Jo
r=1
= / (41:24-61:3/ )dy
0 =0

= /2(4+6y)dy
0

2
2

2
= 4y + 39>
0

= 20

Suppose we had switched the order of integration. We can verify that we still get the same answer:
1,2
V = / / (8x + 6y) dy dx
0 Jo
1 y=2
= / <8:ry + 3y? ) dx
0 y=0

1
= /(16x+12)dw
0

1

= 822 + 12z

0
= 20

|

270 Example
Find the volume V under the surface = = e**¥ over the rectangle R = [2, 3] x [1, 2].

Solution: » We know that f(z,y) = e**¥ > 0 forall (z,y), so

2 3
V = / / "V dx dy
1 2
2 =3
— / <€ﬂ?+y ) dy
1 r=2
2
— / (ey+3 . 6y+2)dy
1

— oyt3 _ 2

1

= et —(et—e?) = S -2t + &3

<
Recall that for a general function f(x), the integral / f(z) dx represents the difference of the

area below the curve y = f(x) but above the z-axis when f(z) > 0, and the area above the curve
but below the z-axis when f(z) < 0. Similarly, the double integral of any continuous function
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f(x,y) represents the difference of the volume below the surface z = f(x,y) but above the zy-
plane when f(x,y) > 0, and the volume above the surface but below the zy-plane when f(z,y) <
0. Thus, our method of double integration by means of iterated integrals can be used to evaluate
the double integral of any continuous function over a rectangle, regardless of whether f(z,y) > 0
or not.

Example 5 -
Evaluate / sin(z + y) dz dy.
0 0

Solution: » Note that f(x,y) = sin(z + y) is both positive and negative over the rectangle
[0, 7] x [0, 27]. We can still evaluate the double integral:

2w ™ 2w =7
/ / sin(z + y) dz dy / <— cos(x + y) > dy
0 0 0 =0

2m
:/ (—cos(y + ) + cosy) dy
0

2T
= —sin37 +sin 2w — (—sinm + sin0)
0

= —sin(y +7) +siny

=0

Exercises

A
For Exercises 1-4, find the volume under the surface z = f(z,y) over the rectangle R.

1. f(z,y) =4ay, R =[0,1] x [0,1] 2. f(z,y) =", R=[0,1] x [-1,1]

3. flz,y) =2+ y% R=10,1] x [0,1] 4. f(z,y)=a'+ay+y’, R=[1,2] x [0,2]

For Exercises 5-12, evaluate the given double integral.

12 12
5. / / (1 —y)a? dzdy 6. / / z(x +y)drdy
o J1 o Jo

2 1 2 1
7. / / (x 4 2)dx dy 8. / / x(zy + sinx) dz dy
0 JO —-1J-1

/2 rl T /2
9. / / zy cos(x?y) dx dy 10. / / sinz cos(y — 7) dx dy
0 0 0o Jo

2 4 1 f2
1. / / xy dx dy 12. / / 1dx dy
0 J1 -1J-1

d b
13. Let M be a constant. Show that/ / Mdxdy = M(d—c)(b— a).
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4.3. Double Integrals Over a General Region

In the previous section we got an idea of what a double integral over a rectangle represents. We can
now define the double integral of a real-valued function f(z, ) over more general regions in R?.

Suppose that we have a region R in the zy-plane that is bounded on the left by the vertical line
x = a, bounded on the right by the vertical line z = b (where a < b), bounded below by a curve
y = g.(x), and bounded above by a curve y = g,(x), as in Figure 4.2(a). We will assume that g, ()
and g,(z) do not intersect on the open interval (a, b) (they could intersect at the endpoints z = a
and z = b, though).

Y = g:(x)

R v = hi(y)
| T = hy(y)
C y=g(x) rTT =
} } x x
0 a b 0
b rga(x) d  rha(y)
(a) Vertical slice: / / f(z,y)dydz (b) Horizontal slice: / / f(z,y)dzdy
a Jgi(e) e Jhi(y)

Figure 4.2. Double integral over a nonrectangu-
lar region R

Then using the slice method from the previous section, the double integral of a real-valued func-
tion f(x,y) over the region R, denoted by // f(z,y) dA,is given by
R

//f(m,y) dA = /ab U:j:)f(x,y) dy] dx (4.5)
R

This means that we take vertical slices in the region R between the curvesy = g,(z) and y = g,(x).
The symbol d A is sometimes called an area element or infinitesimal, with the A signifyingarea. Note
that f(z, y) is first integrated with respect to y, with functions of = as the limits of integration. This
makes sense since the result of the first iterated integral will have to be a function of = alone, which
then allows us to take the second iterated integral with respect to x.

Similarly, if we have a region R in the zy-plane that is bounded on the left by a curve x = h,(y),
bounded on the right by a curve z = h,(y), bounded below by the horizontal line y = ¢, and
bounded above by the horizontal line y = d (where ¢ < d), as in Figure 4.2(b) (assuming that h, (y)

1m



4. Multiple Integrals

and h,(y) do not intersect on the open interval (¢, d)), then taking horizontal slices gives

[ temaa= [ ' [ / h:j) ) dx] dy (@.6)
) 1

Notice that these definitions include the case when the region Risarectangle. Also, if f(z,y) > 0
for all (z,y) in the region R, then [[ f(x,y) dA is the volume under the surface z = f(z,y) over
R

the region R.

272 Example
Find the volume V" under the plane z = 8z + 6y over theregion R = {(z,y) : 0 <z < 1,0 <y <
222},

Solution: » Theregion R is shown in Figure 3.2.2. Using vertical slices we get:

V= //(8x+6y)dA
R
= /01 [/02x2(8$+6y)dy] dx

Figure 4.3.
1 y=2x2
= / 8y + 3y> dx
0 y=0
1
= / (1623 4 1221) dz
0
1
= 4ot + 220 = 442 =32 =64
We get the same answer using horizontal slices (see Figure 3.2.3): oty
V = //(8az+6y)dA T =\/y/2 R
R
/2 |:/1 0 e
= (8x + 6y) dz| dy 1
0 [J\y/2
v/ Figure 4.4.

2 =1
= 422 + 6y dy
/0 < x\/y/2>

2 2
= /0(4+6?J—(23/+\%y\/§))dy= /0(4+4y—3\/§y3/2)dy

2
= 4y+2y2—6?‘/§y5/2 .

= 848 OV2VR2 _ 1548 _ 32 _ 4

<

273 Example
Find the volume V of the solid bounded by the three coordinate planes and the plane 2x+y+4z = 4.
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4.3. Double Integrals Over a General Region

Y

y=-—-2x+4

(a)

(b)

Figure 4.5.

Solution: » The solid is shown in Figure 4.5(a) with a typical vertical slice. The volume V' is given
by [f f(z,y) dA, where f(z,y) = z = (4 — 2z — y) and the region R, shown in Figure 4.5(b), is

R
R={(z,y):0<2<2 0<y<—2x+4}. Using vertical slices in R gives

vV = //}1(4—290—3,)61/1

2 y=—2z+4
= / (—é(4—2x—y)2 ) dx
0 y=0
2
= / (4 -22)%da
0
1 sP _ w 4

<
For a general region R, which may not be one of the types of regions we have considered so
far, the double integral [[ f(x,y)dA is defined as follows. Assume that f(z,y) is a nonnegative
R

real-valued function and that R is a bounded region in R?, so it can be enclosed in some rectangle
[a,b] X [c,d]. Then divide that rectangle into a grid of subrectangles. Only consider the subrect-
angles that are enclosed completely within the region R, as shown by the shaded subrectangles in
Figure 4.6(a). In any such subrectangle [x;, z, 1] X [y,, y,:1], pick a point (.., y,.). Then the volume
under the surface z = f(x,y) over that subrectangle is approximately f(z..,y,.) Az, Ay;, where
Ax; =z — x5, Ay; = Y00 — Y5, and f(z,., y;.) is the height and Az; Ay, is the base area of a
parallelepiped, as shown in Figure 4.6(b). Then the total volume under the surface is approximately
the sum of the volumes of all such parallelepipeds, namely

Z Z f(@i,y;.) Az Ay, (4.7)
joi

13
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where the summation occurs over the indices of the subrectangles inside R. If we take smaller and

smaller subrectangles, so that the length of the largest diagonal of the subrectangles goes to 0, then

the subrectangles begin to fill more and more of the region R, and so the above sum approaches the

actual volume under the surface z = f(z,y) over the region R. We then define [[ f(x,y) dAasthe
R

limit of that double summation (the limit is taken over all subdivisions of the rectangle [a, b] X [c, d]
as the largest diagonal of the subrectangles goes to 0).

Y

\ rom z= f(x,y)
Yj+1
Yi - Yy
\\ _—
c
L z
0 q T Tipq b
(a) Subrectanglesinside the region R (b) Parallelepiped over a subrectangle, with volume

F(@in, yj.) Azs Ay

Figure4.6. Doubleintegraloverageneralregion
R

A similar definition can be made for a function f(z,y) that is not necessarily always nonnega-
tive: just replace each mention of volume by the negative volume in the description above when
f(x,y) < 0. In the case of a region of the type shown in Figure 4.2, using the definition of the Rie-
mann integral from single-variable calculus, our definition of [[ f(z,y) dA reduces to a sequence
of two iterated integrals. "

Finally, the region R does not have to be bounded. We can evaluate improper double integrals

(i.e. over an unbounded region, or over a region which contains points where the function f(z, y)
is not defined) as a sequence of iterated improper single-variable integrals.

Example o 1/’
Evaluate / / 2y dy dzx.
1 Jo

Solution: »

0o pl/z?
/ / 2ydydx = /
1 0 1
/
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4.4. Triple Integrals

Exercises

A

For Exercises 1-6, evaluate the given double integral.

1 1 ™ Y
1. / / 2422y dy dx 2. / / sin z dz dy
0 Jyz o Jo
2 Inz 2 2y )
3. / / 4dx dy dx 4. / / e’ dxdy
1 Jo o Jo

/2 ry 00 o0 (e
5. / / cosx siny dz dy 6. / / zye” @) dg dy
0 0 o Jo

2 Y 1 x?
7. / / 1dx dy 8. / / 2dy dx
o Jo o Jo

9. Findthevolume V ofthe solid bounded by the three coordinate planesand the planez+y+2z =
1.

10. Find the volume V of the solid bounded by the three coordinate planes and the plane 3z +
2y + 5z = 6.

11. Explain why the double integral [ 1 dA gives the area of the region R. For simplicity, you can

R
assume that R is a region of the type shown in Figure 4.2(a).

C

12. Prove that the volume of a tetrahedron with mutually perpendicular ad-

jacent sides of lengths a, b, and ¢, as in Figure 3.2.6, is “Tbc. (Hint: Mimic

Example 273, and recall from

Section 1.5 how three noncollinear points determine a plane.)

Figure 4.7.

13. Show how Exercise 12 can be used to solve Exercise 10.

Triple Integrals

Our definition of a double integral of a real-valued function f(x,%) over a region R in R? can be
extended to define a triple integral of a real-valued function f(z, y, z) overasolid S inR3. We simply
proceed as before: the solid S can be enclosed in some rectangular parallelepiped, which is then
divided into subparallelepipeds. In each subparallelepiped inside S, with sides of lengths Ax, Ay

115



275

4. Multiple Integrals

and Az, pick a point (., ., z.). Then define the triple integral of f(x,y, z) over S, denoted by
JJ fx,y,2)dV, by
S

[ 1V = S sz Aey A, “8)
S

where the limit is over all divisions of the rectangular parallelepiped enclosing S into subparal-
lelepipeds whose largest diagonal is going to 0, and the triple summation is over all the subparal-
lelepipedsinside S. It can be shown that this limit does not depend on the choice of the rectangular
parallelepiped enclosing S. The symbol dV is often called the volume element.

Physically, what doesthetripleintegral represent? We saw thatadouble integral could be thought
of as the volume under a two-dimensional surface. It turns out that the triple integral simply gen-
eralizes this idea: it can be thought of as representing the hypervolume under a three-dimensional
hypersurface w = f(x,y, z) whose graph lies in R*. In general, the word “volume” is often used as
a general term to signify the same concept for any n-dimensional object (e.g. lengthin R!, area in
R?). It may be hard to get a grasp on the concept of the “volume” of a four-dimensional object, but
at least we now know how to calculate that volume!

In the case where S is a rectangular parallelepiped [z,, z,] X [y1,y2] X [21,25], thatis, S =
{(z,y,2) :xy <ax < 2o, yy <Y< 1yo 2 <2< 2}, the triple integral is a sequence of three
iterated integrals, namely

// F@y,2) dV = / /yw /mf(:n,y,z) d dy d> (4.9)
S ! ! 1

where the order of integration does not matter. This is the simplest case.

A more complicated case is where S'is a solid which is bounded below by a surface z = g, (z, y),
bounded above by a surface z = g,(z,y), y is bounded between two curves h, (z) and h,(x), and
x varies between a and b. Then

b rha(z) rg2(zy)
// f(x,y,2)dV = // / flz,y,2)dzdydz . (4.10)
g a Jhi(z) Jgi(zy)

Notice in this case that the first iterated integral will result in a function of = and y (since its limits
of integration are functions of = and y), which then leaves you with a double integral of a type that
we learned how to evaluate in Section 3.2. There are, of course, many variations on this case (for
example, changing the roles of the variables x, ¥, z), so as you can probably tell, triple integrals can
be quite tricky. At this point, just learning how to evaluate a triple integral, regardless of what it
represents, is the most important thing. We will see some other ways in which triple integrals are
used later in the text.

Example 3 9
Evaluate / / (xy + 2) dz dy dz.
o Jo Jo

16



4.4. Triple Integrals

r=1
) dydz

3 2 rl 3 2
xy +z)drdydz = 102y + 22
(zy + z) dz dy 3T°Y
o Jo Jo =0
:// dydz
y=2
= / <4y +yz )dz
0 y=0

_ /03(1+22)dz

3
=12
0

Solution: »

= z+z2

<
276 Example Iz 2oy
Evaluate / / (x+y+ 2)dzdydx.
0

Solution: »

1 11—z 2—x—y
/ / / (x+y+2)dzdyde =
0 JO 0

11

_ B 4
= 5 22 +24x

<« Note that the volume V of a solid in R is given by

V = ///mv. (4.11)
S

Since the function being integrated is the constant 1, then the above triple integral reduces to a
double integral of the types that we considered in the previous section if the solid is bounded above
by some surface z = f(z,y) and bounded below by the xy-plane z = 0. There are many other
possibilities. For example, the solid could be bounded below and above by surfaces z = g,(z,y)
and z = g,(z,y), respectively, with y bounded between two curves h,(z) and h,(z), and x varies
between a and b. Then

ha(x)
V= ///1dV / / / ldzdydx—/ / (g2(z,y) — g1 (z,y)) dydx
ha( g1(z,y) hi(

just like in equation (4.10). See Exercise 10 for an example.

17
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Exercises

A
For Exercises 1-8, evaluate the given triple integral.

3 2 1 1 Ty
1. / / / zyzdrdydz 2. / / / ryzdz dy dx
o Jo Jo o Jo Jo
™ z Yy 1 z Y 9
3. / / / 2? sin 2 dz dy dzx 4. / / / ze¥ dxdydz
0 0 0 o Jo Jo

e ry rl/y 2 py? 22
5. / / / 22z drdz dy 6. / / / yzdx dz dy
1 JO0 JO 1 JO 0
2 r4 3 1 1—x l-z—y
7. / / / ldxdydz 8. / / / 1dzdydz
1 J2 JO 0 Jo 0

z2 Y2 T2
9. Let M be a constant. Show that/ / / Mdxdydz = M(z, — 20)(y2 — 11) (x5 — x1).
Y1 1

10. Find the volume V of the solid S bounded by the three coordinate planes, bounded above by
the plane x 4+ y 4+ z = 2, and bounded below by the plane z = = + y.

(o
b 2
11. Show that/ / / x)drdydz = / %f( ) dx. (Hint: Think of how changing the or-

der of integration in the triple integral changes the limits of integration.)

Change of Variables in Multiple Integrals

Given the difficulty of evaluating multiple integrals, the reader may be wondering if it is possible to

simplify those integrals using a suitable substitution for the variables. The answerisyes, thoughitis

a bit more complicated than the substitution method which you learned in single-variable calculus.
Recall that if you are given, for example, the definite integral

2
/ 32?2 — ldz,
1

then you would make the substitution

2

u=2>-1= 1z =u+1

du =2x dx
which changes the limits of integration

r=1=u=0

r=2 =>u=3

18



4.5. Change of Variables in Multiple Integrals
so that we get

2

%x2 2xvVx? — 1dx

3

F(u+1)yudu

2
/ 23Vx? —1dzx =
1

Il
o

(u3/2 - u1/2) du , which can be easily integrated to give

Il
NO|—
S—

o

|
-
m‘»&
S

Let us take a different look at what happened when we did that substitution, which will give some
motivation for how substitution works in multiple integrals. First, we letu = 22 — 1. On theinterval
of integration [1, 2], the function = + 22 — 1 is strictly increasing (and maps [1, 2] onto [0, 3]) and
hence has an inverse function (defined on the interval [0, 3]). That is, on [0, 3] we can define z as a
function of u, namely

x = g(u) = Vu+1.

Then substituting that expression for z into the function f(z) = 2322 — 1 gives

f(z) = flo(w) = (u+1)**Va,

and we see that

so since

then performing the substitution as we did earlier gives
2 2
/ f(z)dx = / 3y/x? — 1dx
1 1
3
= / $(u+1)vudu , which can be written as
3
= / u+1)%2u - 3(u+1)""2du , which means
0

/12f(x) do = /;1(1 Vo' (u) du.

In general, if x = g(u) is a one-to-one, differentiable function from an interval [c, d] (which
you can think of as being on the “u-axis”) onto an interval [a, b] (on the x-axis), which means that
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g'(u) # 0ontheinterval (c,d), sothata = g(c) and b = g(d),thenc = g~ '(a) andd = g~ (b),
and

b 971 (b)
[ s = [ ftow)g @ . (412)

This is called the change of variable formula for integrals of single-variable functions, and it is what
you were implicitly using when doing integration by substitution. This formula turns out to be a
special case of a more general formula which can be used to evaluate multiple integrals. We will
state the formulas for double and triple integrals involving real-valued functions of two and three
variables, respectively. We will assume that all the functions involved are continuously differen-
tiable and that the regions and solids involved all have “reasonable” boundaries. The proof of the
following theorem is beyond the scope of the text.

Theorem

Change of Variables Formula for Multiple Integrals

Letz = x(u,v) and y = y(u, v) define a one-to-one mapping of a region R’ in the uwv-plane onto a
region R in the xy-plane such that the determinant

0r 0
ou Ov
J = 1
ou Ov
isneverQin R'. Then
/fmydA:L'y //f z(u,v),y(u,v)) |J(u,v)| dA(u,v) . (4.14)

We use the notation dA(x,y) and dA(u, v) to denote the area element in the (x,y) and (u, v) coor-
dinates, respectively.

Similarly, if x = x(u,v,w), y = y(u,v,w) and z = z(u, v, w) define a one-to-one mapping of a
solid S” in uwvw-space onto a solid S in xyz-space such that the determinant

ou Ov Ow
dy O 0

J(u,v,w) = 8—3 a% % (4.15)
ou Ov Ow

is never 0in S’, then

// f(x,y,Z)dV(w,y,Z)z// f@(u, v, w), y(u, v, w), 2(u, v, w)) [ (u, v, w)| AV (u, v, w).
S S’

(4.16)

The determinant J(u, v) in formula (4.13) is called the Jacobian of x and y with respect to v and
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4.5. Change of Variables in Multiple Integrals

v, and is sometimes written as

_ O(z,y)
J(u,v) = B (4.7)
Similarly, the Jacobian J(u, v, w) of three variables is sometimes written as
d(z,y, z)
= —F—F . .1
J(u, v, w) ot v, w) (4.18)

Notice that formula (4.14) is saying that dA(z, y) =|J(u,v)| dA(u,v), which you can think of as a
two-variable version of the relation dz = g’(u) du in the single-variable case.
The following example shows how the change of variables formula is used.

278 Example
Eva[uate//eﬂ; dA,where R = {(z,y) : 2 >0,y > 0,z +y < 1}.
R

Solution: » First, note that evaluating this double integral without using substitution is probably

impossible, at leastin a closed form. By looking at the numerator and denominator of the exponent

of e, we will try the substitution v = z — y and v = x + y. To use the change of variables formula

(4.14), we need to write both x and y in terms of u and v. So solving for z and y gives z = %(u +v)

andy = %(v — u). In Figure 4.8 below, we see how the mapping z = z(u,v) = %(u +o),y =
1

y(u,v) = 5(v — u) maps the region R’ onto R in a one-to-one manner.

Y v
. = 3(u+v) 1
_ 1
rty=1 v=3v - =
U= —v u="uv
R xT u
0 1 -1 0 1

Figure 4.8. Theregions Rand R’

Now we see that

Jxr Ox
_lou du| _ | 2oz 1 N
J(“’”) - @ @ - 11 - 2 = ’J(U,’l})| - ‘ ’ - ’
ou Ov 2 2

so using horizontal slices in R, we have

//e+ A = //f(x(u,v),y(u,v))|J(u,v)| A

R R’
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4. Multiple Integrals

L 1y -1
0_46 € N 4e

<« The change of variables formula can be used to evaluate double integrals in polar coordinates.

Letting
x = z(r,0) = rcosf and y = y(r,0) = rsinf,
we have
oxr Ox
o 90 cosf) —rsinf
J(u,v) = " = = rcos?O+rsin’f = r = |J(u,y)| =|rl =r,
@ @ sinf  rcosé
or 00

so we have the following formula:

Double Integral in Polar Coordinates

é/f(x,y)dxdy = Z//f(rcos@,rsin&)rdrd@, (4.19)

where the mapping z = r cos 6, y = r sin # maps the region R’ in the rf-plane onto the region

Rin the zy-plane in a one-to-one manner.

279 Example
Find the volume V inside the paraboloid z = x> + y? for0 < z < 1.

Solution: Using vertical slices, we see that

v ffa-naa= [Ja- @ aa,
R R

where R = {(x,y) : x® + y? < 1} is the unit disk in R? (see ,
Figure 3.5.2). In polar coordinates (r,0) we know that z* + :
y? = r2 and that the unit disk R is the set R' = {(r,0) : 0 < K y
r <1,0 <60 <2r}. Thus,

€T

2 ol
V = / / (1—r2)rdrdo Figure4.9. z=2%+y?
o Jo

2 1

= / /(7‘—7“3) rdf
0 0
2 r=1

- [T (5u]L)
0 r=0

280 Example
Find the volume V inside the cone z = \/x? + y?for0 < z < 1.
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4.5. Change of Variables in Multiple Integrals

Solution: Using vertical slices, we see that Fattyt=1

V://l—sz_// :v2+y)dA

where R = {(x,y) : 2 + y? < 1} is the unit disk in R?
X
(see Figure 3.5.3). In polar coordinates (r, 6) we know Figure 410, > — \/iT 57
that \/x2 + y? = r and that the unit disk R is the set
R ={(r,0):0<r<1,0<0 <2} Thus,

2m 1
V = / / (1—r)rdrdd
o Jo

In a similar fashion, it can be shown (see Exercises 5-6) that triple integrals in cylindrical and
spherical coordinates take the following forms:

Triple Integral in Cylindrical Coordinates

//f(x,y,z)d:vdydz: //f(rcos@,rsinﬁ,z)rdrd@dz, (4.20)
S S’

where the mapping x = rcosf,y = rsinf, 2 = z maps the solid S’ in r6z-space onto the solid
S'in xyz-space in a one-to-one manner.

Triple Integral in Spherical Coordinates

//f(:c,y,z)dagdydz: //f(psingbcos&,psinqﬁsinﬁ,pcosgb)pQsin¢dpd¢d0,
S S’

(4.21)
where the mapping x = psin¢ cosf,y = psin¢ sinf, z = pcos ¢ maps the solid S’ in pgb-
space onto the solid S in xyz-space in a one-to-one manner.

281 Example

Fora > 0, find the volume V inside the sphere S = x? + y? + 2% = a>.
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Solution: We see that S is the set p = a in spherical coordinates, so

2T T pa
V = ///mvz/ //1p251n¢dpd¢d9
o Jo Jo
S
2 pm p3 p=a 2m T a3
:/ / — sin¢dq§d0:/ — sin ¢ d¢ db
o Jo \'3 lp=0 o Jo 3
2

3 =7 2 3 3
= / -4 cosgﬁ‘ do = / 2id9: Ama .
o \ 3 % S 3

Exercises

A

1. Find the volume V inside the paraboloid z = 2% 4+ y? for0 < z < 4.

2. Find the volume V inside the cone z = /22 + y2for0 < z < 3.

B

3. Find the volume V of the solid inside both 2% + y? 4 22 = 4and 22 4 y% = 1.

4. Find the volume V inside both the sphere 22 + 2 4+ 22 = 1 and the cone z = /22 + y2.

5. Prove formula (4.20). 6. Prove formula (4.21).
7. Evaluate [[ sin (L;“y) cos (%) dA,where Risthetriangle with vertices (0,0), (2,0) and (1, 1).
R
(Hint: Use the change of variables u = (x +y)/2,v = (z — y)/2.)
8. Find the volume of the solid bounded by z = 22 + y? and 2% = 4(2? + ¢?).
9. Find the volume inside the elliptic cylinder i—z + :‘g—j =1for0<z<2.

C

10. Show that the volume inside the ellipsoid i—z + %—; + z—i =1lis 4”7“1’0. (Hint: Use the change of
variables x = au, y = bv, z = cw, then consider Example 281.)

11. Show that the Beta function, defined by
1
B(z,y) = / t" Y1 —t)yv=tat, forx >0,y >0,
0

satisfies the relation B(y, z) = B(z,y) forz > 0,y > 0.

12. Using the substitution ¢t = u/(u + 1), show that the Beta function can be written as

r—1

oo
u
B({E,y): /0 mdu, f0r$>0,y>0.
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282

4.6. Application: Center of Mass

Application: Center of Mass

Recallfromsingle-variable calculus thatforaregion R = {(z,y) : Y
a <z <b0<y< f(x)}inR? that represents a thin, flat y =1
plate (see Figure 3.6.1), where f(x) is a continuous function i\/\
) . | . R |
on [a, b], the center of mass of R has coordinates (z, 3) given | =) e
by 0 1 1
- M, P M, a b
=0 and y= M Figure 4.11. Center of massof R
where
b 2 b b
Mx:/ (f(;»dx, My:/ xf(z)dz, M:/ f(z)dzx, (4.22)

assuming that R has uniform density, i.e the mass of R is uniformly distributed over the region. In
this case the area M of the region is considered the mass of R (the density is constant, and taken
as 1 for simplicity).

In the general case where the density of a region (or lamina) R is a continuous function § =
§(x,y) of the coordinates (x, ) of points inside R (where R can be any region in R?) the coordinates
(z,7) of the center of mass of R are given by

My
M )

My
ro— I d 77—
z=—r and g=

M, = //xa(x,y) dA. M, = //yé(x,y) dA. M= //5@:,;,) dA. (4.24)
R R R

The quantities M, and M, are called the moments (or first moments) of the region R about the z-

(4.23)

where

axis and y-axis, respectively. The quantity M is the mass of the region R. To see this, think of taking
a small rectangle inside R with dimensions Az and Ay close to 0. The mass of that rectangle is
approximately 6 (z, y«) Az Ay, for some point (z., y.) in that rectangle. Then the mass of R is the
limit of the sums of the masses of all such rectangles inside R as the diagonals of the rectangles
approach 0, which is the double integral [[ §(z,y) dA.

R

Note that the formulas in (4.22) represent a special case when é(x,y) = 1 throughout R in the
formulasin (4.24).

Example
Find the center of mass of the region R = {(x,y) : 0 < x < 1, 0 < y < 222}, ifthe density function
at(z,y)isé(z,y) =z +y.
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4. Multiple Integrals

Solution: » Theregion R is shown in Figure 3.6.2. We have

M = //5(m,y) dA

R
1 22
= / / (z +y)dydx
0o Jo
1 =222

5 |¥= Figure 4.12.
o Yy
—/ Y + — dx
0 2
y=0
1
= /(2x3+2x4)d$
0
1
et 2 9
2 5 1 10
0
and
M, = //y(s(x,y)dA M, = //:E(S(a:,y)dA
R R
1 222 1 p222
:// y(z +y)dydx :// z(x +y)dydx
o Jo o Jo
Ul pg? B y=2? 1 2 y=2a
:/ = 4+ = dx :/ Ty + dx
o \ 2 "3 0 2
y=0 y=0
! 5 849 ! 4 5
= (22° + —-) dx = (22" + 227) dx
0 3 0
1
_a® s 5 N
3 21 7 5 31 15’
0 0

so the center of mass (z, ) is given by

M, 11/15 22 _ M, 5/T 50

M~ 90 210 YT M T 9/10 T 63°

Note how this center of mass is a little further towards the upper corner of the region R than when

the density is uniform (it is easy to use the formulas in (4.22) to show that (z,7) = (%, ) in that
case). This makes sense since the density function é(x,y) = = + y increases as (z, y) approaches

that upper corner, where there is quite a bit of area. «

In the special case where the density function §(z, y) is a constant function on the region R, the
center of mass (z, y) is called the centroid of R.

The formulas for the center of mass of a region in R? can be generalized to a solid S in R®. Let
S be a solid with a continuous mass density function §(z, y, z) at any point (z, y, z) in S. Then the
center of mass of S has coordinates (z, g, Z), where

_ M, _ M,, B M,
= = = .2
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4.6. Application: Center of Mass

where
M,. = ///xé(m,y,z) dv, M,, = ///yé(a:,y,z)dv, My, = ///zé(ac,y,z) dv,
’ ’ ’ (4.26)
M = /S/ §(z,y,2)dV . (4.27)

Inthis case, M,,., M, and M, are called the moments (or first moments) of S around the yz-plane,
xz-plane and zy-plane, respectively. Also, M is the mass of S.

Example
Find the center of mass of the solid S = {(x,y,z) : z > 0, 2 +y? + 22 < a?}, ifthe density function
at (z,y,z)isé(x,y,z) = 1.

Solution: » The solid S is just the upper hemisphere inside the sphere
of radius a centered at the origin (see Figure 3.6.3). So since the density
function is a constant and S is symmetric about the z-axis, then it is clear
thatz = 0 and y = 0, so we need only find z. We have

M = // 6(x,y,z)dV—///1dV—Volume(S).
S S

But since the volume of S is half the volume of the sphere of radius aq,

which we know by Example 281 is 47‘;,)“3 ,then M = 275“3. And

My, — /S// 8(2,y,2) AV

= ///de , which in spherical coordinates is

S
27 /2 pra
= / / / (p cos ¢) p? sin ¢ dp de db
0 0 0

_ /027r/07r/2 sinqﬁcosd)(/oapgdp) dé do

27 7r/24
:/0/0 @ Sin ¢ cos ¢ dep df

2n /2
M, = / / @ sin2¢dpdf (sincesin2¢ = 2sin ¢ cos ¢)
0 0

2m 4 o=m/2
= / —{g cos 2¢' db
0 ¢=0

Figure 4.13.
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Thus, the center of mass of S'is (z, 9, 2) = (0, 0, %“) |

Exercises

A
For Exercises 1-5, find the center of mass of the region R with the given
density function 6(z, y).

1. R={(z,y):0<2<2,0<y<4},0(x,y) =2y

2. R={(z,y):0<2<1,0<y<2?},6(z,y) =z +y

3. R={(z,y):y>0, 2% +¢* < a?},0(z,y) =1

4. R={(z,y):y>0,2>0,1<2?+y><4},0(z,y) = Va2 + 2
5 R={(z,9):y>0, 22+ <1},0(z,y) =y

B
For Exercises 6-10, find the center of mass of the solid S with the given density function §(x, y, z).

6. S={(2,9,2):0<2<1,0<y<1,0<2<1},6(x,y,2) =zyz

7. S={(z,y,2) : 2> 0, 22 + 9% + 22 < a?},6(z,y,2) = 2% + y> + 22

8. S={(z,y,2):2>0,y>0,2>0, 22 +1y°+ 22 <a?},6(z,y,2) =1

9. S={(2,9,2):0<2<1,0<y<1,0<2<1},0(z,y,2) =%+ ¢y + 22

10. S={(2,9,2):0<2<1,0<y<1,0<z2<1—z—yhd(x,y,2)=1

Application: Probability and Expected Value

In this section we will briefly discuss some applications of multiple integrals in the field of prob-
ability theory. In particular we will see ways in which multiple integrals can be used to calculate
probabilities and expected values.

Probability

Suppose that you have a standard six-sided (fair) die, and you let a variable X represent the
value rolled. Then the probability of rolling a 3, written as P(X = 3), is %, since there are six sides
on the die and each one is equally likely to be rolled, and hence in particular the 3 has a one out
of six chance of being rolled. Likewise the probability of rolling at most a 3, written as P(X < 3),
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4.7. Application: Probability and Expected Value

is % = %, since of the six numbers on the die, there are three equally likely numbers (1, 2, and 3)
that are less than or equal to 3. Notethat P(X < 3) = P(X = 1)+ P(X = 2)+ P(X = 3).
We call X a discrete random variable on the sample space (or probability space) €2 consisting of all
possible outcomes. In our case, 2 = {1,2,3,4,5,6}. An event A is a subset of the sample space.
For example, in the case of the die, the event X < 3istheset {1,2,3}.

Now let X be a variable representing a random real number in the interval (0, 1). Note that the
set of all real numbers between 0 and 1 is not a discrete (or countable) set of values, i.e. it can not
be putinto a one-to-one correspondence with the set of positive integers.? In this case, for any real
number z in (0, 1), it makes no sense to consider P(X = x) since it must be 0 (why?). Instead, we
consider the probability P(X < z), which is given by P(X < z) = x. The reasoning is this: the
interval (0, 1) has length 1, and for zzin (0, 1) the interval (0, z) has length z. So since X represents
a random number in (0, 1), and hence is uniformly distributed over (0, 1), then

length of (0, z x
P<X§m)_lengﬂ10f§0,1))_1_x'
We call X a continuous random variable on the sample space 2 = (0,1). An event A is a subset of
the sample space. For example, in our case the event X < zis the set (0, z).

In the case of a discrete random variable, we saw how the probability of an event was the sum
of the probabilities of the individual outcomes comprising that event (e.g. P(X < 3) = P(X =
1)+ P(X = 2)+ P(X = 3) inthe die example). For a continuous random variable, the probability
of an event will instead be the integral of a function, which we will now describe.

Let X be a continuous real-valued random variable on a sample space 2 in R. For simplicity, let

2 = (a,b). Define the distribution function F' of X as

F(z) = P(X <xz), for—oco<z<o0 (4.28)
1, forz > b
= ({P(X<z), fora<z<b (4.29)
0, forz <a.

Suppose that there is a nonnegative, continuous real-valued function f on R such that
X
F(z) = / fly)dy, for—oo< < o0, (4.30)
—00

and

/OO fa)de = 1. (4.31)

Then we call f the probability density function (or p.d.f. for short) for X. We thus have
P(X <z) = / fly)dy, fora<xz<b. (4.32)

Also, by the Fundamental Theorem of Calculus, we have

F'(z) = f(z), for—oo <z < oo. (4.33)

%For a proof see p. 9-10 in kam.
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284 Example
Let X represent a randomly selected real number in the interval (0, 1). We say that X has the uniform
distribution on (0, 1), with distribution function

1, forz>1
F(z) = P(X<z) =z, for0<z<1 (4.34)
0, forx<O0,

and probability density function

1, for0<zx<1
f(x) = F'(z) = (4.35)
0, elsewhere.
In general, if X represents a randomly selected real number in an interval (a, b), then X has the uni-

form distribution function

1, forx > b
F(r) = P(X <z) = (;%, fora<a<b (4.36)
0, forx <a,
and probability density function
o) = F(a) = 2, fora<az<b 437)
0, elsewhere.

285 Example
Afamous distribution function is given by the standard normal distribution, whose probability density

function f is
1
f(x) = e 12 for—oo < z < o0 (4.38)

Ver

This is often called a “bell curve’, and is used widely in statistics. Since we are claiming that f is a

p.d.f, we should have

>~ 1 2
——e "2 dr =1 4.39
/oo V27T6 v ( )
by formula (4.31), which is equivalent to
/ e 2dr = \2r. (4.40)

We can use a double integral in polar coordinates to verify this integral. First,

/oo /OO e_(l’2+y2)/2 dx dy — /OO 6_92/2 (/OO e—x2/2 dx) dy
(o) (e
0o 2
= (/ e~T°/2 da;)
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4.7. Application: Probability and Expected Value

since the same function is being integrated twice in the middle equation, just with different variables.
But using polar coordinates, we see that

o0 00 27 o0
/ / e_(x2+92)/2d:cdy = / / e 2 dr df
—oo J —o0 0 0
o , r=00
= / —e /2 do
0 r=0

_ /()Qﬂ(O—(—eO))dH:/()%ldH = o,

and so

- 2
</ e~ e/2 dm) = 27 , and hence
/ e 24 = \2r.

In addition to individual random variables, we can consider jointly distributed random variables.
For this, we will let X, Y and Z be three real-valued continuous random variables defined on the
same sample space €2 in R (the discussion for two random variables is similar). Then the joint dis-
tribution function F of X,Y and Z is given by

F(z,y,2) = P(X <z, Y <y, Z<z), for—oo<uzy,z<oc. (4.47)

If there is a nonnegative, continuous real-valued function f on R? such that

z y T
F(x,y,z) = / / / flu,v,w)dudvdw, for—oo < x,y,z < o0 (4.42)

/Z/Z/Zf(x,y,z)dxdydz =1, (4.43)

then we call f the joint probability density function (or joint p.d.f. for short) for X, Y and Z. In

and

general, fora, < by, a, < b,, az < bz, we have
bs b2 b1
Play < X <by,a, <Y < by, a3 < Z <by) = / / f(x,y,2)dedydz, (4.44)
as as ay

with the < and < symbols interchangeable in any combination. A triple integral, then, can be
thought of as representing a probability (for a function f whichis a p.d.f.).

286 Example
Let a, b, and c be real numbers selected randomly from the interval (0, 1). What is the probability that
the equation ax?® + bz + ¢ = 0 has at least one real solution x:?
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4. Multiple Integrals

Solution: » We know by the quadratic formula that there is at least one
real solution if b> — 4ac > 0. So we need to calculate P(b* —4ac > 0). We

will use three jointly distributed random variables to do this. First, since

T
1
—d

e
-
—_

0 <a,b,c<1,wehave

W —dac >0 0<4dac<b <1e0<2/aye<b<l,

el B~y

N e

where the last relation holds for all 0 < a, ¢ < 1 such that Figure 4.14. Region

R=R,UR,

1
O<dac<l&0<e < —.
4a

Considering a, band cas real variables, the region R in the ac-plane where the above relation holds
isgivenby R = {(a,c) : 0 <a<1,0<c<1,0<c< £}, whichwe can see s a union of two
regions R, and R,, asin Figure 3.7.1 above.

Now let X, Y and Z be continuous random variables, each representing arandomly selected real
number from the interval (0, 1) (think of X, Y and Z representing a, b and ¢, respectively). Then,
similar to how we showed that f(z) = 1is the p.d.f. of the uniform distribution on (0, 1), it can be
shown that f(x,y,2) = 1forz,y,zin (0,1)

(0 elsewhere) is the joint p.d.f. of X, Y and Z. Now,

P(b* —4ac>0) = P((a,c) € R, 2ya/c<b< 1),

so this probability is the triple integral of f(a,b,c) = 1 as b varies from 2,/a\/cto 1 and as (a, c¢)
varies over the region R. Since R can be divided into two regions R, and R,, then the required
triple integral can be splitinto a sum of two triple integrals, using vertical slices in R:

1/4 p1 p1 1 1/4a 1
P(b* — 4ac > 0) = / / / 1dbdcda + / / / 1 dbdcda
0 ~ 0 J2v/a+/c 1/4J0 2\/a+/c
1 Ry

1/4 p1 1 pl/4a
— / (1—2va+e)deda + / / (1-2Va+/ec)deda
0 0 1/4Jo

1/4 c=1 1 c=1/4a
= / <c—§,)1 ac? )da+ / <C—§ ac/? )da
0 c=0 1/4 c=0

1/4 ) 1 )
:/ (1—3\/6>da+/ 135 da
0 1/4
< 1/4 . 1
:a—§a3/2 —&—Elna
0 1/4
11 1.1 5 1
= (>-= 0——In-) = —+—In4
(4 9)+( 12“4) 36 12"
5+3In4
P(b2—4a020):%%0.2544

In other words, the equation az? + bx + ¢ = 0 has about a 25% chance of being solved! «
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4.7. Application: Probability and Expected Value
Expected Value

The expected value E X of arandom variable X can be thought of as the “average” value of X as
it varies over its sample space. If X is a discrete random variable, then

EX = ) aP(X =u1), (4.45)

with the sum being taken over all elements = of the sample space. For example, if X represents the
number rolled on a six-sided die, then

6

6
EX = Y zP(X = Z é (4.46)

=1
is the expected value of X, which is the average of the integers 1 — 6.
If X is a real-valued continuous random variable with p.d.f. f, then

EX = /00 x f(x)dzx. (4.47)

For example, if X has the uniform distribution on the interval (0, 1), then its p.d.f. is

1, for0<z<1
f(@) = (4.48)

0, elsewhere,

and so .
o0 1
EX = / x f(x)dr = / xdr = 3 (4.49)
—00 0

For a pair of jointly distributed, real-valued continuous random variables X and Y with joint p.d.f.
f(z,y), the expected values of X and Y are given by

EX = / / f(z,y)dzdy and EY = / / y f(z,y)dxdy, (4.50)
respectively.

Example
If you were to pick n > 2 random real numbers from the interval (0, 1), what are the expected values
for the smallest and largest of those numbers?

Solution: » Let U,,...,U, be n continuous random variables, each representing a randomly
selected real number from (0, 1), i.e. each has the uniform distribution on (0, 1). Define random
variables X and Y by

X =min(U,,...,U,) and Y =max(U,,...,U,).
Then it can be shown3 that the joint p.d.f. of X and Y is

o _ n—2
) = nn—1)(y —x)" =, for0<zx<y<1 (4.51)

0, elsewhere.

3See Ch. 6in [34].
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Thus, the expected value of X is

EX = /01 /Iln(n—l)x(y—aj)nQ dy dz
_ /01 <n$(y—x)"_1 z:> dr

1
= / nz(1 — z)" 1 dz | sointegration by parts yields
0

1 1

- _ 1— n __ 1— n+1
Pl =) — g (L)
EX = L,
n+1
and similarly (see Exercise 3) it can be shown that
EY = / / (n—Dyly —z)" 2dedy = n
n+1"

So, for example, if you were to repeatedly take samples of n = 3 random real numbers from (0, 1),
and each time store the minimum and maximum values in the sample, then the average of the
minimums would approach % and the average of the maximums would approach % as the number
of samples grows. It would be relatively simple (see Exercise 4) to write a computer program to test
this. <

Exercises

1. Evaluate the integral / e~ dx using anything you have learned so far.

(e.)
1 276 2
2. Foro >0andu > 0, evaluate/ e~ (@=m)7/20% gop.
a oo OV 2T
3. Showthat EY = 7 in Example 287

4. Write a computer program (in the language of your choice) that verifies the results in Example
287 for the case n = 3 by taking large numbers of samples.

5. Repeat Exercise 4 for the case whenn = 4.

6. For continuous random variables X, Y with joint p.d.f. f(z,y), define the second moments
E(X?)and E(Y?) by

E(X / / 22 f(z,y)dzdy and E(Y?) / / y? fx,y)dzdy,

and the variances Var(X ) and Var(Y") by
Var(X) = E(X?) — (EX)? and Var(Y) = E(Y?) — (EY)?.

Find Var(X) and Var(Y') for X and Y as in Example 287.
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4.7. Application: Probability and Expected Value
7. Continuing Exercise 6, the correlation p between X and Y is defined as

E(XY) — (EX)(EY)
Var(X)Var(Y)

p:

where E(XY) = / / xy f(z,y) dx dy. Find p for X and Y as in Example 287.
(Note: The quantity_E(X_Y) — (EX)(EY) is called the covariance of X and Y".)

8. InExample 286 would the answer change if the interval (0, 100) is used instead of (0, 1)? Explain.
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Curves and Surfaces

5.1. Parametric Curves

There are many ways we can described a curve. We can, say, describe it by a equation that the
points on the curve satisfy. For example, a circle can be described by 2% + 32 = 1. However, this is
not a good way to do so, as it is rather difficult to work with. It is also often difficult to find a closed
form like this for a curve.

Instead, we can imagine the curve to be specified by a particle moving along the path. So it is
represented by a function f : R — R"™, and the curve itself is the image of the function. This is
known as a parametrization of a curve. In addition to simplified notation, this also has the benefit
of giving the curve an orientation.

288 | Definition
We sayI' C R" is a differentiable curve if exists a differentiable functiony : I = [a,b] — R" such
thatT' = ~([a, b]).

The function ~y is said a parametrization of the curve ~y. And the function~y : I = [a,b] — R™is

said a parametric curve.

Sometimes I" = y[I] C R" is called the image of the parametric curve. We note that a curve R"
can be the image of several distinct parametric curves.

289 Remark
Usually we will denote the image of the curve and its parametrization by the same letter and we will
talk about the curve y with parametrization ~(t).

290 | Definition
A parametrization y(t) : I — R™ is regularif~'(t) # 0forallt € I.

The parametrization provide the curve with an orientation. Since v = ([a, b]), we can think the

curve as the trace of a motion that starts at y(a) and ends on v(b).
291 Example

The curve x? + y? = 1 can be parametrized by y(t) = (cost,sint) fort € [0, 27]
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5. Curves and Surfaces

Figure 5.1. Orientation of a Curve

x = x(t) C
i/ - ZZ/EQ r(t) (z(b),y(b), 2(b))
. PY R Y
t b 0

Figure5.2. Parametrization of a curve C'in R3

Given a parametric curvey : I = [a,b] — R"

m The curve is said to be simple if v is injective, i.e. if for all z, y in (a, b), we have y(z) = v(y)

implies x = y.
m Ify(z) = v(y) forsome x # yin (a,b), then v(x) is called a multiple point of the curve.
m Acurve v is said to be closed if y(a) = (b).
m Asimple closed curve is a closed curve which does not intersect itself.

Note that any closed curve can be regarded as a union of simple closed curves (think of the loops

in a figure eight)

C C
(a) Closed (b) Not closed

Figure5.3. Closed vs non-closed curves

292 |Theorem (Jordan Curve Theorem)
Let ~y be a simple closed curve in the plane R2. Then its complement, R? \ =, consists of exactly
two connected components. One of these components is bounded (the interior) and the other is
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5.1. Parametric Curves

unbounded (the exterior), and the curve - is the boundary of each component.

The Jordan Curve Theorem asserts that every simple closed curve in the plane curve divides the
planeinto an ”interior” region bounded by the curve and an "exterior” region. While the statement
of this theorem is intuitively obvious, it’s demonstration is intricate.

Example
Find a parametric representation for the curve resulting by the intersection ofthe plane3xz +y + z = 1
and the cylinder 2> + 2y? = 1in R3.

Solution: » The projection of the intersection of the plane 3z + y + z = 1 and the cylinder is the
ellipse 2 4 2y% = 1, on the zy-plane. This ellipse can be parametrized as

2
x:cost,y:\gsint, 0<t< 27,

From the equation of the plane,

2
z:1—3a:—y:1—3cost—\2[sint.

Thus we may take the parametrization

r(t) = (z(t),y(t), 2(t)) = (cost, ?sint, 1 —3cost — ?sint) .

<

Proposition

Letf: R"t! — R" js differentiable, c € R™ and y = {x € R+ ’ f(z) = c} be the level set of f. If
at every point in ~y, the matrix Df has rank n then v is a curve.

Proof. Leta € ~. Since rank(D(f),) = d, there must be d linearly independent columns in
the matrix D(f),. For simplicity assume these are the first d ones. The implicit function theo-
rem applies and guarantees that the equation f(xz) = ¢ can be solved for z1,...,z,, and each
x; can be expressed as a differentiable function of x,,11 (close to a). That is, there exist open sets
U’ C R™, V' C R and a differentiable function g such thata € U’ x V' and y(U' x V') =

{(9($n+1),xn+1) ’ Tn+1 € V’}. .

Remark

A curve can have many parametrizations. For example, 6(t) = (cost,sin(—t)) also parametrizes
the unit circle, but runs clockwise instead of counter clockwise. Choosing a parametrization requires
choosing the direction of traversal through the curve.

We can change parametrization of r by taking an invertible smooth function v — @, and have a
new parametrization r(a) = r(@(u)). Then by the chain rule,

dr_dr da
due  da du
dr _dr da
do  du’ du
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296 Proposition
Let v be a regular curve and ~y be a parametrization, a = ~(ty) € . Then the tangent line through a
is {(to) +t'(to) | t € R}.

If we think of y(¢) as the position of a particle at time ¢, then the above says that the tangent
space is spanned by the velocity of the particle.

That s, the velocity of the particle is always tangent to the curve it traces out. However, the accel-
eration of the particle (defined to be v”') need not be tangent to the curve! In fact if the magnitude
of the velocity|/| is constant, then the acceleration will be perpendicular to the curve!

So far we have always insisted all curves and parametrizations are differentiable or C'. We now

relax this requirement and subsequently only assume that all curves (and parametrizations) are
piecewise differentiable, or piecewise C'!.

297 | Definition

A function f : [a,b] — R" is called piecewise C' if there exists a finite set F' C [a, b] such that f is
C' on [a,b] — F, and further both left and right limits of f and f' exist at all points in F.

Figure 5.4. Piecewise C' function

298 | Definition

A (connected) curve  is piecewise C if it has a parametrization which is continuous and piecewise
Ccl.

Figure5.5. Theboundary ofasquareisa piecewise
C"* curve, but not a differentiable curve.
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5.2. Surfaces
299 Remark
Apiecewise C'' function need not be continuous. But curves are always assumed to be at least contin-
uous; so for notational convenience, we define a piecewise C'* curve to be one which has a parametriza-
tion which is both continuous and piecewise C.

5.2. Surfaces

We have seen that a space curve C' can be parametrized by a vector function r = r(u) where u
ranges over some interval I of the u-axis. In an analogous manner we can parametrize a surface S
in space by a vector function r = r(u, v) where (u, v) ranges over some region € of the uv-plane.

v R?
S
/\ ~
Q T = xéu, v))
(u]v) 2~ 2uv) r(u,v)
Yy
0

Figure 5.6. Parametrization of a surface S in R?

300 | Definition
A parametrized surface is given by a one-to-one transformationr : ) — R, where Q) is a domain
in the plane R2. The transformation is then given by

r(u,v) = (x1(u,v), ..., xn(u,v)).

301 Example
(The graph of a function) The graph of a function

y = [f(z),z € [a,b]
can be parametrized by setting
r(u) = ui+ f(uw)j,u € [a,b].
In the same vein the graph of a function
z=fz,y),(x,y) € Q
can be parametrized by setting
r(u,v) = ui+vj+ f(u,v)k, (u,v) € Q.

As (u, v) ranges over (, the tip of r(u, v) traces out the graph of f.
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Example (Plane)

Iftwo vectors aand b are not parallel, then the set of all linear combinations ua + vb generate a plane
po that passes through the origin. We can parametrize this plane by setting

r(u,v) = ua+vb, (u,v) € R x R.
The plane p that is parallel to py and passes through the tip of c can be parametrized by setting
r(u,v) =ua+vb+c,(u,v) € R xR.
Note that the plane contains the lines

li :7(u,0) =ua+candly : r(0,v) = vb + c.

Example (Sphere)
The sphere of radius a centered at the origin can be parametrized by

r(u,v) = acos ucos vi+ asin ucos vj + asin vk
m

2
Derive this parametrization. The points of latitude v form a circle of radius a cos v on the horizontal

with (u,v) ranging over the rectangle R : 0 < u < 2, I <wv<

plane z = asin v. This circle can be parametrized by
R(u) = acosv(cosui + sinuj) + asinvk, u € [0, 27].
This expands to give
R(u,v) = acos ucos vi+ asin ucos vj+ asin vk, u € [0, 27].
Letting v range from —g to g, we obtain the entire sphere. The xyz-equation for this same sphere is

x? +y? + 22 = a?. Itis easy to verify that the parametrization satisfies this equation:

2 2

2 +y2 + 2% = a® cos *ucos %v 4 a?sin 2

wcos v + a? sin %v

= a2 (cos 2u + sin 2u) cos v + a? sin 2v
= a? (cos 2y ~+ sin 21}) = a’.

Example (Cone)
Considers a cone with apex semiangle o and slant height s. The points of slant height v form a circle
of radius v sin « on the horizontal plane z = v cos a. This circle can be parametrized by

C(u) = vsin a(cos ui + sin uj) + v cos ak

= vcos usin od + vsin usin aj + v cos ak, u € [0, 27].

Since we can obtain the entire cone by letting v range from 0 to s, the cone is parametrized by
r(u,v) = vcos usin ai + vsin usin aj + v cos ak,

with) < u <2m,0<wv <s.
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305 Example (Spiral Ramp)
A rod of length [ initially resting on the x-axis and attached at one end to the z-axis sweeps out a

surface by rotating about the z-axis at constant rate w while climbing at a constant rate b.

306

5.2.1.

307 |Theorem (Regular Value Theorem)

To parametrize this surface we mark the point of the rod at a distance u from the z-axis (0 < u < [)

and ask for the position of this point at time v. At time v the rod will have climbed a distance bv and
rotated through an angle wv. Thus the point will be found at the tip of the vector

u(coswvi + sin wvj) + bvk = ucoswv i + usin wvj + bvk.

The entire surface can be parametrized by

r(u,v) = ucoswvi+ usin wvj + bvkwith0 < u < 1,0 < v.

Definition
A regular parametrized surface is a smooth mapping ¢ : U — R", where U is an open subset of
R?, of maximal rank. This is equivalent to saying that the rank of o is 2

Let (u,v) be coordinates in R?, (x1, ..., z,) be coordinates in R™. Then
(P(u’ 1}) = ($1(u7 v)7 SR xn(u, U))7

where z;(u, v) admit partial derivatives and the Jacobian matrix has rank two.

Implicit Surface
An implicit surface is the set of zeros of a function of three variables, i.e, an implicit surface is a
surface in Euclidean space defined by an equation
F(x,y,z)=0.
Let ' : U — R be a differentiable function. A regular point is a point p € U for which the

differential dF), is surjective.
We say that q is a regular value, if for every point pin F'~1(q), p is a regular value.

LetU C R3 beopenand F : U — R be differentiable. If q is a regular value of f then F~1(q) is a

regular surface

308 Example

Show that the circular cylinder 2% + y? = 1is a reqular surface.

Solution: » Define the function F(z,y, z) = 22+ + 22 — 1. Then the cylinder is the set f~1(0).

Observe that % =2z, g—f =2y, g—f =2z.
y z
Itis clear that all partial derivatives are zero ifand only if x = y = z = 0. Further checking shows
that £(0,0,0) # 0, which means that (0,0, 0) does not belongto f~1(0). Hence forallu € f~1(0),
not all of partial derivatives at u are zero. By Theorem 307, the circular cylinder is a regular surface.

<
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5. Curves and Surfaces

5.3. Classical Examples of Surfaces

In this section we consider various surfaces that we shall periodically encounter in subsequent sec-
tions.

Let us start with the plane. Recall that if a, b, c are real numbers, not all zero, then the Cartesian
equation of a plane with normal vector (a, b, ¢) and passing through the point (zg, yo, 20) is

a(z — o) +b(y — yo) + (2 — 20) = 0.

If we know that the vectors u and v are on the plane (parallel to the plane) then with the parameters
p, gthe equation of the plane is

Tr — Tg = pui + qui,

Y — Yo = puz + qu2,

Z — 20 = puz + qua.

309 | Definition
Asurface S consisting of all lines parallel to a given line A and passing through a given curve ~y is
called a cylinder. The line A is called the directrix of the cylinder.

To recognise whether a given surface is a cylinder we look at its Cartesian equation. If it
is of the form f(A, B) = 0, where A, B are secant planes, then the curve is a cylinder.
Under these conditions, the lines generating S will be parallel to the line of equation
A =0, B = 0. In practice, if one of the variables x, y, or z is missing, then the surface
is a cylinder, whose directrix will be the axis of the missing coordinate.

5 2

Figure 5.7. Circular cylinder 22 + y% = 1. Figure 5.8. The parabolic cylinder = = y°.

310 Example
Figure 5.7 shews the cylinder with Cartesian equation x> +y? = 1. One starts with the circle x*> +y? =
1 on the xy-plane and moves it up and down the z-axis. A parametrization for this cylinder is the
following:

T = Ccosv, y = sinwv, z =u, u € R,v € [0;27].
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311 Example
Figure 5.8 shews the parabolic cylinder with Cartesian equation z = 2. One starts with the parabola
z = y? on the yz-plane and moves it up and down the z-axis. A parametrization for this parabolic
cylinder is the following:

T =u, Y=, z =107, u € R,veR.

312 Example
Figure 5.9 shews the hyperbolic cylinder with Cartesian equation 2> — y* = 1. One starts with the
hyperbola x> — y? on the xy-plane and moves it up and down the z-axis. A parametrization for this
parabolic cylinder is the following:

r = +coshw, y = sinh v, z =u, u e R veR.

We need a choice of sign for each of the portions. We have used the fact that cosh? v — sinh? v = 1.

313 | Definition
Given a point Q € R? (called the apex) and a curve v (called the generating curve), the surface S
obtained by drawing rays from €2 and passing through ~y is called a cone.

. . . . A
In practice, if the Cartesian equation of a surface can be putinto the form f(a, 5) =0,
where A, B, C, are planes secant at exactly one point, then the surface is a cone, and

its apexis givenby A=0,8B=0,C = 0.

314 Example
The surface in R3 implicitly given by

2 =2 4y
2\ 2 y\2
is a cone, as its equation can be put in the form (—) + (7) — 1 = 0. Considering the planes
z z

x =0,y =0,z =0, the apexis located at (0,0, 0). The graph is shewn in figure 5.11.

315 | Definition

A surface S obtained by making a curve +y turn around a line A is called a surface of revolution.
We then say that A is the axis of revolution. The intersection of S with a half-plane bounded by A is
called a meridian.

If the Cartesian equation of S can be put in the form f(A,S) = 0, where A is a plane
and S is a sphere, then the surface is of revolution. The axis of S is the line passing
through the centre of S and perpendicular to the plane A.

316 Example
Find the equation of the surface of revolution generated by revolving the hyperbola

22— 422 =1

about the z-axis.
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Figure 5.10. The torus. ) )

Figure 5.9. The hyperbolic cylinder 22 — 32 = 1. Figure 5.11. Cone = + Z—Q

Solution: » Let (z,y, z) be a point on S. If this point were on the zz plane, it would be on the
hyperbola, and its distance to the axis of rotation would be |z| = /1 + 4z2. Anywhere else, the
distance of (z, y, z) to the axis of rotation is the same as the distance of (x, y, z) to (0,0, z), that is

V2 + y2. We must have
Va2 +y? =1+ 422,

which is to say
2?4 y? — 422 = 1.

This surface is called a hyperboloid of one sheet. See figure 5.15. Observe that when z = 0, 22 +
y? = lisacircle on the zy plane. When = = 0, y?> — 422 = 1 is a hyperbola on the yz plane. When
y =0, 2% — 422 = 1is a hyperbola on the zz plane.

A parametrization for this hyperboloid is
=1+ 4u2cosw, y=V1+4u2sinwv, z=u, u € R,v € [0;27].

<

Example
The circle (y — a)? + 22 = 72, on the yz plane (a, r are positive real numbers) is revolved around the

z-axis, forming a torus T'. Find the equation of this torus.

Solution: » Let (z,y, z) beapointon T Ifthis point were on the yz plane, it would be on the circle,
and the of the distance to the axis of rotation would be y = a+sgn (y — a) V2 — 22, wheresgn (1)
(withsgn (t) = —1ift < 0,sgn (t) = 1ift > 0,and sgn (0) = 0) is the sign of t. Anywhere else, the
distance from (z, y, z) to the z-axis is the distance of this point to the point (x, , z) : v/22 + 2. We
must have

22 +y* = (a+sgn(y —a) Vr2 — 22)% = a® + 2asgn (y — a) Vr?2 — 22 + 1% — 2%

Rearranging
22+ + 2% —a® —r? = 2asgn (y — a) V1?2 — 22,

or
(22 + % + 2% — (&> +1?))? = 4a®r? — 4a°2?

146



5.3. Classical Examples of Surfaces
since (sgn (y — a))? = 1, (it could not be 0, why?). Rearranging again,
(22 + % + 22)2 = 2(a® + ) (2® + y?) + 2(a® — %) 22 + (a®> —1H)? = 0.

The equation of the torus thus, is of fourth degree, and its graph appears in figure 7.4.
A parametrization for the torus generated by revolving the circle (y — a)? + 2% = 72 around the
z-axis is

x = acosf + rcosb cos a, y = asinf + rsin 6 cos «, z =rsinaq,

with (0, a) € [—m;7)%
<

Figure 5.12. Paraboloid Figure 5.13. Hyperbolic parabol&igure 5.14. Two-sheet hyperboloid
22 P 72 2 2 g2 g2
a b a2 12 c a b2

318 Example
The surface = = x> + y? is called an elliptic paraboloid. The equation clearly requires that z > 0.
For fixed z = ¢, c > 0, 2% + y?> = cisacircle. Wheny = 0, z = z? is a parabola on the xz plane.
When x = 0, z = 32 is a parabola on the yz plane. See figure 5.12. The following is a parametrization
of this paraboloid:

x = +\/ucosw, y = Vusinv, z=u, u € [0; 400, v € [0; 27].
319 Example
The surface z = 2% — y? is called a hyperbolic paraboloid or saddle. If = = 0, 2> — y?> = 0is a pair

of lines in the xy plane. Wheny = 0, z = x2 is a parabola on the xz plane. When z = 0, z = —y?
is a parabola on the yz plane. See figure 5.13. The following is a parametrization of this hyperbolic
paraboloid:

T = u, Y =, z:u2—1)2, u € R,veR.

320 Example
The surface 2% = 2 + y2 + 1is called an hyperboloid of two sheets. For 2> — 1 < 0, 22 +y2 < Qs
impossible, and hence there is no graph when —1 < z < 1. Wheny = 0, 22 — x> = 1 is a hyperbola
on the xz plane. When x = 0, 22 — y? = 1is a hyperbola on the yz plane. When z = cis a constant
c > 1, then the x? + y? = ¢? — 1 are circles. See figure 5.14. The following is a parametrization for
the top sheet of this hyperboloid of two sheets

T = U CoS v, Yy = usinwv, z=u?+1, u € R,v € [0;27]
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and the following parametrizes the bottom sheet,

T = U COS, Yy = usinv, z=—u?—1, u € R,v € [0;27],

Example

The surface z*> = 22 + y?> — 1 s called an hyperboloid of one sheet. For 2> + 4> < 1,22 < 0
is impossible, and hence there is no graph when 2> + y?> < 1. Wheny = 0, 2> — 2> = —lisa
hyperbola on the xz plane. When x = 0, 2> — 3> = —1is a hyperbola on the yz plane. When z = cis
a constant, then the 2% + y? = ¢® + 1 are circles See figure 5.15. The following is a parametrization
for this hyperboloid of one sheet

x = Vu?+ 1cosv, y = Vu?+ 1sinwv, z=u, u € R,v € [0;27],

Figure 5.15. One-sheet  hyperboloid 2 2 2

2 2,2 ; ivsoid =+ ¥ L2
% _ :% n v Figure 5.16. Ellipsoid e + = + 2 1.
c a b2
Example 5 5 5
Let a, b, c be strictly positive real numbers. The surface — + 72 + — = liscalled an ellipsoid. For
22 g2 @ 22 52 ¢
z2=0,—5+ b—zl is an ellipse on the xy plane.Wheny = 0, — + — = lisanellipse on the zz plane.
a a C
2 2
Whenz = 0, — + %2 = 1is an ellipse on the yz plane. See figure 5.16. We may parametrize the
C

ellipsoid using spherical coordinates:

Z = acos fsin ¢, y = bsin @ sin ¢, Z = ccos @, 0 € [0;27], ¢ € [0;7].
Exercises
Problem erated by revolving the line 3z + 4y = 1 about

Find the equation of the surface of revolution S the y-qxis .

. : 2, ,2_
generated by revolving the ellipse 4z + z —3%5 Problem

about the z-axis. Describe the surface parametrized by p(u,v) +—
(veosu,vsinu,au), (u,v) € (0,27) x (0,1),

a>0.

Problem
Find the equation of the surface of revolution gen-
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326 Problem 332 Problem
Describe the surface parametrized by ¢(u,v) = Demonstrate that the surface in R? given implic-
(aucosv,businv,u?), (u,v) € (1,400) x itlyby
0,2 b>0.
(,7'('),(1, > ZZ—CCy:QZ—l
327 Problem

Consider the spherical cap defined by is a cone

S={(z,y,2) e R®: 2?4?22 =1, 2> 1/V2}.
333 Problem (Putnam Exam 1970)

Parametrise 5 using Cartesian, Spherical, and Determine, with proof, the radius of the largest

Cylindrical coordinates. circle which can lie on the ellipsoid

328 Problem

Demonstrate that the surface in R3 z2  y? 2P
—S+t5+t5=1 a>b>c>0.
R (x4 2)e™ 2 =0 ot b7
implicitly defined, is a cylinder. 334 Problem
329 Problem The hyperboloid of one sheet in figure 5.17 has the

Shew that the surface in R3 implicitly defined by  property that if it is cut by planes at z = +2, its
rojection on the lane produces the ellipse

x4+y4+z4—4:nyz(x+y+z):1 Pjy2 Ty p p P
z? + 2 = 1,andifitis cut by a plane at z = 0,

is a surface of revolution, and find its axis of revo- . 4 .
its projection on the xy plane produces the ellipse

lution.
330 Problem

Shew that the surface S in R? given implicitly by

4zx? + y? = 1. Find its equation.

the equation 2 =2 22 L

1 1 1 z
=1

+
rT—y Y—z2z z—=

is a cylinder and find the direction of its directrix. 220, 422 42 = 1
331 Problem z Yy
Shew that the surface S in R3 implicitly defined as 2
_ 2 Y _
z = —2, x° + Z =1
zy+yz+zr+x+y+z+1=0

is of revolution and find its axis. Figure 5.17. Problem 334.

5.4. * Manifolds

335 | Definition

Wesay M C R™js a d-dimensional (differentiable) manifold if for every a € M there exists domains
U C R™, V C R"and a differentiable function £ : V' — U such that rank(D(f)) = d at every point
inVandU N M = f(V).
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336 Remark
For d = 1this s just a curve, and for d = 2 this is a surface.

337 Remark
Ifd = 1 and v is a connected, then there exists an interval U and an injective differentiable function
~v: U — R"such that Dy # 0on U and v(U) = ~. Ifd > 1 this is no longer true: even though near
every point the surface is a differentiable image of a rectangle, the entire surface need not be one.

As before d-dimensional manifolds can be obtained as level sets of functions f : R"t¢ — R"
provided we have rank(D(f)) = d on the entire level set.

338 Proposition
Let f : R*T4 — R" js differentiable, c € R™ and v = {:r € R+ ) flx) = c} be the level set of f. If
at every point in ~y, the matrix D(f) has rank d then - is a d-dimensional manifold.

The results from the previous section about tangent spaces of implicitly defined manifolds gen-
eralize naturally in this context.

339 | Definition
LetU C R", f : U — R be adifferentiable function, and M = {(x, f(z)) € R*! ‘ x € U} be the
graph of f. (Note M is a d-dimensional manifold in R"*1.) Let (a, f(a)) € M.

m The tangent “plane” at the point (a, f(a)) is defined by
{(@,y) eR™! |y = f(a) + Dfulz — 0) }

m The tangent space at the point (a, f(a)) (denoted by T' M, ¢(a))) is the subspace defined by

TM @) = {(2,9) €R™! |y =Dfoz}.

340 Remark
When d = 2 the tangent plane is really a plane. For d = 1 itis a line (the tangent line), and for other
values it is a d-dimensional hyper-plane.

341 Proposition
Suppose f : R+ — R™ js differentiable, and the level set v = {x ‘ f(z) = c} is a d-dimensional
manifold. Suppose further that D(f), has rank n for all a € ~. Then the tangent space at a is precisely
the kernel of D(f),, and the vectors V f1, ...V f,, are n linearly independent vectors that are normal
to the tangent space.

5.5. Constrained optimization.

Consider an implicitly defined surface S = {g = c}, forsome g : R® — R. Our aim is to maximise
or minimise a function f on this surface.
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5.5. Constrained optimization.

Definition
We say a function f attains a local maximum at a on the surface S, if there exists e > 0 such that
|x —a|l < eandz € Simply f(a) > f(x).

Remark
This is sometimes called constrained local maximum, or local maximum subject to the constraint g =

C.

Proposition
If f attains a local maximum at a on the surface S, then 3\ € R suchthat V f(a) = AVg(a).

Proof. [Intuition] If V f(a) # 0, then &’ & {f = f(a)} isasurface. If f attains a constrained max-
imum at a then S” must be tangent to S at the point a. This forces V f(a) and Vg(a) to be parallel. m

Proposition (Multiple constraints)
Let f, g1, ..., gn : RT — R be: R — R be differentiable. If f attains a local maximum at a subject to

the constraints g1 = c1, g2 = ¢, ...gn = cp then 3Ny, ... A\, € Rsuchthat Vf(a) =37 \iVgi(a).

To explicitly find constrained local maxima in R™ with n constraints we do the following:

m Simultaneously solve the system of equations

Vi(x) =MV () + - AVgn(z)

gl(IE) = (1,
gn(x) = cp.
The unknowns are the d-coordinates of x, and the Lagrange multipliers Ay, ..., A,. Thisis

n + d variables.

The first equation above is a vector equation where both sides have d coordinates. The re-
maining are scalar equations. So the above system is a system of n + d equations withn + d

variables.
The typical situation will yield a finite number of solutions.

There is a test involving the bordered Hessian for whether these points are constrained local
minima / maxima or neither. These are quite complicated, and are usually more trouble than
they are worth, so one usually uses some ad-hoc method to decide whether the solution you

found is a local maximum or not.

346 Example
Find necessary conditions for f(x,y) = y to attain a local maxima/minima of subject to the constraint

y = g(x).
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Of course, from one variable calculus, we know that the local maxima / minima must occur at
points where ¢ = 0. Let’s revisit it using the constrained optimization technique above. Proof.
[Solution] Note our constraint is of the form y — g(z) = 0. So at a local maximum we must have

|~ VI=XV(y—g(2)) = gl(x) and y = g(z).

This forces A = 1 and hence ¢’'(z) = 0, as expected. "

Example 9 9

Maximise xy subject to the constraint — + Y1
a

b2

Proof. [Solution] At a local maximum,

2 2 2z /a®
| = V(ay) :W(%#’—) A |2
x a 2y /b2

which forces y? = x2b?/a’. Substituting this in the constraint gives 2 = 4-a/v/2 and y = £b//2.
This gives four possibilities for zy to attain a maximum. Directly checking shows that the points
(a/v/2,b/+/2)and (—a/+/2, —b/~/2) both correspond to a local maximum, and the maximum value
isab/2. L]

Proposition (Cauchy-Schwartz)
Ifx,y € R" then|x - y| <|x||y|.

Proof. Maximise x - y subject to the constraint|xz| = a and|y| = b. "

Proposition (Inequality of the means)
Ifx; > 0, then
1 n n 1/n
ne 1
Proposition (Young’s inequality)
Ifp,q>1land1/p+ 1/q = 1then
2|P q
2, l*

lzy| < —
p q
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Line Integrals

6.1.

Line Integrals of Vector Fields

We start with some motivation. With this objective we remember the definition of the work:

351

Definition
Ifa constant force facting on a body produces an displacement Ax, then the work done by the force
is feAx.

352

We want to generalize this definition to the case in which the force is not constant. For this pur-
pose let v C R™ be a curve, with a given direction of traversal, and f : R® — R” be a vector
function.

Here f represents the force that acts on a body and pushes it along the curve . The work done
by the force can be approximated by

N-—1
W =~ Zfiﬁl (Xi+1 — foz JeAx;

=0
where xg, X1, ..., Xy_1 are N points on =y, chosen along the direction of traversal. The limit as the
largest distance between neighbors approaches 0 is the work done:

= lim f(z;)e Ax;
1Pl—=0 = Z

This motivates the following definition:

Definition
Let~ C R™ be a curve with a given direction of traversal, and f : v — R™ be a (vector) function. The

line integral of f over ~y is defined to be

N-1
fedl = lim f(x])e(xi41 — X5
/7 i ZO (%) (xi41 — xy)
= lim f(x])sAx;.
I1Pl|=0 = Z
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if the above limit exists. Here P = {x¢, X1, ...,XnN_1}, the points x; are chosen along the direction
of traversal, and || P|| = max|x;+1 — X/

353 Remark
Iff = (f1,..., fn), where f; : v — R are functions, then one often writes the line integral in the
differential form notation as

/f-cw—/f1 dzy + -+ fp day
vy Y

The following result provides a explicit way of calculating line integrals using a parametrization
of the curve.

354 |Theorem
If~ : [a,b] — R™ is a parametrization of y (in the direction of traversal), then

b
/f-dﬂz/ fory(t)ey/(t) dt (6.1)
o' a

Proof.
Leta =ty <ty < --- < t, = bbeapartition of a, b and let x; = y(¢;).
The line integral of f over v is defined to be

N-1
/f- d¢ = lim f(x;)eAx;
o 1PI=0 =5

n N-—1 n N-—1
Z Z (%) (Axl)g = fi(xi) - (w’?)] At;
7=1 =0 j=1 i=0
n b
= x)) -~ () dt = [ fory(t)ey/(t) dt
> [ stten 70 at = [ tenerte

In the differential form notation (when d = 2) say
f=(f,9) and ~(t) = (=(t),y(1)),
where f, g : v — R are functions. Then Proposition 354 says
[eae= [ £ azrg dy= [ [fal.u0)20) + gle0).u0) (0] at
¥ v ¥

355 Remark
Sometimes (6.1) is used as the definition of the line integral. In this case, one needs to verify that this
definition is independent of the parametrization. Since this is a good exercise, we’ll do it anyway a
little later.
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356 Example
Take F(r) = (we¥, 2%, xy) and we want to find the line integral froma = (0,0,0) tob = (1,1,1).

b

C:
2 o

We first integrate along the curve Oy : r(u) = (u,u?, u?). Thenr'(u) = (1, 2u, 3u?), and F(r(u)) =

(ue®,us, ud). So
1
/ F-dr:/ Fer'(u) du
Ch 0

ue +2u” + 3u® du

Il
N ® [\')\('bo\
=

B =N =
+
N

_l’_
=

_|_

Now we try to integrate along another curve Cs : r(t) = (t,t,t). Sor'(t) = (1,1, 1).

/ FOdf—/F-r
-,

1
tet + 2t dt
0

_3
3
We see that the line integral depends on the curve C'in general, not just a, b.

357 Example
Suppose a body of mass M is placed at the origin. The force experienced by a body of mass m at the

-GM
point x € R3 is given by f(z) = 7336, where G is the gravitational constant. Compute the work
T

done when the body is moved from a to b along a straight line.

Solution: » Let 7 be the straight line joining a and b. Clearly v : [0,1] — ~ defined by v(¢) =
a + t(b — a) is a parametrization of 7. Now

1
IV:/ﬂM:—GMm/ w%qﬂ)&:GMm—GMml
v o |[v(t)] [b] lal

<

358 Remark
If the line joining through a and b passes through the origin, then some care has to be taken when
doing the above computation. We will see later that gravity is a conservative force, and that the
above line integral only depends on the endpoints and not the actual path taken.
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6. Line Integrals

6.2. Parametrization Invariance and Others
Properties of Line Integrals

Since line integrals can be defined in terms of ordinary integrals, they share many of the properties
of ordinary integrals.

359 | Definition
The curve vy is said to be the union of two curves v; and s if -y is defined on an interval [a, b], and the
curves vy and v, are the restriction |, p and 7|4 ;.

360 Proposition

m linearity property with respect to the integrand,
/(ozf+ﬂG)-d£: a/f-dé—l—ﬂ/(}-dé
gl v v

m additive property with respect to the path of integration: where the union of the two curves 1

/fodé:/ f-d€+/ fed?
Y 7 72

The proofs of these properties follows immediately from the definition of the line integral.

and ~ys is the curve .

361 |Definition
Leth : I — I be a C* real-valued function that is a one-to-one map of an interval I = [a, b] onto
anotherinterval I = [ay,b1]. Lety : I — R™ be a piecewise C'* path. Then we call the composition

Yo=voh:I—>R"

a reparametrization of .

It is implicit in the definition that 4 must carry endpoints to endpoints; that is, either h(a) = a4
and h(b) = by, or h(a) = by and h(b) = a;. We distinguish these two types of reparametrizations.

m In the first case, the reparametrization is said to be orientation-preserving, and a particle
tracing the path ;0 moves in the same direction as a particle tracing ;.

m In the second case, the reparametrization is described as orientation-reversing, and a par-
ticle tracing the path 10 moves in the opposite direction to that of a particle tracing v,

362 Proposition (Parametrization invariance)
Ify1 @ [a1,b1] — v and s : [ag, ba] — v are two parametrizations of y that traverse it in the same
direction, then

by bo
[ tomtmio at = [ ronmse) at

al a2
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6.3. Line Integral of Scalar Fields

Proof. Lety : [a1,b1] — [ag, bs] be defined by ¢ = 72’1 o 1. Since v1 and v, traverse the curve in
the same direction, ¢ must be increasing. One can also show (using the inverse function theorem)
that ¢ is continuous and piecewise C'*. Now

bo ba
/ Fona(t)mh(t) df = / (1 (2 (8))) (0(1) (1) .

a2 a2

Making the substitution s = ¢(¢) finishes the proof. m

6.3. Line Integral of Scalar Fields

363 | Definition

Ify C R™ is a piecewise C'* curve, then

length(1) = [ 7]df| = Zmﬂ
; i

where as before P = {xq,...,xN—-1}.

More generally:

364 | Definition
If f : v = Ris any scalar function, we define

N
def q
[ 710 i S 1) e

=0

9Unfortunately / f|d4] is also called the line integral. To avoid confusion, we will call this the line integral with

o
respect to arc-length instead.

The integral / f|d¢] is also denoted by
g

Af dszlf\de\

365 | Theorem

Lety C R™ be a piecewise C' curve, v : [a,b] — R be any parametrization (in the given direction
of traversal), f : v — R be a scalar function. Then

L flae) = / ’ Fa) [y 0

( dt,

157



366

367

6.3.1.

368

6. Line Integrals

and consequently

b
length(~y) —/1 |d¢] —/
~ a

Compute the circumference of a circle of radius r.

y(®)| dt

Example

Example
The trace of
r(t) =1icost + jsint + kt

is known as a cylindrical helix. To find the length of the helix as t traverses the interval [0; 27], first
observe that
lae] = | (sint)? + (= cost)* + 1|[dt = v/2at,

and thus the length is

27
V2dt = 27v/2.

0

Area above a Curve

If yisacurveinthe zy-planeand f(z, y) is a nonnegative continuous function defined on the curve
v, then the integral

/ f(z,y)lde)
:

can beinterpreted as the area A of the curtain that obtained by the union of all vertical line segment
that extends upward from the point (z, y) to a height of f(x,y), i.e, the area bounded by the curve
~ and the graph of f

This fact come from the approximation by rectangles:

N
area = lim T Tirl — Tg
HPH—)O%JC( 73/)’ i+1 AR)

S

Y

Example
Use a line integral to show that the lateral surface area A of a right circular cylinder of radius r and
height h is 27trh.
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6.3. Line Integral of Scalar Fields

Az

r C:x*4+y*=r

Figure 6.1. Right circular cylinder of radius r and
height h
Solution: » We will use the right circular cylinder with base circle C given by 2 + y? = 2 and
with height A in the positive z direction (see Figure 4.1.3). Parametrize C' as follows:
x = x(t) = rcost, y = y(t) = rsint, 0<t¢t<27

Let f(z,y) = hforall (z,y). Then

b
A= /C f(e.y)ds = / F(t), () Vo (02 + 5 (1)2 dt

21
= / hy/(—=rsint)2 + (rcost)? dt
0
27
= h/ ry/sin?t + cos2t dt
0

27
= rh/ 1dt = 2nrh
0

|

369 Example
Find the area of the surface extending upward from the circle x> + y> = 1 in the xy-plane to the
parabolic cylinder z = 1 — 1/

Solution: » The circle circle C given by 22 + y? = 1 can be parametrized as as follows:

x = x(t) = cost, y = y(t) = sint, 0<t<27w
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Let f(z,y) = 1 — 32 forall (z, y). Above the circle he have f(#) = 1 — sin? ¢ Then

b
A= /C faads = [ fla).u®) a7+ 0P de

= /%(1 —sin’ t) \/(— sint)? + (cost)? dt
0

27
= / 1—sintdt = 7
0

The First Fundamental Theorem

Definition
Suppose U C R" is a domain. A vector field F is a gradient field in U if exists an C'' function
¢ : U — Rsuch that

F=Veo.

The function  is called the potential of the vector field F.

In

Definition

Suppose U C R" is a domain. Avector fieldf : U — R" is a path-independent vector field if the
integral of f over a piecewise C'' curve is dependent only on end points, for all piecewise C* curve in
U.

Theorem (First Fundamental theorem for line integrals)
Suppose U C R™ is a domain, ¢ : U — Ris C' and v C R™ is any differentiable curve that starts
at a, ends at b and is completely contained in U. Then

/ Ve dt = () — p(a).
v

Proof. Let~ : [0, 1] — - be a parametrization of . Note

1 1
[ emae= [ et at= [ Get) dt= o) -4

The above theorem can be restated as: a gradient vector field is a path-independent vector field.
If v is a closed curve, then line integrals over « are denoted by

ygfo ds.
~
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6.4. The First Fundamental Theorem

373 Corollary
Ify C R™is a closed curve, and ¢ : v — Ris C?, then

%Vgp-df =0.
2l

374 | Definition
LetU C R™, andf: U — R™ be a vector function. We say fis a conservative force (or conservative

vector field) if
515 fodl¢ =0,

for all closed curves v which are completely contained inside U.

Clearly if f = —V¢ for some C'! function V : U — R, then fis conservative. The converse is also
true provided U is simply connected, which we’ll return to later. For conservative vector field:

/F-dz—/vqﬁ-de
v v

=[]}
= ¢(b) — ¢(a)

We note that the result is independent of the path ~ joining a to b.

375 Example
If o fails to be C*! even at one point, the above can fail quite badly. Let p(x,y) = tan~!(y/x), ex-

tended to R? — {(:1:, y) ‘ r < 0} in the usual way. Then

1 -y

Vo=
g 22+ 42

X

which is defined on R? — (0,0). In particular, if y = {(a:, Y) ’ R = 1}, then V¢ is defined on
all of v. However, you can easily compute

§1§w.de= 21 # 0.
Y

The reason this doesn’t contradict the previous corollary is that Corollary 373 requires o itself to be
defined on all of v, and not just V! This example leads into something called the winding number
which we will return to later.
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6. Line Integrals

6.5. Test for a Gradient Field

If a vector field F is a gradient field, and the potential ¢ has continuous second derivatives, then
the second-order mixed partial derivatives must be equal:

gf; (x) = ‘;? (x) forall7, j
Soif F = (F,...,F,)is a gradient field and the components of F have continuous partial
derivatives, then we must have
SZ (x) = ‘;? (x) forall7, j

If these partial derivatives do not agree, then the vector field cannot be a gradient field.
This gives us an easy way to determine that a vector field is not a gradient field.
376 Example
The vector field (—y, x, —yx) is not a gradient field because partials f1 = —1is not equal to 01 fo =
1.

When F is defined on simple connected domain and has continuous partial derivatives, the
check works the other way as well. If F = (F},..., F),) is field and the components of F have
continuous partial derivatives, satisfying

OF; OF}
aZE]’ (X) N 8.1?1
then F is a gradient field (i.e., there is a potential function f such that F = V f). This gives us a very

(x)foralli,j

nice way of checking if a vector field is a gradient field.

377 Example
The vector field F = (z, z,y) is a gradient field because F is defined on all of R3, each component
has continuous partial derivatives, and M, = 0 = N, M, = 0 = P,,and N, = 1 = P,. Notice that
f=22/2+yzgivesVf = (x,2y) =F.

6.5.1. Irrotational Vector Fields

In this section we restrict our attention to three dimensional space .

378 | Definition
Letf: U — R3 be a C* vector field defined in the open set U. Then the vector fis called irrotational
ifand only ifits curl is O everywhere in U, i.e., if

Vxf=0.

For any C? scalar field ¢ on U, we have
V x (Vy)=0.

so every C'! gradiente vector field on U is also an irrotational vector field on U.
Provided that U is simply connected, the converse of this is also true:
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6.5. Test for a Gradient Field

379 [Theorem
Let U C R3 be a simply connected domain and let f be a C* vector field in U. Then are equivalents

m fisairrotational vector field;
m fis agradiente vector field on U

m f is aconservative vector field on U

The proof of this theorem is presented in the Section 7.7.1.
The above statement is not true in general if U is not simply connected as we have already seen
in the example 375.

6.5.2. Work and potential energy

380 | Definition (Work and potential energy)
IfF(r) is a force, then / F.d/ is the work done by the force along the curve C. Itis the limit of a

c
sum of terms F(r)«or, ie. the force along the direction of dr.

Consider a point particle moving under F(r) according to Newton’s second law: F(r) = mf.
Since the kinetic energy is defined as

the rate of change of energy is

3 T(t) = mi+i = Fei.

Suppose the path of particle is a curve C froma = r(a) tob = r(f), Then

B aT B
TB) —T(a) = r dt = / Fer dt = /CF-dE.

So the work done on the particle is the change in kinetic energy.

381 | Definition (Potential energy)
Given a conservative force F = —VV, V (x) is the potential energy. Then

/ Fedl = V(a) — V(b).
C

Therefore, for a conservative force, we have F = VV, where V (r) is the potential energy.

So the work done (gain in kinetic energy) is the loss in potential energy. So the total energy T+ V
is conserved, ie. constant during motion.

We see that energy is conserved for conservative forces. In fact, the converse is true — the energy
is conserved only for conservative forces.
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6. Line Integrals

6.6. The Second Fundamental Theorem

The gradient theorem states that if the vector field fis the gradient of some scalar-valued function,
then fis a path-independent vector field. This theorem has a powerful converse:

382 |Theorem
Suppose U C R™ is a domain of R™. If F is a path-independent vector field in U, then F is the
gradient of some scalar-valued function.

It is straightforward to show that a vector field is path-independent if and only if the integral of
the vector field over every closed loop in its domain is zero. Thus the converse can alternatively be
stated as follows: If the integral of f over every closed loop in the domain of fis zero, then fis the
gradient of some scalar-valued function.

Proof.

Suppose U is an open, path-connected subset of R™*, and F : U — R" is a continuous and

path-independent vector field. Fix some point a of U, and define f : U — R by

f(x):= /ﬂa’x} F(u).d?

Here v[a, x| is any differentiable curve in U originating at a and terminating at x. We know that f
is well-defined because f'is path-independent.
Let v be any nonzero vector in R™. By the definition of the directional derivative,

Of . J(x+tv) — f(x)
R 62
/ F(u)-dﬂ/ F(u).d/
— Jjm 222 el (6.3)
t—0 t
= lim % F(u)edl (6.4)

3 [xx V]

To calculate the integral within the final limit, we must parametrize y[x, x + ¢v]. Since fis path-
independent, U is open, and t is approaching zero, we may assume that this path is a straight line,
and parametrizeitasu(s) = x + svfor0 < s < t. Now, since u’(s) = v, the limit becomes

) 1 t , d t
%Ln%g ; F(u(s))eu'(s) ds = i ), F(x+ sv)sv ds » =F(x)sv
Thus we have a formula for 9y f, where v is arbitrary.. Let x = (z1, 29, ..., x,)
_(9f(x) 0f(x)  Of(x)) _
Vf(X)—( 109 01, 28E)

Thus we have found a scalar-valued function f whose gradient is the path-independent vector
field £, as desired.
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6.7. Constructing Potentials Functions

6.7. Constructing Potentials Functions

If fis a conservative field on an open connected set U, the line integral of f is independent of the
path in U. Therefore we can find a potential simply by integrating f from some fixed point a to an
arbitrary point x in U, using any piecewise smooth path lying in U. The scalar field so obtained
depends on the choice of the initial point a. If we start from another initial point, say b, we obtain
a new potential. But, because of the additive property of line integrals, and can differ only by a
constant, this constant being the integral of f from a to b.

Construction of a potential on an open rectangle. If fis a conservative vector field on an open
rectangle in R", a potential f can be constructed by integrating from a fixed point to an arbitrary
point along a set of line segments parallel to the coordinate axes.

(a,b) (z,b)

We will simplify the deduction, assuming that n = 2. In this case we can integrate first from (a,
b) to (x, b) along a horizontal segment, then from (x, b) to (x,y) along a vertical segment. Along the
horizontal segment we use the parametric representation

v(t) = ti+bj,a <,t <z,
and along the vertical segment we use the parametrization
Yo(t) =zi+tj,b <t <y.

If F(x,y) = Fi(x,y)i+ Fa(z,y)j, the resulting formula for a potential f(z,y) is
b y
f(ﬂﬁ,y)z/ Fi(t,b) dt+/ Fy(x,t) dt.
a b

We could also integrate first from (a, b) to (a,y) along a vertical segment and then from (a, y) to
(z,y) along a horizontal segment as indicated by the dotted lines in Figure. This gives us another
formula for f(x, y),

flx,y) = /by Fs(a,t) dt—i—/x Fy(t,y) dt.

Both formulas give the same value for f(z, y) because the line integral of a gradient isindependent
of the path.
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Construction of a potential using anti-derivatives But there’s another way to find a potential

ov
of a conservative vector field: you use the fact that i F, to conclude that V' (z, y) must be of

the form / Fy(u,y)du + G(y), and similarly (?)V = F, implies that V'(z, y) must be of the form
a Y
Y T
/ Fy(z,v)du + H(z). So you find functions G(y) and H(x) such that/ Fy(u,y)du+ G(y) =
b a
Yy
/ F, (2, v)du + H(x)
b

Example
Show that

F = (e"cosy+yz)i+ (zz —e®siny)j+ (xy + 2)k
is conservative over its natural domain and find a potential function for it.

Solution: »
The natural domain of F is all of space, which is connected and simply connected. Let’s define
the following:

M = e®cosy + yz

N =zz—€e"siny

P=xy+=z
and calculate

or_ oM

8x_y_ 0z

or _ _ON

gy T 8z
ON . oM

= —e"siny = ———

Ox oy
Because the partial derivatives are continuous, F is conservative. Now that we know there exists a
function f where the gradient is equal to F, let’s find f.

of
ox

of
dy

=e"cosy +yz

=zz —e’siny

of
E—azy—kz

If we integrate the first of the three equations with respect to x, we find that

flz,y,2) = /(éz cosy + yz)dx = e* cosy + xyz + g(y, 2)

where g(y,z) is a constant dependant ony and z variables. We then calculate the partial derivative
with respect to y from this equation and match it with the equation of above.
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385

6.8. Green’s Theorem in the Plane

9 v dg .
%(f(fyy,z))——e Slny+xz+8fy—xz e’ siny

This means that the partial derivative of g with respect to y is 0, thus eliminating y from g entirely
and leaving at as a function of z alone.

flx,y,2) =e"cosy + zyz + h(z)

We then repeat the process with the partial derivative with respect to z.

0 dh
8Z(f(x7y7z)) —(L’y+ & - xy—i—z
which means that
o
dz
so we can find h(z) by integrating:
2
h(z) = % +C

Therefore,

2
f($ayaz):€$COSy—{—;pyz+%+C

We still have infinitely many potential functions for F, one at each value of C. «

Green’s Theorem in the Plane

Definition

A positively oriented curve is a planar simple closed curve such that when travelling on it one al-

ways has the curve interior to the left. If in the previous definition one interchanges left and right,
one obtains a negatively oriented curve.

We will now see a way of evaluating the line integral of a smooth vector field around a simple
closed curve. A vector field f(z,y) = P(x,y)i+ Q(z,y)jis smooth if its component functions
P(z,y) and Q(x,y) are smooth. We will use Green’s Theorem (sometimes called Green’s Theorem

in the plane) to relate the line integral around a closed curve with a double integral over the region
inside the curve:

Theorem (Green’s Theorem - Simple Regions)

Let Q be a region in R? whose boundary is a positively oriented curve « which is piecewise smooth.
Letf(x,y) = P(x,y)i+ Q(z,y)jbe a smooth vector field defined on both 2 and . Then

§éf-d£ _ 4/(‘?5 _ g];) dA, (6.5)

where ~y is traversed so that §2 is always on the left side of .
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M T

. . (b) positively oriented curve
(a) positively oriented curve

T

(c) negatively oriented curve

Figure 6.2. Orientations of Curves

Proof. We will prove the theorem in the case for a simple region (), that is, where the boundary

curve y can be written as C' = v, U -y, in two distinct ways:

v, = the curve y = y, (z) from the point X, to the point X, (6.6)
v, = the curve y = y,(z) from the point X, to the point X, (6.7)

where X, and X, are the points on C farthest to the left and right, respectively; and

v, = the curve x = x,(y) from the point Y, to the point Y, (6.8)
~, = the curve = x,(y) from the point Y; to the point Y5, (6.9)

where Y; and Y, are the lowest and highest points, respectively, on ~. See Figure
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6.8. Green’s Theorem in the Plane

Integrate P(x,y) around y using the representation v = ~, U+, Sincey = y,(x) along~, (as x goes
from atob) and y = y,(z) along v, (as = goes from b to a), as we see from Figure, then we have

ng(:r,y) dx = P(z,y)dx + P(z,y)dx
gl m 72

— /P:pyl( ) dz + /baP(xjyz(fv))dﬂf
_ /pxyl N - /abm,yz(:c»dx

S / (P, 9a(2) — Plo,ys()) de

y=y2(z)
dzx
y=y1(x)

= —/ab (P(w,y)

Y2 P
= —/ / (B)éz’y)dydx (by the Fundamental Theorem of Calculus)

- //dA

Likewise, integrate Q(x, y) around ~ using the representation v = ; U ,. Since z = x,(y) along
v, (asy goes from d to ¢) and = = x,(y) along v, (as y goes from c to d), as we see from Figure , then

we have
x, d — Z, d Z, d
yﬁ@( y) dy /ﬂ@( v) y+/72c2< y) dy
. d
_ / Q(a(v),y) dy + / Qaa(y), ) dy
d C
d d
- _/ Qz.(y),y) dy + / Q(@2(y), y) dy

d
_ / (Q:(),y) — Qw:(y),y)) dy

e=a2(y)
dy

d
- / (Q(x 2 z=z1(y)

— / / 8@ (@ y dzx dy (by the Fundamental Theorem of Calculus)

= é/adi, and so
éf-dr = ng(x,y) dm+?§@(az,y) dy

- op 0 .,
_ /8ydA+/ Std
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Remark
Note, Green’s theorem requires that §) is bounded and f (or P and Q) is C* on all of Q. If this fails at
even one point, Green’s theorem need not apply anymore!

Example

Evaluate ) (z?+y?) dz+2xy dy, where C'is the boundary traversed counterclockwise of the region
c
R={(r,y):0<z<1,222 <y <2z}

(1,2)

Solution: » R is the shaded region in Figure above. By Green’s Theorem, for P(xz,y) = 2% + y>

JE %)

and Q(z,y) = 2zy, we have

ygc(ﬁ + 9?) dx + 2zy dy

Q
_ g/(Zy—Qy)dA — 4/061‘4 _

There is another way to see that the answer is zero. The vector field f(z, y) = (2% + y?)i + 22y

1
has a potential function F(z,y) = 5933 + zy?, and soyg fedr = 0. <
c

Example

Letf(z,y) = P(z,y)i+ Q(z,y) ], where

P(1:7y):$2+y2 and Q(xvy):mv

andlet R = {(x,y) : 0 < 22 + y* < 1}. For the boundary curve C : x? + y* = 1, traversed

counterclockwise, it was shown in Exercise 9(b) in Section 4.2 that }zf fedr = 2m. But
C

0Q y? — 22 _opP oQ 0P B B
% = 7(3324-3/2)2 = %5 = // ar oy dA = //OdAO.
Q Q
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6.8. Green’s Theorem in the Plane

This would seem to contradict Green’s Theorem. However, note that R is not the entire region en-
closed by C, since the point (0, 0) is not contained in R. Thatis, R has a “hole” at the origin, so
Green’s Theorem does not apply.

389 Example
Calculate the work done by the force

f(z,y) = (sinz —y°) i+ (¢! +2°) ]
to move a particle around the unit circle z> + y? = 1 in the counterclockwise direction.

Solution: »

W = 55 fedl (6.10)
c
= 5]5 (sinz — y*) dz + (e¥ + 2°) dy (6.11)
c
0 0
— — (pY 3 _ Yo .3
/R 8x(6 +x°) ay(smx y°)| dA (6.12)
Green’s Theorem
(6.13)
= 3// (2% 4+ y*)dA (6.14)
R
27 2
= 3/ / rdrdf = 3T (6.15)
0 T 2
using polar coordinates
(6.16)

<
The Green Theorem can be generalized:

390 | Theorem (Green’s Theorem - Regions with Holes)
Let Q C R? be a bounded domain whose exterior boundary is a piecewise C* curve . IfQ has holes,
let 1, ..., yn be the interior boundaries. Iff : Q — R? is C', then

N
// [01Fy — 02 F1] dA = yﬁf- de + Z% fode,
Q v =177

where all line integrals above are computed by traversing the exterior boundary counter clockwise,

and every interior boundary clockwise, i.e., such that the boundary is a positively oriented curve.

391 Remark
A common convention is to denote the boundary of §) by 9S) and write

N

U%‘

=1

0 =~U
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Then Theorem 390 becomes

// [OLFs — 0, F1] dA = 55 fudl,
Q oN

where again the exterior boundary is oriented counter clockwise and the interior boundaries are all
oriented clockwise.

Remark
In the differential form notation, Green’s theorem is stated as

// (0.Q —0,P| dA= [ P dz+Q dy,
Q o2

P.Q : Q — Rare C! functions. (We use the same assumptions as before on the domain ), and
orientations of the line integrals on the boundary.)

Proof. The full proofis a little cumbersome. But the main idea can be seen by first proving it when
Qis a square. Indeed, suppose first Q = (0,1)2.

d Y

Then the fundamental theorem of calculus gives

1

1
// (01 Fs — 0o F1] dA:/ [Fa(1,5) — F2(0,y)] dy—/ [Fy(2,1) - Fi(2,0)] da
Q y=0 =0

The first integral is the line integral of f on the two vertical sides of the square, and the second one
is line integral of f on the two horizontal sides of the square. This proves Theorem 390 in the case
when Q is a square.

For line integrals, when adding two rectangles with a common edge the common edges are tra-
versed in opposite directions so the sum is just the line integral over the outside boundary.

——

— v A

—p—

Similarly when adding a lot of rectangles: everything cancels except the outside boundary. This
extends Green’s Theorem on a rectangle to Green’s Theorem on a sum of rectangles. Since any
region can be approximated as closely as we want by a sum of rectangles, Green’s Theorem must
hold on arbitrary regions.

172



6.9. Application of Green’s Theorem: Area
393 Example
Evaluate yﬁ y3dx — z3dy where ~ are the two circles of radius 2 and radius 1 centered at the origin

c
with positive orientation.

Solution: »
%y?’dx —23dy = -3 // (2% 4+ y?)dA (6.47)
¥ D
i 2
=— / / r3drdé (6.18)
0 1
457
= —— 6.1
. (619)
<
| |
N ™~
\\ N
P
a B
N
/ Y \ /
\
/ /
\
\

6.9. Application of Green’s Theorem: Area

Green’s theorem can be used to compute area by line integral. Let C' be a positively oriented, piece-
wise smooth, simple closed curve in a plane, and let U be the region bounded by C The area of

domain U is given by A = // dA.
U

0 oP
Then if we choose P and M such that a—? — 87y = 1, the area is given by

A:ygc(P de + Q dy).

Possible formulas for the area of U include:
1
A:yga: dy:—ygy dx:yg(—y dz +z dy).
c c 2 Jc
394 Corollary

Let Q C R? be bounded set with a C'* boundary 05, then

1
area(Q)zz/ [~y de +x dy]:/ —y dx:/ x dy
o0 o0 o0

395 Example
Use Green’s Theorem to calculate the area of the disk D of radius r.
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6. Line Integrals

Solution: » The boundary of D is the circle of radius r:
C(t) = (rcost,rsint), 0<t<2m.
Then
C'(t) = (—rsint,rcost),
and, by Corollary 394,

areaof D =

§
L
BN

1

= / rdy —ydx
2Jc
1 2

= 2/ [(rcost)(rcost) — (rsint)(—rsint)]dt

0

1 2m 7.2 2m

= / r2(sin t + cos® t)dt = / dt = mr?.
2 Jo 2 Jo

<
Example

Use the Green’s theorem for computing the area of the region bounded by the x -axis and the arch of
the cycloid:
x=t—sin(t), y=1-—cos(t), 0<t<2r

Area(D) = Z/dA = ;zg—ydx.

Along the x-axis, you have y = 0, so you only need to compute the integral over the arch of the cy-

Solution: »

cloid. Note that your parametrization of the arch is a clockwise parametrization, so in the following
calculation, the answer will be the minus of the area:

2 2T
/ (cos(t) — 1)(1 — cos(t))dt = —/ 1 — 2cos(t) 4 cos®(t)dt = —3.
0 0

<

Corollary (Surveyor’s Formula)

Let P C R? be a (not necessarily convex) polygon whose vertices, ordered counter clockwise, are
(w1,41), .0 (TN, yN). Then

area (P) = (w132 — @ay1) + (w2ys — xzy2) o+ (e — ﬂflyN)_

Proof. Let P be the set of points belonging to the polygon. We have that

A= // dz dy.
P
Using the Corollary 394 we have

xdy ydr
dxdy = / —_ = .
//P op 2 2
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6.10. Vector forms of Green’s Theorem

We can write 0P = | JI_; L(i), where L(i) is the line segment from (z;, y;) to (x;+1, yi+1). With this
notation, we may write

xdy ydx n/ zdy ydr 1 ”/
il AN e s = rdy —ydzx.
/8 2 ; ag 22 2; A@)

p 2

Parameterizing the line segment, we can write the integrals as
R
33 | it G = 20001 = ) = 4+ (i~ )0 — ) .
Integrating we get
11
3 > M@+ zir) (Yisr = vi) = (yi + yirr) (@inr — 23)].
simplifying yields the result

area (P) =

DN | =

n
Y (@iyis1 — Tipayi)-
=1

6.10. Vector forms of Green’s Theorem

398 [Theorem (Stokes’ Theorem in the Plane)

LetF = Li+ Mj. Then
%F-dfz//Vx F-dS
o' Q

oM OL) ;

Proof.

Over the region R we can write dx dy = dS anddS = kdS. Thus using Green’s Theorem:

%F-déz//l%-VdeS
¥ Q
://VXF-dS
Q

399 | Theorem (Divergence Theorem in the Plane)

.LetF = Mi— LjThen
/ VeFdxdy = ¢F~ﬁds
R ol
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6. Line Integrals
\

Proof.

oM  OL
F=_—-_ ==
v Ox oy

and so Green’s theorem can be rewritten as
// VeFdzdy = §£F1dy— Fdx
Q ¥

nds = (dyi — dxj)

Now it can be shown that

heresisarclength along C', and nis the unitnormalto C. Therefore we can rewrite Green’s theorem

/ VeFdxdy = %F-ﬁds
R Y

as

400 |Theorem (Green’s identities in the Plane)
Let ¢(z,y) and 1 (z,y) be two scalar functions C?, defined in the open set Q C R2.

$og, ds= [ o7+ 00) Gu)aray

§ loge - v5e| as= [ v - wv2e)asay
5L On on Q
Proof. If we use the divergence theorem:

/VoFdxdyz%FWzds
S v

then we can calculate down the corresponding Green identities. These are

and

$og, ds= [ o7+ 00) Gunaray

L) R R
$ oo - e ] as= [ o5t —vvro sy

and
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Surface Integrals

In this chapter we restrict our study to the case of surfaces in three-dimensional space. Similar
results for manifolds in the n-dimensional space are presented in the chapter 13.

7.1. The Fundamental Vector Product

401 | Definition

A parametrized surface is given by a one-to-one transformationr : 2 — R"™, where Q) is a domain
in the plane R?. This amounts to being given three scalar functions, * = z(u,v), y = y(u,v) and
z = z(u,v) of two variables, u and v, say. The transformation is then given by

r(u,v) = (z(u,v),y(u,v), z(u,v)).

and is called the parametrization of the surface.

v R?
S
/\ <
Q T i xéu, v))
(u]v) 2~ 2uv) r(u,v)
Yy
0

Figure 7.1.  Parametrization of a surface S in R?

402 | Definition
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7. Surface Integrals

m Aparametrization is said regular at the point (ug, vo) in Q if

Our (ug, v9) X Oyr(ug,vo) # 0.

m The parametrization is reqular if its reqular for all points in €.

m Asurface that admits a reqular parametrization is said reqular parametrized surface.

Henceforth, we will assume that all surfaces are regular parametrized surface.
Now we consider two curves in S. The first one C is given by the vector function

T’l(’LI,) - I'(U,’Uo),u € (aa b)
obtained keeping the variable v fixed at vy. The second curve Cj is given by the vector function
7“2(“) = r(an U)? v E (Ca d)

this time we are keeping the variable u fixed at u).
Both curves pass through the point r(ug, v) :

m The curve C has tangent vector ] (ug) = Oyr(uo, vo)

m The curve C; has tangent vector r5(vg) = 9,1 (ug, ).

The cross product n(ug, vg) = dyr(ug, vo) X A’ (ug, vo), which we have assumed to be different
from zero, is thus perpendicular to both curves at the point r(ug, vg) and can be taken as a normal
vector to the surface at that point.

We record the result as follows:

R2
y A r(u,v) °
/\ r,Au
é r,Ay
Q [A’U \,\
@
(ufv)
r(u,v)

u

Figure 7.2.  Parametrization of a surface S in R?
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7.1. The Fundamental Vector Product

403 | Definition
If S'is a regular surface given by a differentiable function r = r(u, v), then the cross product

n(u,v) = Oyr X Oyr

is called the fundamental vector product of the surface.

404 Example
For the plane r(u,v) = ua + vb + c we have
Our(u,v) = a, dyr(u,v) = b and therefore n(u,v) = a x b. The vector a x b is normal to the

plane.

405 Example
We parametrized the sphere 2% + 3? + 2> = a? by setting

r(u,v) = acos usin vi + asin usin vj + acos vk,

with0 < u < 2m,0 < v < 7. Inthis case

Our(u,v) = —asinusin vi + a cos usin vj
and
Opr(u,v) = acos ucos vi+ asinucosvj — asinvk.
Thus
i J k
n(u,v) = | —agsinucosv acosuCcosv 0

acos UCos v asinucosv —asinv
= —asinwv (acos usin vi 4+ asin usin vj + a cos vk, )
= —asin vr(u,v).
As was to be expected, the fundamental vector product of a sphere is parallel to the radius vector

r(u,v).

406 | Definition (Boundary)
Asurface S can have a boundary 0S. We are interested in the case where the boundary consist of a

piecewise smooth curve or in a union of piecewise smooth curves.
Asurface is bounded if it can be contained in a solid sphere of radius R, and is called unbounded

otherwise. A bounded surface with no boundary is called closed.

407 Example
The boundary of a hemisphere is a circle (drawn in red).
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7. Surface Integrals

408 Example
The sphere and the torus are examples of closed surfaces. Both are bounded and without boundaries.

7.2. The Area of a Parametrized Surface

We will now learn how to perform integration over a surface in R3.

Similar to how we used a parametrization of a curve to define the line integral along the curve,
we will use a parametrization of a surface to define a surface integral. We will use two variables, u
and v, to parametrize a surface S in R3: © = z(u,v),y = y(u,v), z = z(u,v), for (u,v) in some
region 2 in R? (see Figure 7.3).

R2

Au S

v A r(wv) r.Au
[ /\ é u /r 3

Q AU N

@
(ujv)
r(u,v)

Figure 7.3.  Parametrization of a surface S in R?
In this case, the position vector of a point on the surface S is given by the vector-valued function
r(u,v) = z(u,v)i + y(u,v)j + z(u,v)k for (u,v)in Q.

The parametrization of S can be thought of as “transforming” a region in R? (in the uv-plane)
into a 2-dimensional surface in R3. This parametrization of the surface is sometimes called a patch,
based on the idea of “patching” the region €2 onto S in the grid-like manner shown in Figure 7.3.

In fact, those gridlines in €2 lead us to how we will define a surface integral over S. Along the
vertical gridlinesin 2, the variable u is constant. So those lines get mapped to curves on S, and the

variable u is constant along the position vector r(u, v). Thus, the tangent vector to those curves
or

ov

or
tangent vectors are —.
ou

at a point (u,v) is —. Similarly, the horizontal gridlines in 2 get mapped to curves on S whose
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(u,v 4+ Av) (u~+ Au, v+ Av) 7.2. The Area of a Parametrized Surface

r(u, v+ Av))

—

r(u+ Au,v))

(u,v) (u+ Au,v) r(u,v)

Now take a point (u, v) in  as, say, the lower left corner of one of the rectangular grid sections
in 2, as shown in Figure 7.3. Suppose that this rectangle has a small width and height of Au and
Avw, respectively. The corner points of that rectangle are (u, v), (u + Au, v), (u + Au,v + Av) and
(u,v + Av). So the area of that rectangle is A = Au Awv.

Then that rectangle gets mapped by the parametrization onto some section of the surface S
which, for Au and Av small enough, will have a surface area (call it dS) that is very close to the
area of the parallelogram which has adjacent sides r(u + Au,v) — r(u,v) (corresponding to the
line segment from (u, v) to (u + Awu, v) in Q) and r(u, v + Av) — r(u, v) (corresponding to the line
segment from (u, v) to (u, v + Av) in Q). But by combining our usual notion of a partial derivative
with that of the derivative of a vector-valued function applied to a function of two variables, we

have
or _ r(u+ Au,v) —r(u,v)
i Au , and
or  r(u,v+ Av) —r(u,v)
o Av ’

and so the surface area element dS is approximately

H(r(u—l—Au v)—r(u,v))x(r(u,v+Av)—r(u v))H R H(Au&)x(Av@ H H H Au Av

' ’ ' ’ ou ov du v
Thus, the total surface area S of S'is approximately the sum ofallthequantities‘ %x— H Au Av,

summed over the rectangles in €.
Taking the limit of that sum as the diagonal of the largest rectangle goes to 0 gives

S = //Hau adeudv (7.1)

We will write the double integral on the right using the special notation

Jo= )

Thisis a special case of a surface integral over the surface S, where the surface area element dS can

81‘

8u 51} dudv . (7.2)

be thought of as 1dS. Replacing 1 by a general real-valued function f(x,v, z) defined in R3, we
have the following:
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7. Surface Integrals

409 | Definition
Let S be a surface in R? parametrized by

z =z(u,v), y=yu,v), z=z(u,v),

for (u, v) in some region Q in R2. Letr(u,v) = x(u,v)i+ y(u, v)j + z(u, v)k be the position vector
for any pointon S. The surface area S of S is defined as

s= [[1as = [[)Gexi | duas (73
Q

S

410 Example
Atorus T is a surface obtained by revolving a circle of radius a in the yz-plane around the z-axis, where
the circle’s center is at a distance b from the z-axis (0 < a < b), as in Figure 7.4. Find the surface area
of T.

(v~ 1) + 2> = a?

\_/

b |

(b) Torus T

(a) Circle in the yz-plane

Figure 7.4.

Solution: »

For any point on the circle, the line segment from the center of the circle to that point makes
an angle u with the y-axis in the positive y direction (see Figure 7.4(a)). And as the circle revolves
around the z-axis, the line segment from the origin to the center of that circle sweeps out an angle
v with the positive z-axis (see Figure 7.4(b)). Thus, the torus can be parametrized as:

x=(b+acosu)cosv, y=(b+acosu)sinv, z=asinu, 0<u<2r, 0<v<27
So for the position vector

r(u,v) = z(u,v)i + y(u,v)j + z(u,v)k

= (b+acosu)cosvi + (b+acosu)sinvj + asinuk
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7.2. The Area of a Parametrized Surface

we see that
or . . . o
5g = —osinucosvi — asinusinvj + acosuk
or - .
B0 = — (b+acosu)sinvi + (b+acosu)cosvj + Ok,
v

and so computing the cross product gives

%x% = —a(b+acosu)cosv cosui — a(b+ acosu)sinv cosuj — a(b+ acosu)sinuk,
which has magnitude

H@x@H = a(b+acosu).

Ou Ov

Thus, the surface area of T'is

S = // 1dS
S
27 27
-/
21 21
= / / a(b+ acosu) dudv
0 0
21 u=2m
= / (abu +a?sinu > dv
0 u=0

27
=/ 2mab dv
0

= 4n%ab

or Or
_X_

90 D du dv

411 Example
[The surface area of a sphere] The function

r(u,v) = acos usin vi+ asin usin vj + acos vk,

. . T . . .
with (u,v) ranging over the set 0 < u < 27,0 < v < 5 parametrizes a sphere of radius a. For this
parametrization
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7. Surface Integrals

n(u,v) = asin vr(u,v)and |n(u,v)|| = a?|sin v| = a?sin v.

So,
area of the sphere = // a?sin v du dv
Q

27 s s
= / (/ a?sin v dv) du = 27ra2/ sin v dv = 4wa?,
0 0 0

which is known to be correct.

412 Example (The area of a region of the plane)
If S'is a plane region §, then S can be parametrized by setting

r(u,v) = ui + vj, (u,v) € .

Here n(u,v) = dyr(u,v) X dyr(u,v) =i x j = kand ||n(u,v)|| = 1. In this case we reobtain the

A:// du do.
Q

413 Example (The area of a surface of revolution)

familiar formula

Let S be the surface generated by revolving the graph of a function

y:f(x),m € [aab]

about the x-axis. We will assume that f is positive and continuously differentiable.
We can parametrize S by setting

r(u,v) =vi+ f(v)cos uj+ f(v)sin u k
with (u,v) ranging over the set Q2 : 0 < u < 2w, a < v < b. In this case
i j k
n(u,v) = yr(u,v) x Gr(u,v) =| 0 —f(v)sinu f(v)cosu
1 f'(v)cosu f'(v)sinu

= —f(0)f' (V)i + f(v)cos uj+ f(v)sin u k.

Therefore |[n(u,v)|| = f(v)\/[f'(v)]* + 1 and

area ( //f > +1 du do
/27r (/ flv —l—ldv)du—/ab%rf(v) [F'(0)]? +1 do.
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7.2. The Area of a Parametrized Surface

414 Example ( Spiral ramp)

7.2.1.

One turn of the spiral ramp of Example 5 is the surface
S :r(u,v) =ucoswv i+ usin wv j+bvk

with (u,v) ranging over the set Q :0 < u < 1,0 < v < 27/w. In this case

Oyr(u,v) = coswv i+ sin wo j, G,r'(u,v) = —wusin wv i + wu cos wv j + bk.
Therefore
i j k
n(u,v) = COS WU sinwv 0 | =bsin wvi—bcoswyv j+ wuk

—wusin wv wucos wv b

and

|n(u,v)| = Vb + w?u?.

Thus

areaof S = // Vb2 + w?u? du dv
Q

27 Jw l 9 l
= / (/ Vb2 + w2u2du> dv = 7T/ Vb2 + w2u2du.
0 0 w Jo

The integral can be evaluated by setting u = (b/w) tan .

The Area of a Graph of a Function

Let S be the surface of a function f(x,y) :

= f(xay)’ (:L‘ay) € (.

We are to show that if f is continuously differentiable, then

area (S) = //Q \/[fg’c(ac,y)]2 + [f?;(x,y)]Q +1 dz dy.
We can parametrize S by setting
r(u,v) = ui+vj+ f(u,v)k, (u,v) € Q.
We may just as well use x and y and write
r(z,y) =zi+yj+ f(z, )k, (z,y) € L

Clearly
ry(z,y) =i+ fo(z,y)kandry(z,y) =j+ fy(z, y)k.
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7. Surface Integrals
Thus
i j k

0 1 fylz,y)

Therefore ||n(z,y)|| = \/[f;(x, y)}2 + [fz,’,(:c, yﬂ2 + 1 and the formula is verified.

415 Example
Find the surface area of that part of the parabolic cylinder = = 1 that lies over the triangle with
vertices (0,0), (0,1), (1, 1) in the xy-plane.

Solution: »
Here f(x,y) = y* so that

f:l:(‘rvy) = O’ fy(fﬁay) = 2y

The base triangle can be expressed by writing
N:0<y<1,0<x<y.

The surface has area

area = //S)\/[fa’:(x,y)f%— [fz’/(x,y)f—i—l dz dy

1 ry
:/ / V4y? +1 dx dy
0 JO

1
-1
) 12

|

416 Example

Find the surface area of that part of the hyperbolic paraboloid z = xy that lies inside the cylinder

x2+y2 =a’.

Solution: » Let f(x,y) = zy so that

fe(2,y) =y, fy(xa y) = .

The formula gives
A:// Vaz+y?+1 dz dy.
Q

In polar coordinates the base region takes the form
0<r<a,0<60<2m.

Thus we have

2 a
A://\/r2+1rd7“d9:/ / VrZ 4+ 1rdrdf
Q o Jo
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7.2. The Area of a Parametrized Surface

= ;W[(oﬁ +1)32 —1].

There is an elegant version of this last area formula that is geometrically vivid. We know that the

vector

ro(2,y) X ry(z,y) = —fu(z,y)i— fy(z,y)j +k

is normal to the surface at the point (z, y, f(z,y)). The unit vector in that direction, the vector

n<x7y) =

—fo(x, )i — fy(z,y)j + k
Vel + [folay)]) +1

is called the upper unit normal (It is the unit normal with a nonnegative k-component.)

Now let v(x, y) be the angle between n(x, y) and k. Since n(z, y) and k are both unit vectors,

cos[y(z,y)] = n(z,y)k =
V

Taking reciprocals we have

1
o)+ [f@ )] +1

secly(z,9)] =\ [f1(e. ) + [f1 (e 0)] + 1

The area formula can therefore be written

7.2.2. Pappus Theorem

A://Qsech(x,y)] dz dy.

417 | Theorem

Let~y be a curveinthe plane. The area of the surface obtained when ~y is revolved around an external
axis is equal to the product of the arc length of v and the distance traveled by the centroid of

Proof. If (:c(t), z(t)), a <t < b, parametrizes a smooth plane curve C'in the half-plane z > 0, the
surface S obtained by revolving C' about the z-axis may be parametrized by

~v(s,t) = (:c(t) cos s, x(t) sin s, z(t)),

The partial derivatives are

Their cross product is

a<t<b 0<s<2m.

oy .

P (—:E(t) sin s, z(t) cos s,O),

afy . ’ / . ! .
i (:p (t)coss,z'(t)sin s, z (t))7

vy o / / ; / :
o5 = —x(t)(z (t)coss, z'(t)sins,x (t)>,
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7. Surface Integrals
the fundamental vector is

@ 87’7 — 1(+)2 1(+)2
H@S X o dsdt = x(t)\/ 2/ (t)% + 2'(t)? ds dt.

The surface area of S'is

b pr2m b
/ / x(t)\/ 2/ (t)? + 2/ (t)? ds dt = 27r/ x(t)\/2'(t)? + 2/ (¢)? dt.
a JO a

(= /b\/z’(t)2 + 2/(t)% dt

denotes the arc length of C, the area of S becomes
b 1 b
277/ z(t)\/ 2 ()2 + 2/ (t)2 dt =27 ¢ (E/ z(t)\/ 2 ()2 + 2/ (t)? dt) =((27 T),

the length of C' times the circumference of the circle swept by the centroid of C.

7.3. Surface Integrals of Scalar Functions

418 | Definition
Let S be a surface in R? parametrized by

z =z(u,v), y=yluv), z=z(u,v),

for (u,v) in some region Qin R2. Letr(u,v) = x(u,v)i+ y(u,v)j + z(u, v)k be the position vector
forany pointon S. And let f : S — R be a continuous function.
The integral of f over S is defined as as

S = //1dS = //f(um)Hgng;Hdudv (7.4)
1S} Q

419 Remark
Other common notation for the surface integral is

//Sde://Sde://Qde://QfdA
420 Remark

Ifthe surface cannot be parametrized by a unique function, the integral can be computed by breaking
up S into finitely many pieces which can be parametrized.
The formula above will yield an answer that is independent of the chosen parametrization and how

you break up the surface (if necessary).
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7.3. Surface Integrals of Scalar Functions

421 Example
Evaluate

]z

where S is the upper half of a sphere of radius 2.

Solution: » Aswe already computed n = «

422 Example
Integrate the function g(z,y, z) = yz over the surface of the wedge in the first octant bounded by the
coordinate planes and the planes x = 2andy + z = 1.

Solution: » If a surface consists of many different pieces, then a surface integral over such a
surface is the sum of the integrals over each of the surfaces.

The portionsare S1: 2 =0for0 <y < 1,0< 2 <1 —y; Sz =2for0 <y <1,<z<1—y;
S3:y =0for0 <2 <2,0<2<1;8:2=0for0<2<20<y<l;andS5:z=1-—y
for0 <z < 2,0 <y < 1. Hence, to find // gdS, we must evaluate all 5 integrals. We compute
dS; = /1 +0 + 0dzdy,dSs = \/mdzily, dS3 = 0 + 1 + 0dzdx,dS4 = /0 + 0 + 1dydz,
dSs = 1/0 + (—1)% + 1dydx, and so

//Sl gdS &2 gds //53 gds //54 gds //55 gds
= / / - R / / . R / / 0)zdzdz + / / 0)dydz + / / (1—y)V2dy
= / /1 yyzdzdy / /1 yyzdzdy +0 /0 /0 y(1 —y)V2dy

= 1/24 +1/24 +0 +0 +v/2/3

423 Example
The temperature at each point in space on the surface of a sphere of radius 3 is given by T'(z,y, z) =
sin(zy + z). Calculate the average temperature.

Solution: »
The average temperature on the sphere is given by the surface integral

:;//Sfds

r(6, ¢) = (3cosf sin ¢, 3sin @ sin ¢, 3 cos @)

A parametrization of the surface is

for0 <0 <2mand0 < ¢ < 7. We have
T(0,¢) = sin((3 cos O sin ¢)(3sinfsin ¢) + 3 cos ¢),

and the surface area differential is dS = |rg x rg| = 9sin ¢.
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7. Surface Integrals

The surface area is

27 ™
o= / / 9sin ¢pdpdl
0 0

and the average temperature on the surface is

2w
AV = 1/ / sin((3 cos 0 sin ¢)(3 sin fsin @) + 3 cos ¢)9 sin pdpdo.
gJo Jo

<

Example
Consider the surface which is the upper hemisphere of radius 3 with density §(x,y, z) = 22 Calculate
its surface, the mass and the center of mass

Solution: »
A parametrization of the surface is

r(0,¢) = (3 cosfsin ¢, 3sin b sin ¢, 3 cos ¢)
for0 < 0 <2mand 0 < ¢ < /2. The surface area differential is

dS = |rg x ry|dfd¢ = 9sin pdfde.

2r  pm/2
S — / / 9 sin bdpdf.
0 0

If the density is 6(z, y, z) = 22, then we have

The surface area is

T,/
// y6dS / ; / 2(3sin9sin¢>)(3c0s¢)2(981n¢>)dq§d9
= _ JHS _Jo Jo

. //s o3 /0% /om@cos $)?(9sin §)dedo

Surface Integrals of Vector Functions

Orientation

Like curves, we can parametrize a surface in two different orientations. The orientation of a curve
is given by the unit tangent vector n; the orientation of a surface is given by the unit normal vector
n. Unless we are dealing with an unusual surface, a surface has two sides. We can pick the normal
vector to point out one side of the surface, or we can pick the normal vector to point out the other
side of the surface. Our choice of normal vector specifies the orientation of the surface. We call the
side of the surface with the normal vector the positive side of the surface.
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7.4. Surface Integrals of Vector Functions

425 | Definition
We say (S, 1) is an oriented surface if S C R? is a C' surface, i : S — R? is a continuous function

such that forevery x € S, the vector ii(x) is normal to the surface S at the point x, and ||a(z)|| = 1.

426 Example
tet S = {x € R? | ||z|| = 1}, and choose fx(x) = /||

427 Remark
Atany point x € S there are exactly two possible choices of i(x). An oriented surface simply provides

a consistent choice of one of these in a continuous way on the entire surface. Surprisingly this isn’t
always possible! If S is the surface of a Mobius strip, for instance, cannot be oriented.

428 Example
If S is the graph of a function, we orient S by chosing 1 to always be the unit normal vector with a
positive z coordinate.

429 Example
If S'is a closed surface, then we will typically orient S by letting 1 to be the outward pointing normal

vector.

Recall that normal vectors to a plane can point in two opposite directions. By an outward unit
normal vector to a surface S, we will mean the unit vector that is normal to .S and points to the

“outer” part of the surface.

430 Example
If S is the surface of a Mébius strip, for instance, cannot be oriented.

7.4.2. Flux

If S is some oriented surface with unit normal n, then the amount of fluid flowing through S per

//s fen ds.

Note, both f and nn above are vector functions, and fenn : .S — R is a scalar function. The surface

integral of this was defined in the previous section.

unit time is exactly
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7. Surface Integrals

Figure 7.5. The Moebius Strip is an example of a
surface that is not orientable

Figure 7.6. Mobius Strip Il - M.C. Escher

431 | Definition
Let (S, i) be an oriented surface, and f : S — R3 be a C* vector field. The surface integral of f over

S is defined to be
// fen dS.
S
432 Remark

Other common notation for the surface integral is

//Sf-ﬁdS://Sf-dS://Sf-dA

433 Example
Evaluate the surface integral // fedS, where f(x,y, z) = yzi + xzj + zyk and S is the part of the
s

plane x +y + z = lwithx > 0,y > 0, and z > 0, with the outward unit normal n pointing in the

positive z direction.

Solution: »
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7.4. Surface Integrals of Vector Functions

Since the vectorv = (1,1, 1) is normal to the plane x + y + z = 1 (why?), then dividing v by its
1

V333
S. Aswe can see from Figure projecting S onto the zy-planeyields a triangular region R = { (z,y) :
0<z<1,0<y<1-—=x} Thus,using (u,v)instead of (x,y), we see that

length yields the outward unit normal vectorn = < ) We now need to parametrize

r=u,y=v,z=1—(u+v), for0<u<1,0<v<1-—u

is a parametrization of S over Q) (sincez =1 — (z +y)on S). Soon S,

1 1 1 1
fon = (yz,xz,2y)e <\/§’\/§’\/§> = ﬁ(yz—l—a}zjtxy)

= \}g((x—ky)z—i-xy) = \}g((u—kv)(l—(u—i-v))—i-uv)
= \}g((u—l—v) — (u+v)? + uv)
for (u,v) in Q, and forr(u,v) = z(u,v)i+ y(u,v)j + z(u,v)k = ui+ vj + (1 — (v + v))k we have
gngz = (1,0,—1)x(0,1,-1) = (1,1,1) Hau 8UH =

Thus, integrating over 2 using vertical slices (e.g. as indicated by the dashed line in Figure 4.4.5)

//f-dS = //f-ndS
S S
= // (u,v),y(u,v), z(u,v) H%X%Hdvdu

//1u ! (w4 v) — (u+v)? + uw)V3dvdu

gives

v=1—u

/1 (w+v)?  (u+v)?  w? p

— — - u
2 3 2

0 v=0

/1 1+u 3u?  5ud d
= -+ -——+ — U

o \6 2 2 6

1

u  u? ud 5ut 1

= =4+ —=—4+——| = =
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7. Surface Integrals

<
Proposition
Letr : Q — S be a parametrization of the oriented surface (S, n). Then either

Aopo Gur X Our (7.5)
"~ [|Our X Oyr|| '
onallof S, or
dop— _ durx O (7.6)
~[|Our X Oypr|| '

onall of S. Consequently, in the case (7.5) holds, we have

// FendS = // (For)e(dyr x dyr) dudv. (7.7)

Proof. The vector d,r x J,r is normal to .S and hence parallel to n. Thus

A Oy’ X Opr
|Our X Opr|

must be a function that only takes on the values +1. Since s is also continuous, it must either be
identically 1 or identically —1, finishing the proof. ]

Example
Gauss’s law sates that the total charge enclosed by a surface S is given by

Q= //S B-dS,

where e the permittivity of free space, and FE is the electric field. By convention, the normal vector is
chosen to be pointing outward.

If E(x) = es, compute the charge enclosed by the top half of the hemisphere bounded by || x| = 1
and z3 = 0.

Kelvin-Stokes Theorem

Given a surface S C R? with boundary 95 you are free to chose the orientation of S, i.e., the di-
rection of the normal, but you have to orient S and 0.5 coherently. This means that if you are an
“observer” walking along the boundary of the surface with the normal as your upright direction;
you are moving in the positive direction if onto the surface the boundary the interior of S is on to
the left of 0S.
Example
Consider the annulus

A= {(z,y,0)|a® < 2® + 9 < b}

in the (x, y)-plane, and from the two possible normal unit vectors (0,0, £1) choose i := (0,0, 1). If
you are an “observer” walking along the boundary of the surface with the normal as 7 means that
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7.5. Kelvin-Stokes Theorem

the outer boundary circle of A should be oriented counterclockwise. Staring at the figure you can
convince yourself that the inner boundary circle has to be oriented clockwise to make the interior of
A lie to the left of 0 A. One might write

HA = dDy — OD, ,

where D, is the disk of radius r centered at the origin, and its boundary circle D, is oriented coun-
terclockwise.

0D, | 0D,

Theorem (Kelvin-Stokes Theorem)
Let U C R? be a domain, (S,n) C U be a bounded, oriented, piecewise C', surface whose bound-
ary is the (piecewise C') curve ~. Iff : U — R3 is a C! vector field, then

/ V x fenndS = %f-dé.
S ol

Here v is traversed in the counter clockwise direction when viewed by an observer standing with his
feet on the surface and head in the direction of the normal vector.

Proof. Letf= fii+ foj + fsk. Consider

i j k
. .0 0
fi 0 0
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7. Surface Integrals

Then we have

JLw - as= [[ G-vx(sias
//8f1 i a];l( -h)dS

We prove the theorem in the case S is a graph of a function, i.e., S is parametrized as
r=zi+yj+g(z,yk

where g(z,y) : £ — R. In this case the boundary v of S is given by the image of the curve C
boundary of

Let the equation of S be z = g(x, y). Then we have

—0g/0xi — dg/dyj + k

"7 ((09/00) + 99/ 0y + 1)1
Therefore on 2 5 5
.99 L 0z N
Thus
//va11 dS—//< On| _oh) 0= >(k-fz)ds
0z - oy .
Using the chain rule for partial derivatives
0
— — z)(k-n)dS
I3 x (k- )

Then:

/ 9 ey, g)dedy
:¢ fl(xv:%f(x?y))
C
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7.5. Kelvin-Stokes Theorem

with the last line following by using Green’s theorem. However on v we have z = g and

% fl(x7yag)dx:7§fl<xvyvz)dx
C Y

We have therefore established that

//S(v X fii) - df:ygfldx

In a similar way we can show that
A2 dy
gl

//S(VX Agj)-df:yg

and
//(V X A3k) - df = %Agdz
S Y

and so the theorem is proved by adding all three results together.

438 Example
Verify Stokes’ Theorem for f(z,y, ) = zi+x j+y k when S is the paraboloid z = 2% + y? such that

z<1.
z _ C
,,,,,,1 ,," n s
Solution: » The positive unit normal vector to the surface T
z=z(z,y) = 22 +y?is ]
S f
A Y
0z . 0z, Lk 0
——i-— . .
_ ox 8y‘] _ —2zi—2yj+k 4
0z\" % VI+da®+ 4ylgiéure 7.7. 2= 41>
1+ +| =
Ox dy

andVx f=(1-0)i+(1-0)j+(1-0k=i+j+k,so

(Vx f)m = (=22 —2y+1)/y/1+ 422 + 442

Since S can be parametrized asr(z, y) = xi+yj+ (z*+y*) kfor (z,y) intheregion D = { (z,y) :
197



7. Surface Integrals

22+ 92 < 1},then

J] (7% fymas - // (9 % tpn | 208ty

S
o2y 1
:// T 1T da? + 4y? dedy
V14422 4 492
D

= //(—2x — 2y + 1) dzdy , so switching to polar coordinates gives

D
2 1
= / / (—2rcosf — 2rsinf + 1)r dr d
o Jo

—2r2 cos @ — 2r%sin O 4 ) dr df

X
27 3 3 2 r=1
= / < 2T os@—Lsmﬁ—l—— >d9
0 r=0

3 2

cosf — fsm9+ 2) do

2w
= 7.
0

= —§S1n0+§COSQ+ 9

The boundary curve C'is the unit circle 2 + y? = 1 layingin the plane z = 1 (see Figure), which
can be parametrized asz = cost,y = sint,z = 1for0 < t < 27. So

27
ff.dr: / (1)(=sint) + (cost)(cost) + (sint)(0)) dt
C 0

2
1 2t 1 2t
= / (— sint + 4_205) dt (herewe used cos® t = +COS)
0

2
- ‘4 E n sin 2t |2 -
= COS 9 4 0 = T.
So we see that% fodr = //(V x f)endS, as predicted by Stokes’ Theorem. «
c

The line integral in the preceding example was far simpler to calculate than the surface integral,
but this will not always be the case.

439 Example
Let S be the section of a sphere of radius a with 0 < 6 < a. In spherical coordinates,

dS = a?sin fe, df de.
LetF = (0,22,0). ThenV x F = (—x,0, z). Then
/ V x FedS = 7a® cos asin? a.
s

Our boundary 0C'is

r(y) = a(sin a cos @, sin asin @, cos «).
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7.5. Kelvin-Stokes Theorem

The right hand side of Stokes’ is

2
/F-dﬁz asin a cos p a cos aa sin a cos ¢ dyp
c e " ———
xT z dy

2w
= a3 sin® o cos a/ cos? pdp
0

= 7a’ sin? a cos a.

So they agree.

440 Remark
The rule determining the direction of traversal of v is often called the right hand rule. Namely, if you
put your right hand on the surface with thumb aligned with 1, then -y is traversed in the pointed to by
your index finger.

441 Remark
Ifthe surface S has holes in it, then (as we did with Greens theorem) we orient each of the holes clock-
wise, and the exterior boundary counter clockwise following the right hand rule. Now Kelvin-Stokes

/V x fenn dS :/ fed?,
S oS

where the line integral over 0S is defined to be the sum of the line integrals over each component of

theorem becomes

the boundary.

442 Remark
If S is contained in the x,y plane and is oriented by choosing n = e3, then Kelvin-Stokes theorem
reduces to Greens theorem.

Kelvin-Stokes theorem allows us to quickly see how the curl of a vector field measures the in-
finitesimal circulation.
443 Proposition
Suppose a small, rigid paddle wheel of radius a is placed in a fluid with center at x¢ and rotation axis
parallel to ir. Letv : R3 — R3 be the vector field describing the velocity of the ambient fluid. If w the
angular speed of rotation of the paddle wheel about the axis n, then

Proof. Let .S be the surface of a disk with center x, radius a, and face perpendicular to n, and
~v = 0S. (Here S represents the face of the paddle wheel, and + the boundary.) The angular speed
w will be such that

515(1} — awT)sdl = 0,
.

where 7 is a unit vector tangent to -y, pointing in the direction of traversal. Consequently

: %v-cw: : //meds a0, V X v(zo)h g
2ma? J, 2ma? Jf g 2

w =
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7. Surface Integrals

444 Example 5 5
Let S be the elliptic paraboloid z = % + % for z < 1, and let C be its boundary curve. Calculate
55 fodr for f(z,y,2) = (922 + 2y)i + (22 + y?)j + (—2y* + 22)k, where C is traversed counter-
C

clockwise.

Solution: » The surface is similar to the one in Example 438, except now the boundary curve C'is

2 2
the ellipse SEZ + Lo layingin the plane z = 1. In this case, using Stokes’ Theorem is easier than

computing the line integral directly. As in Example 438, at each point (z, y, z(x, y)) on the surface

z=z(x,y) = % + % the vector

0z . Oz, T

2y
et T el k I
Bxl 8y.]-i' 21 93+k

92\ ° 92\° 2 4y? ’
14 ( — = 14+ — + —
() () e

is a positive unit normal vector to S. And calculating the curl of f gives

Vxf=(-4y—0i+ 92—-0)j + (2—2k = —4yi + 9zj + 0k,
) . 2
oty CHEDHOICD OOy amyro

and so by Stokes’ Theorem

ygf-dr _ Z/(VX £)endS — l/OdS ~ 0.

7.6. Gauss Theorem

445 [Theorem (Divergence Theorem or Gauss Theorem)
Let U C R? be a bounded domain whose boundary is a (piecewise) C* surface denoted by OU. If
f: U — R3isa C" vector field, then

///U (Vof) dV = b Fads,

where 1 is the outward pointing unit normal vector.

446 Remark
Similar to our convention with line integrals, we denote surface integrals over closed surfaces with

the symbol #
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7.6. Gauss Theorem

Remark
Let B = B(xo, R) and observe

1 1
lim ——— fondS = lim ——k—— VefdV = Vef
R0 volume (0BR) /aBR " RS0 volume (0BRr) Jg, (z0),

which justifies our intuition that V «f measures the outward flux of a vector field.

Remark
IfFV CR% U =V x [a,b]isacylinder,and f : R3 — R3 is a vector field that doesn’t depend on x3,
then the divergence theorem reduces to Greens theorem.

Proof. [Proof of the Divergence Theorem] Suppose first that the domain U is the unit cube (0, 1)3 -

///U VefdV = ///U (B101 + Do + Dyvg) V.

Taking the first term on the right, the fundamental theorem of calculus gives

1 1
/// 817)1 dV:/ / (Ul(l,l’g,l’g)—vl(O,xQ,ﬂfg)) dl‘g d:L’g
U x3=0 Jx2=0
:/v-ﬁds+/v-ﬁds,
L R

where L and B are the left and right faces of the cube respectively. The 0;v9 and 03v3 terms give

R3. In this case

the surface integrals over the other four faces. This proves the divergence theorem in the case that
the domain is the unit cube.

Example
Evaluate // fodS, where f(z,y, 2) = xi + yj + zk and S is the unit sphere x> + y? + 2% = 1.
S

Solution: » Weseethatdivf=1+1+4+1=3,s0

[/f-ds - /S/ divfdV = /S//SdV
= 3///1dV = 3vol(S) = 3- 4”;1)3 = 4.

S

<
Example
Consider a hemisphere.
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7. Surface Integrals

V' is a solid hemisphere

4+ 4+22<ad? 2>0,

and 0V = 51 + S9, the hemisphere and the disc at the bottom.
Take F = (0,0,z + a) and V+F = 1. Then

// VeF dV = 2m3,
v 3

On S, the outward pointing fundamental vector is

the volume of the hemisphere.

n(u,v) = asin vr(u,v) = asin v (z,y, 2).

Then

Fen(u,v) = az(z + a) sin v = a® cos (cos ¢ + 1) sin v

Then

27 /2
// FedS = a3/ dap/ sin gp(cos2 @+ cosy) dp
S1 0 0
2

-1 1 w/
= 27a® {3 cos® p— 5 cos? 4 .
5_ 3
= §7TCL .

On S, dS =n dS = —(0,0,1) dS. Then F+dS = —a dS. So

// FedS = —7a®.

Sa

// F.dS + // FedS = (5 — 1) rad = gﬂas,
S S5 3 3

in accordance with Gauss’ theorem.

So

Gauss’s Law For Inverse-Square Fields

Proposition (Gauss’s gravitational law)
Let g : R® — R3 be the gravitational field of a mass distribution (i.e. g(z) is the force experienced by
a point mass located at x). If S is any closed C' surface, then

55 gondS = —4rGM,
S

where M is the mass enclosed by the region S. Here G is the gravitational constant, and n is the
outward pointing unit normal vector.
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7.6. Gauss Theorem

Proof. The core of the proof is the following calculation. Given a fixed y € R?, define the vector

field £ by
Ix -y’

The vector field —G'mf(x) represents the gravitational field of a mass located at y Then

47 ifyisin the region enclosed by S,
515 fenndS =
S 0  otherwise.

For simplicity, we subsequently assume y = 0.
To prove (7.8), observe
Vef =0,

when x # 0. Let U be the region enclosed by S. If 0 ¢ U, then the divergence theorem will apply

%g-flds = // VegdV = 0.
S U

On the other hand, if 0 € U, the divergence theorem will not directly apply, since f ¢ C1(U). To
circumvent this, lete > 0 and U’ = U — B(0,¢€), and S’ be the boundary of U’. Since 0 ¢ U’, fis
C' on all of U” and the divergence theorem gives

0= /// VefdV = [ fends,
! 8U/

1
§£ fendS = —}Ig fendS = — dS = —4m,
S 0B(0,¢) 0B(0,e) €
as claimed. (Above the normal vector on 9B(0, €) points outward with respect to the domain U’,
and inward with respect to the ball B(0, €).)
Now, in the general case, suppose the mass distribution has density p. Then the gravitational

toin the region U and we have

and hence

field g(z) will be the super-position of the gravitational fields at x due to a point mass of size p(y) dV/
placed at y. Namely, this means

oa) =G [ A= av)

3
[l = yll

Now using Fubini’s theorem,

i =— TV (e x
Jowramase =~ | o [ eneast avi

where the second last equality followed from (7.8). n
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7. Surface Integrals

452 Example
Asystem of electric charges has a charge density p(x, y, z) and produces an electrostatic field E(x, y, z)
at points (x,y, z) in space. Gauss’ Law states that

g/E-dS = 4rr /S//pdV

for any closed surface S which encloses the charges, with S being the solid region enclosed by S.
Show that V<E = 4mp. This is one of Maxwell’s Equations.’

Solution: » By the Divergence Theorem, we have
// V.EdV //E-dS
s s
= 47 ///pdV by Gauss’ Law, so combining the integrals gives
S

///(V-E—47rp) dV =0 ,so
S

VeE —4wp = 0 since S and hence S was arbitrary, so

VeE = 4mp.

7.7. Applications of Surface Integrals

7.7.1. Conservative and Potential Forces

We’ve seen before that any potential force must be conservative. We demonstrate the converse
here.

453 | Theorem
Let U C R? be a simply connected domain, and f : U — R3 be a C! vector field. Then fis a
conservative force, if and only if £ is a potential force, if and only if V x f = 0.

Proof. Clearly, if fis a potential force, equality of mixed partials shows V x f = 0. Suppose now
V x f = 0. By Kelvin-Stokes theorem

%f-dﬁz/VXf-fldSzO,
¥ S

and so fis conservative. Thus to finish the proof of the theorem, we only need to show that a con-
servative force is a potential force. We do this next.

'In Gaussian (or CGS) units.
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7.7. Applications of Surface Integrals

Suppose f'is a conservative force. Fix zg € U and define
Vix) = /f-dé,
o

where «y is any path joining zy and x that is completely contained in U. Since fis conservative, we
seen before that the line integral above will not depend on the path itself but only on the endpoints.

Now let & > 0, and let v be a path that joins x( to a, and is a straight line between a and a + he;.
Then

1 ai1+h
oV (a) = Jim h/ Fila+ ter) dt = Fi(a).
ai

The other partials can be computed similarly to obtain f = —VV concluding the proof. ]

7.7.2. Conservation laws

454 | Definition (Conservation equation)
Suppose we are interested in a quantity Q. Let p(r,t) be the amount of stuff per unit volume and
j(xr,t) be the flow rate of the quantity (eg if Q is charge, j is the current density).
The conservation equation is ;
p

a—l—quO

This is stronger than the claim that the total amount of @ in the universe is fixed. It says that Q
cannot just disappear here and appear elsewhere. It must continuously flow out.
In particular, let V be a fixed time-independent volume with boundary S = 9V'. Then

o) = [|f str.yav

Then the rate of change of amountof Q in V' is

(f:///vgfdvz—//VV-jdV:—//Sj-dS.

by divergence theorem. So this states that the rate of change of the quantity @ in V' is the flux of
the stuff flowing out of the surface. ie Q cannot just disappear but must smoothly flow out.

In particular, if V is the whole universe (ie R?), and j — 0 sufficiently rapidly as |r| — oo, then
we calculate the total amount of Q in the universe by taking V' to be a solid sphere of radius €2, and
take the limit as R — oco. Then the surface integral — 0, and the equation states that

dQ
T Y

455 Example
If p(r, t) is the charge density (ie. poV is the amount of charge in a small volume 6V'), then Q(t) is the
total charge in V. j(r,t) is the electric current density. So j«dS is the charge flowing through §.S per
unit time.
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7. Surface Integrals

456 Example
Let j = pu with u being the velocity field. Then (pu §t)0S is equal to the mass of fluid crossing 6.5 in

time 6t. So 10
v ied
at //SJ 5

does indeed imply the conservation of mass. The conservation equation in this case is

dp B
E + V-(pu) =0

For the case where p is constant and uniform (ie. independent of r and t), we get that Veu = 0. We
say that the fluid is incompressible.

7.8. Helmholtz Decomposition

The Helmholtz theorem, also known as the Fundamental Theorem of Vector Calculus, states that
a vector field F which vanishes at the boundaries can be written as the sum of two terms, one of
which is irrotational and the other, solenoidal.

Roughly:

“A vector field is uniquely defined (within an additive constant) by specifying its diver-
gence and its curl”.

457 | Theorem (Helmholtz Decomposition for R3)
IfF is a C? vector function on R® and F vanishes faster than 1/r as r — oc. Then F can be decom-
posed into a curl-free component and a divergence-free component:

F=-V®&+V XA,

Proof. We will demonstrate first the case when F satisfies
F=-V°Z (7.9)

for some vector field Z
Now, consider the following identity for an arbitrary vector field Z(r) :

—V?Z=-V(V-Z)+VxVxZ (7.10)
then it follows that
F=-VU+VxW (7.11)
with
U=V.Z (7.12)
and
W=Vx1Z (7.13)
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7.9. Green’s Identities

Eqg.(7.11) is Helmholtz’s theorem, as VU is irrotational and V x W is solenoidal.
Now we will generalize for all vector field: if V vanishes at infinity fast enough, for, then, the
equation
V2Z =-V, (7.14)

which is Poisson’s equation, has always the solution

Z(r) = 1/d3r’ V() . (7.15)

4 lr —r/|

Itis now a simple matter to prove, from Eq.(7.11), that V is determined from its div and curl. Taking,
in fact, the divergence of Eq.(7.11), we have:

div(V) = =V2U (7.16)

which is, again, Poisson’s equation, and, so, determines U as

47T/d3 ! r_r,| (7.17)

Take now the curl of Eq.(7.11). We have

VXV=VxVxW
=V(V.W) - V°W (7.18)

Now, V.W = (0,as W = V x Z, so another Poisson equation determines W. Using U and W so
determined in Eq.(7.11) proves the decomposition ]

458 | Theorem (Helmholtz Decomposition for Bounded Domains)
IfF is a C? vector function on a bounded domain V' C R? and let S be the surface that encloses
the domain V'then Then F can be decomposed into a curl-free component and a divergence-free

component:
=-V®+V xA,

where

// V'sF (r v 1 ﬁ’-F(r/) 4s’
T ]r—r’] dr JIg  |r—1|

/ /
// VXEE) - L ff o B o
T ir ]r—r’] A IIs lr —r/|

and V' is the gradient with respect to r’ not r.

7.9. Green’s Identities
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7. Surface Integrals

459 [Theorem
Let ¢ and v be two scalar fields with continuous second derivatives. Then

u //s {fﬁg:ﬂ dS = //U[¢V21/1 + (Vo) - (V1p)] dV Green’s first identity

// {fﬁ ~v3. } ds = //U(¢V2¢ — hV2$) dV Green’s second identity.

Proof.
Consider the quantity

F=¢Vy
It follows that

divF = ¢V + (V¢) - (Vi)
n-F =¢dp/on

Applying the divergence theorem we obtain

//s {d@ﬂ s = // U[w%/; + (Vo) - (V)] dV

which is known as Green’s first identity. Interchanging ¢ and i) we have

//s {wg;ﬂ ds = // UWV2¢+ (Vo) - (V)] dV

Subtracting (2) from (1) we obtain

/. {¢—waﬂ as= [ wvv—vvro)av

which is known as Green’s second identity.
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8.1.

460

Curvilinear Coordinates

Curvilinear Coordinates

The location of a point P in space can be represented in many different ways. Three systems com-
monly used in applications are the rectangular cartesian system of Coordinates (z,y, z), the cylin-
drical polar system of Coordinates (r, ¢, z) and the spherical system of Coordinates (r, ¢, ¢). The
last two are the best examples of orthogonal curvilinear systems of coordinates (w1, ug, us) .

Definition
Afunctionu : U — V is called a (differentiable) coordinate change if

m u /s bijective

m u /s differentiable

m Du s invertible at every point.

IR “‘ S
[T 00
[T5 ““

<
[FHAIRERRKK
NN e 0 85050%s
RS

Figure 8.1. Coordinate System

In the tridimensional case, suppose that (z, y, z) are expressible as single-valued functions u of
the variables (u, ua, u3). Suppose also that (u1, u2,u3) can be expressed as single-valued func-

tions of (z,y, 2).
Through each point P : (a,b, ¢) of the space we have three surfaces: u; = ¢1, us = ¢3 and

us = c3, where the constants ¢; are given by ¢; = w;(a, b, ¢)
If say us and ug are held fixed and uy is made to vary, a path results. Such path is called a uy

curve. ug and ug curves can be constructed in analogous manner.
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8. Curvilinear Coordinates

u3

Uy = const
U2

U1

The system (u1, ug, ug) is said to be a curvilinear coordinate system.
461 Example

The parabolic cylindrical coordinates are defined in terms of the Cartesian coordinates by:

r =0T
1
y=3 (=)
z =2z
The constant surfaces are the plane
z=2
and the parabolic cylinders
2
_ T 2
2y = ? — 0
and )
T
2y = ) + 7'2
T
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8.1. Curvilinear Coordinates

Coordinates |

The surfaces us = u2(P) and uz = us(P) intersect in a curve, along which only wu; varies.

Let e; be the unit vector tangential to the curve at P. Let €2, €3 be unit vectors tangential to
curves along which only ug, us vary.

Clearly
o 0x |or
v 871,1 8UZ '
And if we define h; = |0r/0u;| then
or
aui =€;- hz

The quantities h; are often known as the length scales for the coordinate system.

462 Example (Versors in Spherical Coordinates)
In spherical coordinates r = (r cos() sin(¢), r sin(0) sin(¢), r cos(¢)) so:

or
o ar _ (cos(0)sin(6)5in(6) sin(0), cos(o)
" or 1

o

e, = (cos(0) sin(¢), sin(0) sin(e), cos(¢))

or

o0 (—rsin(@) sin(¢), r cos(9) sin(¢), 0)
ey = = .

or rsin(¢)

g

ey = (—sin(h), cos(#),0)

Or
(rcos(0) cos(¢), rsin(f) cos(¢), —r sin(¢))

r

BY
= af
E

ey = (cos(f) cos(¢),sin(f) cos(¢), —sin(¢p))
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8. Curvilinear Coordinates

Coordinates Il

Let (e!,e?,e3) be unit vectors at P in the directions normal to u; = u1(P), uz = ua(P),uz =
u3(P) respectively, such that uy, us, uz increase in the directions €', €2, a3. Clearly we must have

e = V(u)/|Vui|

463 | Definition
If (€', €2, e3) are mutually orthogonal, the coordinate system is said to be an orthogonal curvilinear
coordinate system.

464 |Theorem
The following affirmations are equivalent:

1. (e',e2,@%) are mutually orthogonal;

2. (€1, €9, e3) are mutually orthogonal;

. ;  Or/ou; .
3. eiI@ZM:VWAVUi] fori =1,2,3

So we associate to a general curvilinear coordinate system two sets of basis vectors for every
point:
{615 627 63}
is the covariant basis, and

(e, ¢’}

N
) ¢d [
<

is the contravariant basis.

[~

e ’
2
€1

Figure 8.2. Covariant and Contravariant Basis

Note the following important equality:
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8.2.

466

8.2. Line and Volume Elements in Orthogonal Coordinate Systems
Example
Cylindrical coordinates (1,0, z):

x =rcosf r=\/22 + y?

y=rsinf 6 = tan~! (Q)

z=1z z=1z
where 0 <60 <m if y>0 and m <0 <27 if y<O

For cylindrical coordinates (r, 0, z), and constants r,, 6, and z,, we see from Figure 8.3 that the
surface r = ry is a cylinder of radius r, centered along the z-axis, the surface 6 = 6, is a half-plane
emanating from the z-axis, and the surface z = z, is a plane parallel to the xy-plane.

Zo

@r=ro (b) 6 = 6, () z =2

Figure 8.3.  Cylindrical coordinate surfaces

The unitvectors#, 0, katan y point P are perpendicular to the surfaces r = constant, 8 = constant,
z = constantthrough P inthe directions ofincreasing r, 0, z. Note that the direction of the unit vectors
7,0 vary from point to point, unlike the corresponding Cartesian unit vectors.

Line and Volume Elements in Orthogonal
Coordinate Systems

Definition (Line Element)

Sincer = r(uy,uz,us), the line element dr is given by

or or or
dr=—d —d —d
g 8U1 uLt 3u2 uz ¥ 8U3 s

= hldulﬁl + thUQ/éz + h3d’u,3/é3

If the system is orthogonal, then it follows that

(ds)? = (dr) - (dr) = h3(du)? + h3(dus)? + h3(dus)?
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8. Curvilinear Coordinates
In what follows we will assume we have an orthogonal system so that

e =e€e = ‘ar/auz| :Vul/|Vu,\ fori = 1,2,3

In particular, line elements along curves of intersection of u; surfaces have lengths hyduy, hodus, hgdus

respectively.

467 | Definition (Volume Element)
InR3, the volume element is given by

dV = dz dy d=.

Ina coordinate systems x = x(u1, ua, us),y = y(u1, us, us), z = z(u1, ug, us), the volume element
is:
d(x,y, 2)

—— 27 7 | duq duo dus.
O(u1,ug,us) Gz Gl

v -|

468 Proposition
In an orthogonal system we have

dV = (hldul)(thUQ)(hgdU3>
= hihohs duidusdus

Inthis section we find the expression of the line and volume elements in some classics orthogonal
coordinate systems.
(i) Cartesian Coordinates (z,y, 2)

dV = dzdydz
dr = dai + dyj + dzk
(ds)?* = (dr) - (dr) = (dz)? + (dy)* + (dz)”

(ii) Cylindrical polar coordinates (7, 6, z) The coordinates are related to Cartesian by
xr=rcosl,y=rsinf, z =z
We have that (ds)? = (dz)? + (dy)? + (dz)?, but we can write

ox ox ox

= (cosf) dr — (rsinf) do

Oy Oy Oy

= (sin @) dr + (r cos 0)do

and

o
<
I
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8.2. Line and Volume Elements in Orthogonal Coordinate Systems

Therefore we have

(ds)* = (dz)* + (dy)* + (dz)?
=...= (d?“)2 + 7"2(d9)2 + (d,z)2

Thus we see that for this coordinate system, the length scales are
hlzl,hgz’l“,hgzl

and the element of volume is
dV = rdrdfdz

(iii) Spherical Polar coordinates (7, ¢, #) In this case the relationship between the coordinates
is
r=rsin¢cos; y=rsin¢sind; z =rcos¢
Again, we have that (ds)? = (dz)? + (dy)? + (dz)? and we know that
ox ox oz

de = —d —d@ —d
o T+ + ¢¢

= (sin ¢ cos@)dr + (—rsin ¢ sin 0)dé + r cos ¢ cos Odo
and

Oy oy
dy =3, —dr + d9+8¢d¢

= sin ¢ sin Odr + r sin ¢ cos d6 + r cos ¢ sin Od ¢

together with

0z 0z 0z
dz a—dr + —de + —¢d¢

= (cos ¢)dr — (rsin¢)d¢

Therefore in this case, we have (after some work)

(ds)? = (dz)? + (dy)* + (dz)?
=...= (dr)2 + 7"2(d<zﬁ)2 + 72 sin? ¢(d9)2
Thus the length scales are
h1 = 1, hQ =T, h3 = TSiIl(;S
and the volume element is
dV = r?sin ¢ drdpde

Example
Find the volume and surface area of a sphere of radius a, and also find the surface area of a cap of
the sphere that subtends on angle « at the centre of the sphere.
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8. Curvilinear Coordinates
dV = r?sin ¢ drd¢dd

and an element of surface of a sphere of radius a is (by removing hiduy = dr):
dS = a®sinpde do

. total volume is

/dV /0 /M/ o 2 sin ¢ drdgdd

= 2m[— cos @|§ /r dr
0

= 47a®/3

Surface area is

= 27a®

/dS /9 /Ma sin ¢ de do
[

—cos @]

= 4ma?
Surface area of cap is

2m «a
/ / a? sin ¢ dg df = 2ma’[— cos @
=0J¢=0

= 27a%(1 — cos )

8.3. Gradient in Orthogonal Curvilinear Coordinates

Let
Vo = \je; + \aey + \ses

in a general coordinate system, where A1, Ay, A3 are to be found. Recall that the element of length
is given by
dr = hiduje; + hoduses + haduses

Now
od 0P 0P

dé = —d d —d
Duy U1—|—a s U2—|—au3 us

0 0P 0P
= —dax+ —dy+ —d
ox T dy v+ 0z :
=(V®)-dr
But, using our expressions for V® and dr above:

(V‘I’) -dr = A1 hiduy + Aohodus + Aghsdus
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8.3. Gradient in Orthogonal Curvilinear Coordinates

and so we see that
0P

hi i (i=1,2,3)

Thus we have the result that

470 Proposition (Gradient in Orthogonal Curvilinear Coordinates)

€ 0P e 0P e300
D=
v hl 8u1 + h2 8UQ + h3 8’11,3

This proposition allows us to write down V easily for other coordinate systems.

(i) Cylindrical polars (7, 0, z) Recall that hy = 1, hy = r, hg = 1. Thus

9
B

S| D

.0 0

>

(ii) Spherical Polars (7, ¢,0) We have hy = 1, hy = r, hg = rsin ¢, and so

bo 0 0
rOd¢  rsing d0

.0
v—ra‘l—

471 Example
Calculate the gradient of the function expressed in cylindrical coordinate as

f(r,0,2) =rsinf + z.

Solution: »

_or 0or o
vf_r6r+r89+z8z (8.1)
— 7sinf + Ocosf + 2 (8.2)

8.3.1. Expressions for Unit Vectors
From the expression for V we have just derived, it is easy to see that
6Z~ = hiVui

Alternatively, since the unit vectors are orthogonal, if we know two unit vectors we can find the
third from the relation

61 = 62 X 63 = hghg(VUg X VU3)

and similarly for the other components, by permuting in a cyclic fashion.
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8. Curvilinear Coordinates

8.4. Divergence in Orthogonal Curvilinear
Coordinates

Suppose we have a vector field
A = Aje; + Asey + Aszes
Then consider

V- (Al/él) =V. [Athhg(VUQ X VUg)]
e

= A1hohsV - (Vug x Vug) + V(Aihohs) - .

using the results established just above. Also we know that
V.- BxC)=C-curlB-B:curlC
and so it follows that
V - (Vug x Vug) = (Vus) - curl(Vug) — (Vug) - curl(Vus) =0

since the curl of a gradient is always zero. Thus we are left with

~ e 1 0
V . (Alel) = V(Alhghg) . h2]1’L3 = hlhzhgaiul(AthhB)

We can proceed in a similar fashion for the other components, and establish that
472 Proposition (Divergence in Orthogonal Curvilinear Coordinates)

1 0

9 o
hihshs | Ouq (hsh1Az) + (hihoA3)

A -
v 8UQ 8’U,3

(hahsA1) +
Using the above proposition is now easy to write down the divergence in other coordinate sys-
tems.
(i) Cylindrical polars (7, 6, z)
Since hy = 1, ho = r, hg = 1 using the above formula we have :

110 0 0
= ; E(TAl) + %(AQ) + @(TA?,)

oA A 104, oA
- or r r 00 0z

V-A

(ii) Spherical polars (7, ¢, 0)
Wehave hy =1, ho =1, hg = rsin¢. So

1 d . 5 . 9, . 9
V.A_m E(T s1n¢A1)+%(TSIH¢A2)+%(7‘A3)
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8.5. Curlin Orthogonal Curvilinear Coordinates

473 Example
Calculate the divergence of the vector field expressed in spherical coordinates (r, ¢, 0) as f = +o+0

Solution: »

1 J, 45 . o, . 0
v.f_m E(r 31n¢)+a—¢(rsm¢)+%r (8.3)
= 1"2511ngb [2r sin ¢ + 7 cos @] (8.4)

8.5. Curlin Orthogonal Curvilinear Coordinates

We will calculate the curl of the first component of A:
V x (Alél) =V x (A1h1Vu1)
= A1hoV x (Vul) + V(Alhl) x Vuq

=0+ V(A1h1) x Vuy

e 0 e 0 e; 0 e
= |2 T (Arhy) + 2 (Arhy) + S (Ayhy) | x
By By i) g g i) g G ()| g
e 0 e; O
= (b Ay) — —— (A
h1h3 8U3( ! 1) h1h2 8uQ< ! 1)
(since 61 X /él = O, 62 X /él = *63, 63 X 61 = /ég)

We can obviously find curl(Ag€es) and curl(Ases) in a similar way. These can be shown to be

~ e 0 e 0
A98y) = ————(hyAy) —
V X ( 262) h2h1 811,1 (h2 2> h2h3 8U3 (h2 2)
~ e 0 e 0
A = h3Asz) — hsA
VX ( 363) h3h2 8u2( 3 ) h3h1 aul( 3 3)

Adding these three contributions together, we find we can write this in the form of a determinant
as

474 Proposition (Curlin Orthogonal Curvilinear Coordinates)

hie; hoes hses

hahohs | On Ou O
hAr haAs hyAs

curl A =

It’s then straightforward to write down the expressions of the curl in various orthogonal coordi-
nate systems.
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8. Curvilinear Coordinates

(i) Cylindrical polars

curl A = % O 0Oy O,
A1 rAy As
(ii) Spherical polars
7 rqg rsin qﬁé
curl A = 7“2s11nq§ Or 0y Oy

A1 rAs rsingAs

8.6. The Laplacian in Orthogonal Curvilinear
Coordinates

From the formulae already established for the gradient and the divergent, we can see that

475 Proposition (The Laplacian in Orthogonal Curvilinear Coordinates)

Vi =V - (VO)
1 0 1 0P 0 1 00 0 1 0P
= Tkt {aul (hoha g 5 Guy 1307 5 + B (M haﬁ

(i) Cylindrical polars (7, 0, z)

V2(I)_1 2 7»87(1) _|_g 182 _|_2 rag
o |or or 00 \ r 00 0z 0z
82 +18<I>+182<I>+62
o2 T ror | r2002 1 922
(i) Spherical polars (7, ¢, 0)

1 0 0P 0 0P a9 1 09
Ve = r2 sin ¢ [ar <r2 Rl ) ) (Sln¢8¢) (smgb 00 >1

9’ 209  cotgd® 10 1 9%
L R e s M S 2
T o2 T ror r? 0¢ r?0¢ r2sin® ¢ 00

476 Example

In Example 22 we showed that V||r|* = 2rand A|r||* = 6, where r(z,y,z) = xi+ yj+ zkin
Cartesian coordinates. Verify that we get the same answers if we switch to spherical coordinates.

Solution: Since |r||> = z2 + y? + 22 = p? in spherical coordinates, let F(p,0,$) = p* (so that
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8.7. Examples of Orthogonal Coordinates
F(p,0,¢) = ||r||*). The gradient of F" in spherical coordinates is

oF 1 OF 1 0F

= 2 - Y it
v op € + psing 00 € + p 0¢ €9

= 2pe, + = (0)e —I—l(O)e
— 4PEs psin ¢ o p ¢

r
= 2p W , as we showed earlier, so

I

DO
)

]
>

| ~

= 2r, asexpected. And the Laplacian is

Qaj+ 1 82F+ 1 Qsmﬁ@
P dp p2sin ¢ 002 p2sin ¢ O¢ m 0

1 a , .
(0) + sing 96 (sin ¢ (0))

I
DO
)

AF =

—
A
[
™
S
~—~

* p?sin ¢
(20°) +0+0

SIS RS

%) = 6, as expected.

| = | = | = |
—
D
S

800 | 0% & 0P

[0)) = —__ - 2
v h1 8u1 + h2 6UQ + h3 8’11,3
VA = 1 ohadr) + -2 (hshid) + -2 (hihads)
h1h2h3 8U1 21131 8U2 3111412 aU3 11243
hlé\l hgé\g h363
1
curlA = th2h3 aul GUQ 8’&3
h1Ar haAy h3As
1 0 1 00 0 1 00 0 1 0P
20 = hah ——(hgh1—=—) + =—(hiha—~—
v ( ( )+8u2( 3 1h28U2)+aU3( ! 2h38U3)

hihohs |Ou " > " by Ouy

Table 8.1. Vector operators in orthogonal curvilin-
ear coordinates uq, us, us.

8.7. Examples of Orthogonal Coordinates

Spherical Polar Coordinates (r,¢,0) € [0,00) x [0, 7] x [0, 27)

x = rsin ¢ cosf (8.5)
y = rsin¢sinf (8.6)
2z =1C0S ¢ (8.7)
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8. Curvilinear Coordinates

The scale factors for the Spherical Polar Coordinates are:

hi=1 8.8
hy =1 (8.9
hs = rsin¢ (8.10)

Cylindrical Polar Coordinates (7,0, z) € [0,00) X [0,27) X (—00,00)

r=rcosb (8.11)
y=rsind (8.12)
2=z (8.13)

The scale factors for the Cylindrical Polar Coordinates are:

hi=hs=1 (8.14)
ho =1 (8.15)

Parabolic Cylindrical Coordinates (u,v,z) € (—00,00) X [0,00) X (—00,00)

= §(u —0?) (8.16)
T (8.17)
o (8.18)

The scale factors for the Parabolic Cylindrical Coordinates are:

h1 = hg = Vu? + 0?2 (8.19)

hg =1 (8.20)

Paraboloidal Coordinates (u,v,0) € [0,00) x [0,00) x [0, 27)

T = uvcosf (8.21)
Yy = uvsinf (8.22)
z= %(u2 —v?) (8.23)

The scale factors for the Paraboloidal Coordinates are:

hi = ho = Vu? + v2 (8.24)

hs = uv (8.25)
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8.7. Examples of Orthogonal Coordinates

Elliptic Cylindrical Coordinates (u,v,z) € [0,00) X [0,27) X (—00,0)

T = acoshucosv (8.26)
y = asinhusinv (8.27)
o (8.28)

The scale factors for the Elliptic Cylindrical Coordinates are:

hi = hy = aV/sinh? u + sin® v (8.29)

hs =1 (8.30)

Prolate Spheroidal Coordinates (£,7,6) € [0,00) x [0, 7] x [0, 27)

x = asinh £ sinncosf (8.31)
y = asinh & sinnsin 6 (8.32)
2z = acosh & cosn (8.33)

The scale factors for the Prolate Spheroidal Coordinates are:

hi = hy = ay/sinh? & + sin?7n (8.34)

hs = asinh £sinny (8.35)

Oblate Spheroidal Coordinates (&,7,0) € [0,00) x [—g, g} x [0, 27)

x = acosh & cosn cos 6 (8.36)
y = a cosh § cosnsin (8.37)
z = asinhsinn (8.38)

The scale factors for the Oblate Spheroidal Coordinates are:

hi = hy = ay/sinh? & + sin®7n (8.39)

hs = acosh & cosn (8.40)
Ellipsoidal Coordinates
(A, p,v) (8.41)
A< <b? <d?, (8.42)
< p<b?<d, (8.43)
A< <v<a (8.44)

2

2 2
» + b2yfqi + == = 1l where (QI7(J27Q3) = (>‘7:U7V)

a? —qi c? —q;

(g5—4i)(ar—ai)
(12—%)(172—(11:)(02—%)

The scale factors for the Ellipsoidal Coordinates are: h; = %\/(
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8. Curvilinear Coordinates

Bipolar Coordinates (u,v,z) € [0,27) X (—00,00) X (—00,00)

asinh v
coshv — cosu
asinu
y=—— (8.46)
coshv — cosu
Y — 5 (8.47)

The scale factors for the Bipolar Coordinates are:

hi = hy = v (8.48)
coshv — cosu

hs =1 (8.49)

Toroidal Coordinates (u,v,0) € (—m, 7] x [0,00) x [0, 27)

a sinh v cos 6
r=—""" (8.50)
coshv — cosu

a sinh v sin 6
y=——" (8.51)
coshv — cosu
asinu
r=— (8.52)
coshv — cosu

The scale factors for the Toroidal Coordinates are:

hy=hy= — & (8.53)
coshv — cosu
asinh v
5= S (8.54)
coshv — cosu
Conical Coordinates
(A, v) (8.55)
V< < p?<d? (8.56)
A€ [0,00) (8.57)
= Apv (8.58)
ab
A ()
y= 212 (8.59)
A (=) )
z g a2 — b2 (8.60)
The scale factors for the Conical Coordinates are:
hi=1 (8.61)
N (p? —v?)
h3 = 8.62
2= (2= ) = ) (8.62)
20,2 2
h: = A —v7) (8.63)

(7 = )7~ 1)
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8.7. Examples of Orthogonal Coordinates

Exercises

A
For Exercises 1-6, find the Laplacian of the function f(z, y, z) in Cartesian coordinates.

1. f(x,y,z):x—l—y—l—z 2, f(x,y,z):m5 3‘ f(x,y,z):(w2+y2—|—z2)3/2

2

4. f(z,y,z2) =ertvts 5 f(z,y,2) =23 +y>+22 6. f(n,y,2) = e~y =z

7. Find the Laplacian of the function in Exercise 3 in spherical coordinates.
8. Find the Laplacian of the function in Exercise 6 in spherical coordinates.

9. Let f(z,y,2) = % in Cartesian coordinates. Find V f in cylindrical coordinates.
T Yy

10. Forf(r,0,z) =re, + z sinf ey + rz e, in cylindrical coordinates, find div f and curl f.
1. Forf(p,0,¢) = e, + p cosf ey + peyin spherical coordinates, find div f and curl f.

B
For Exercises 12-23, prove the given formula (r = ||r|| is the length of the position vector field
r(z,y,z) =xi+yj+ zk).

12. V(1/r) = —r/r3 13. A(1/r)=0 14. Ve(r/r3) =0 15. V(Inr) =r/r?
16. div(F+ G) = divF + divG 17. curl (F+G) = curl F + curlG

18. div(fF) = fdivF + FeVf 19. div(FxG) = Gecurl F — Fecurl G

20. div(VfxVg) =0 21. curl (fF) = fcurlF + (Vf)xF

22. curl(curlF) = V(divF) — AF 23. A(fg) = fAg+ gAf + 2(VfeVyg)
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477

Tensors

In this chapter we define a tensor as a multilinear map.

Linear Functional

Definition
Afunction f : R™ — R s a linear functional if satisfies the

linearity condition: ~ f(au+ bv) = af(u) +bf(v),

orin words: “the value on a linear combination is the the linear combination of the values.”

Alinear functional is also called linear function, 1-form, or covector.

This easily extends to linear combinations with any number of terms; for example

N . N .
fv)=Ff <Z Ulei> = v'f(e)
=1 i=1

where the coefficients f; = f(e;) are the “components” of a covector with respect to the basis {e; },
or in our shorthand notation

f(v) = f(v'e;) (express in terms of basis)
=v'f(e;) (linearity)
=i, (definition of components)

A covector f is entirely determined by its values f; on the basis vectors, namely its components
with respect to that basis.

Our linearity condition is usually presented separately as a pair of separate conditions on the two
operations which define a vector space:

m sum rule: the value of the function on a sum of vectors is the sum of the values, f(u + v) =

fw) + f(v),
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9. Tensors

m scalar multiple rule: the value of the function on a scalar multiple of a vector is the scalar
times the value on the vector, f(cu) = ¢f(u).

478 Example

In the usual notation on R3, with Cartesian coordinates (x', x2, 2%) = (x,y, 2), linear functions are
of the form f(z,y, z) = ax + by + cz,

479 Example

If we fixed a vector n we have a function n* : R™ — R defined by

is a linear function.

9.2. Dual Spaces

480 | Definition

We define the dual space of R"™, denoted as (R™)", as the set of all real-valued linear functions on
R™;

(R™)* ={f: f:R"™— Risalinear function }

The dual space (R")* is itself an n-dimensional vector space, with linear combinations of covec-

tors defined in the usual way that one can takes linear combinations of any functions, i.e., in terms
of values

covector addition: (af + bg)(v) = af(v) + bg(v), f, g covectors, v a vector .

481 | Theorem

Suppose that vectors in R™ represented as column vectors

xy

Tn

For each row vector

there is a linear functional f defined by

I

f(x)=la1...a,]
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483

9.2.1.

9.2. Dual Spaces
f(x) =a1z1 + -+ + apzy,

and each linear functional in R™ can be expressed in this form

Remark
As consequence of the previous theorem we can see vectors as column and covectors as row matrix.
And the action of covectors in vectors as the matrix product of the row vector and the column vector.

X1

Rt=¢|: ],z €eR (9.1)
L,

(R")" ={la1...an],a; € R} (9.2)

Remark
closure of the dual space

Show that the dual space is closed under this linear combination operation. In other words, show
that if f, g are linear functions, satisfying our linearity condition, then a f + b g also satisfies the lin-

earity condition for linear functions:

(af+bg)(cau+cav)=ci(af+bg)(u)+ca(af+bg)(v).

Duas Basis

Let us produce a basis for (R™)*, called the dual basis {e’} or “the basis dual to {e;},” by defining
n covectors which satisfy the following “duality relations”

1 ifi=j,

0 ifi#j,

where the symbol 5; is called the “Kronecker delta,” nothing more than a symbol for the compo-

nents of the n x n identity matrix I = (6;-). We then extend them to any other vector by linearity.

Then by linearity

e'(v) = e'(vVey) (expand in basis)
=v'e'(e;) (linearity)
= vjéj- (duality)
=) (Kronecker delta definition)

where the last equality follows since for each 4, only the term with ; = ¢ in the sum over j con-
tributes to the sum. Alternatively matrix multiplication of a vector on the left by the identity matrix
5§vj = v’ does not change the vector. Thus the calculation shows that the i-th dual basis covector
e’ picks out the i-th component v* of a vector v.
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9. Tensors

484 |Theorem
The n covectors {e'} form a basis of (R™)".

Proof.

1. spanning condition:
Using linearity and the definition f; = f(e;), this calculation shows that every linear function
f can be written as a linear combination of these covectors

f(v) = f(vie;) (expand in basis)
= v f(e;) (linearity)
=l f; (definition of components)
=007, f; (Kronecker delta definition)
=v'el(e;) f; (dual basis definition)
= (fie))(v'e;) (linearity)
= (f;e)(v). (expansion in basis, in reverse)

Thus f and f;e’ have the samevalueonevery v € R" so they are the same function: f = f;e’,
where f; = f(e;) are the “components” of f with respect to the basis {e’} of (R")" also said
to be the “components” of f with respect to the basis {e;} of R™ already introduced above.
The index i on f; labels the components of f, while the index i on e labels the dual basis
covectors.

2. linearindependence:
Suppose f;e’ = 0 is the zero covector. Then evaluating each side of this equation on e; and
using linearity

0=0(ej) (zero scalar = value of zero linear function)
= (f:e")(e;) (expand zero vector in basis)
= fe'(e;) (definition of linear combination function value)
= 6} (duality)
= fj (Knonecker delta definition)

forces all the coefficients of €’ to vanish, i.e., no nontrivial linear combination of these covec-
tors exists which equals the zero covector so these covectors are linearly independent. Thus
(R™)* is also an n-dimensional vector space.

9.3. Bilinear Forms

A bilinear form is a function that is linear in each argument separately:
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9.4. Tensor

1. B(u+v,w)=B(u,w)+ B(v,w) and B(Au,v)= AB(u,v)
2. B(u,v+w)=B(u,v)+ B(u,w) and B(u,A\v) = AB(u, V)

Let f(v,w) be a bilinear form and let ey, ..., e, be a basis in this space. The numbers B;; de-
termined by formula

Bij = f(ei, e;) (93)

are called the coordinates or the components of the form B inthe basisey, ..., e,. The numbers
9.3 are written in form of a matrix

which is called the matrix of the bilinear form B in the basis e, ..., e,. For the element B;; in
the matrix 9.4 the first index i specifies the row number, the second index j specifies the column
number.

The matrix of a symmetric bilinear form B is also symmetric: B;; = Bj;. Leto!, ..., v™ and
w?, ..., w" becoordinates of two vectors vand winthebasisey, ..., e,. Thenthevalues f(v, w)
of a bilinear form are calculated by the following formulas:

n
B(v,w) = Z

i=1j

B;j vt (9.5)
1

9.4. Tensor

Let V = R™and let V* = R™* denote its dual space. We let

VE=—Vx...xV.

k times

485 |Definition
A k-multilinear map on'V is a function T : V¥ — R which is linear in each variable.

T(Vi, oo AV W, Vi1, .o, VE) = AT(VE, o,V Vi o VE) H T(VE o, W Vg1, e, V)
In other words, given (k — 1) vectors v1,va, ..., Ui—1,Vit1,- .., VU, themap T; : V — R defined
by Ti(v) = T(vi,ve,...,V,Vit1,..., V) islinear.

486 | Definition

m Atensor of type (r,s) on V is a multilinearmap T: V" x (V*)* — R.
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9. Tensors

m A covariant k-tensoronV is a multilinearmap T: VF — R

m A contravariant k-tensor on V' is a multilinear map T: (V*)* — R.

In other words, a covariant k-tensor is a tensor of type (k,0) and a contravariant k-tensor is a
tensor of type (0, k).

487 Example

m Vectors can be seem as functions V* — R, so vectors are contravariant tensor.
m Linear functionals are covariant tensors.
m /nner product are functions fromV x V' — R so covariant tensor.

m The determinant of a matrix is an multilinear function of the columns (or rows) of a square ma-
trix, so is a covariant tensor.

The above terminology seems backwards, Michael Spivak explains:

”Nowadays such situations are always distinguished by calling the things which goin
the same direction “covariant” and the things which go in the opposite direction “con-
travariant.” Classical terminology used these same words, and it just happens to have
reversed this... And no one had the gall or authority to reverse terminology sanctified
by years of usage. So it’s very easy to remember which kind of tensor is covariant, and
which is contravariant — it’s just the opposite of what it logically ought to be.”

488 | Definition
We denote the space of tensors of type (r, s) by T5 (V).

So, in particular,

(V') = {covariant k-tensors}

(V') = {contravariant k-tensors}.
Two important special cases are:

T!(V) = {covariant 1-tensors} = V*
T1(V) = {contravariant 1-tensors} = V** = V.

This last line means that we can regard vectors v € V as contravariant 1-tensors. That is, every
vector v € V can be regarded as a linear functional V* — R via

v(w) == w(v),

wherew € V*.
The rank of an (r, s)-tensor is defined to be r + s.
In particular, vectors (contravariant 1-tensors) and dual vectors (covariant 1-tensors) have rank 1.
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9.4. Tensor

489 |Definition
IfS € T;H(V)isan (ry, s1)-tensor,and T € T2(V') is an (r2, s2)-tensor, we can define their tensor

productS® T € T T2(V) by

(SRT)(V1, -+ s Upydrgy Wiy« -+, Wsgts5) = S(V1, ey Uppy Wiy v oy Wsy ) T(Upy1y e o vy Upyfrgy Way 41y -« |y Wsy4sg)-

490 Example
Letu,v € V. Again, since V- = T1(V'), we can regard u,v € T1(V') as (0, 1)-tensors. Their tensor

productu ® v € To(V)isa (0, 2)-tensor defined by
(u® v)(w,n) = u(w) - v(n)

491 Example
LetV = R3. Writeu = (1,2,3)" € V inthestandard basis, andn = (4,5,6) € V* in the dual basis.

For the inputs, let’s also write w = (x,y,2) € V*andv = (p,q,r)" € V. Then
(u®n)(w,v) = u(w) - n(v)
1 p
= |2| [z,y,2] - [4,5,0] |q
3 r
= (z+ 2y + 3z)(4p + 5q + 67)
= 4px + dqz + 6rax

8py + 10qy + 12py
12pz 4+ 15qz + 18rz

4 5 6| |p
=[z,y,2] |8 10 12| |q
12 15 18| |r

4 5 6
=w |8 10 12|wv.
12 15 18

492 Example
If S has components a;7 ., and T has components 37 then S ® T has components o’ 1, 3"*, because

S @ T(ui, w?, up, u”, u®) = S(ug, u, up)T(u”, u®).
Tensors satisfy algebraic laws such as:

() RR(S+T)=R®S+R®T,
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493

9. Tensors
(i) (AR)®@S=AR®S)=R® (AS),
(iii) ( RRXS)XT=R®(S®T).
But
SRT#T®S
in general. To prove those we look at components wrt a basis, and note that
(B +1"s) = @B + s,
for example, but
o'l # Bla’
in general.

Some authors take the definition of an (r, s)-tensor to mean a multilinear map V¢ x (V*)" — R
(note that the r and s are reversed).

Basis of Tensor

Theorem

Let T (V') be the space of tensors of type (r, s). Let {e1, ..., e, } be a basis for V,and {e!, ... e"}
be the dual basis for V*

Then

{("®...,0e" e, ®...0e;,1s 1<j<r+s}

is a base for T,(V').

So any tensor T € T(V') can be written as combination of this basis. Let T € T,(V) bea (r, s)

tensorand let {e;, ..., e,} beabasisfor V,and {e!, ..., e"} be the dual basis for V* then we can
define a collection of scalars Ag-’l'f?]f;']”“ by

. . @lrtl Jn\ — pJr1derts
T(ej,,...,e;, e .. e) =A/T0

Then the scalars A;:’l”ff,ljf;'j’““ | 1 < j; <r+ s} completely determine the multilinear function T

494

Theorem

GivenT € T%(V') a (r, s) tensor. Then we can define a collection of scalars A;i’l“?f,ljfr"j”s by

Jr+1Jrts _ . . Jr+1 J
AT =T(ej,,... e, .. em")

The tensor T can be expressed as:

n

n

— ... Jr41Jrts J1 J . e .

T= Z E Ajl"'jr e RerRe; ., ® €j,,
=il Jn=1

As consequence of the previous theorem we have the following expression for the value of a ten-

sor:
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9.4. Tensor

495 |[Theorem
GivenT € T,(V) bea (r, s) tensor. And

n .
viz 3 e
Ji=1

for1 < ¢ < n,and
n
i L i
vi= > e
Ji=1

forr+1 <1 <7+ sthen

Jr+1Jrts Jl N ()
T(V17 o 7V Z Z A]l “Jr vjr+s
Ji=1 Jn=1

496 Example
Let’s take a trilinear function

f:R2xR?>xR? > R.
Abasis forR? is {e1,ea} = {(1,0), (0,1)}. Let
f(ei,ej, er) = Ay,

where i, j, k € {1,2}. In other words, the constant Ay, is a function value at one of the eight possible
triples of basis vectors (since there are two choices for each of the three V;), namely:

{elvela el}v {61,91792}, {61)627e1}7 {e17627e2}5 {e27e1)el}a {62,61,62}, {82762761}, {62,82762}.

Each vector v; € V; = R? can be expressed as a linear combination of the basis vectors
2 .
vi=)Y viej=v; xe1+v] x eg =v; x (1,0) + v x (0,1).

J=1

The function value at an arbitrary collection of three vectors v; € R? can be expressed as

2 2 2
f(Vl, Vo, V3) = Z Z Z Az‘jkvi’(}%vlg.

i=1j=1k=1
Or, in expanded form as
f((a7 b): (67 d)v (67 f)) = ace X f(elaelael) + CLCf X f(elaelve2) (96)
+ade x f(e1,ez,e1) + adf x f(e1,ez,e2) + bee X f(ez,e1,e1) +bef X f(ez,e1,€2)
(9.7)
+ bde x f(eg,ez,e1) + bdf x f(ez,e2,€2). (9.8)
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9. Tensors

9.4.2. Contraction

The simplest case of contraction is the pairing of V" with its dual vector space V*.

C: V'@V =R (9.9)
C(fev)=f(v) (9.10)

where fisinV*andvisin V.
The above operation can be generalized to a tensor of type (r, s) (withr > 1,5 > 1)
Crs - T0(V) = TI2H(V) (9.11)
(9.12)

9.5. Change of Coordinates

9.5.1. Vectors and Covectors

Suppose that V' is a vector space and E = {v1,--- ,v,} and F = {wy,--- ,w,} are two ordered
basis for V. E and F give rise to the dual basis E* = {v!,--- v"}and F* = {w!,--- ,w"} for V*
respectively.

If[T)% = [)\{] is the matrix representation of coordinate transformation from E to F, i.e.

w1 DY I S V1l I V)
Wy, ALCAZ oA,

What is the matrix of coordinate transformation from E* to F*?
We can write w’ € F* as a linear combination of basis elements in E*:

We get a matrix representation [S]&. = [u{] as the following:

piopd pt
O b
py o pE ol

We know that w; = /\}vl + - -+ 4+ Al'vy,. Evaluating this functional at w; € V we get:

w (wi) = pfot (wy) + - + plo™(w;) = 6]

wj(wz-) = ,u{vl()\ilvl + Ao+ + u%v”(A%m + o Aloy) = (55
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9.6.

9.6. Symmetry properties of tensors

n
w(w) = A+ A =Y A =6
k=1

n
But Z /ﬂg)\f is the (i, j) entry of the matrix product TS. Therefore TS = I,, and S = T~ L.
k=1
If we want to write down the transformation from E* to I'* as column vectors instead of row

vector and name the new matrix that represents this transformation as U, we observe that U = S*
and therefore U = (T~ 1)L,

Therefore if T represents the transformation from E to F' by the equation w = T'v, then w* =
Uv*.

Bilinear Forms

Letey, ..., epandeéq, ..., e, betwo basisin alinear vector space V. Let’s denote by S the transi-
tion matrix for passing from the first basis to the second one. Denote T = S~!. From 9.3 we easily
derive the formula relating the components of a bilinear form f(v, w) these two basis. For this pur-
pose it is sufficient to substitute the expression for a change of basis into the formula 9.3 and use
the bilinearity of the form f(v, w):

n n n n
fij = f(ei, e;) ZZ TR €q) = D) TP T frg.
k=1 : k=1 q:1
The reverse formula expressing fkq through f;; is derived similarly:

Fi =Y T frgfog =D SLS) fij- (9.13)

k=1g¢=1 i=1j=1

In matrix form these relationships are written as follows:
F=T"'FTF=STFS. (9.14)

Here ST and T” are two matrices obtained from S and T by transposition.

Symmetry properties of tensors

Symmetry properties involve the behavior of a tensor under the interchange of two or more argu-
ments. Of course to even consider the value of a tensor after the permutation of some of its argu-
ments, the arguments must be of the same type, i.e., covectors have to go in covector arguments
and vectors in vectors arguments and no other combinations are allowed.

The simplest case to consider are tensors with only 2 arguments of the same type. For vector
arguments we have (0, 2)-tensors. For such a tensor T introduce the following terminology:

TV, X)=T(X,Y), Tis symmetricin X and Y,
TV, X)=-T(X,Y), T is antisymmetric or “ alternating” in X and Y.
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9. Tensors

Letting (X, Y’) = (e;, ej) and using the definition of components, we get a corresponding condition
on the components

Ty =T, T is symmetric in the index pair (i, 7),

Ty = —Tjj , T is antisymmetric (alternating) in the index pair (4, 7).

For an antisymmetric tensor, the last condition immediately implies that no index can be repeated
without the corresponding component being zero

Ty =-T;; —T; =0.

Any (0, 2)-tensor can be decomposed into symmetric and antisymmetric parts by defining

[SYM(M)|(X,Y) = %[T(X, Y)+T(Y, X)), (“the symmetric part of T”),
[ALT(M](X,Y) = %[T(X, Y)-T(,X)], (“the antisymmetric part of T”),

T = SYM(T) + ALT(T).

The last equality holds since evaluating it on the pair (X,Y’) immediately leads to an identity.
[Check.]
Again letting (X,Y) = (e;, e;) leads to corresponding component formulas

1
[SYM(T));; = 5(sz +Tji) = Ty » (n(n 4+ 1)/2 independent components),
1 .
[ALT(T)];; = 5(Tij —Ty) = Tjyy) s (n(n — 1)/2 independent components),
Tij = Tijy + Tiiz) » (n? = n(n+1)/2+ n(n — 1)/2 independent components).

Round brackets around a pair of indices denote the symmetrization operation, while square
brackets denote antisymmetrization. This is a very convenient shorthand. All of this can be re-
peated for (3)-tensors and just reflects what we already know about the symmetric and antisym-
metric parts of matrices.

Forms

Motivation

Oriented area and Volume We define the oriented area function A(a, b) by
A(a,b) = +|al - |b| -sina,

where the sign is chosen positive when the angle a is measured from the vector a to the vector b in
the counterclockwise direction, and negative otherwise.
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9.7. Forms

Statement: The oriented area A(a, b) of a parallelogram spanned by the vectors a and b in the
two-dimensional Euclidean space is an antisymmetric and bilinear function of the vectors a and b:

A(a,b) = —A(b,a),
A(M\a,b) = A A(a,b),
A(a,b+c) = A(a,b) + A(a,c). (the sum law)
Theordinary (unoriented) areais then obtained as the absolute value of the oriented area, Ar(a, b) =

|A(a, b)|. It turns out that the oriented area, due to its strict linearity properties, is a much more
convenient and powerful construction than the unoriented area.

497 |Theorem
Let a, b, c, be linearly independent vectors in R3. The signed volume of the parallelepiped spanned
by them s (a X b)sc.

Statement: The oriented volume V' (a, b, ¢) of a parallelepiped spanned by the vectors a, b and
cinthethree-dimensional Euclidean spaceis an antisymmetric and trilinear function of the vectors
a,bandc:

V(a7 b7 C) = _V(ba a, C)v
V(Aa,b,c) = AV(a,b,c),
V(a,b+d,c)=V(a,b)+ V(a,d,c). (the sum law)

9.7.2. Exterior product

In three dimensions, an oriented area is represented by the cross product a x b, which isindeed an
antisymmetric and bilinear product. So we expect that the oriented area in higher dimensions can
be represented by some kind of new antisymmetric product of a and b; let us denote this product
(to be defined below) by a A b, pronounced “a wedge b.” The value of a A b will be a vectorin a new
vector space. We will also construct this new space explicitly.

Definition of exterior product We will constructan antisymmetric product using the tensor prod-
uct space.

498 | Definition

Given a vector space V, we define a new vector space V' A V called the exterior product (or anti-
symmetric tensor product, or alternating product, or wedge product) of two copies of V. The space
V AV isthe subspace in V' ® V consisting of all antisymmetric tensors, i.e. tensors of the form

VIQVy—Vva®vVvy, Vig€V,
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and all linear combinations of such tensors. The exterior product of two vectors vi and v is the
expression shown above; it is obviously an antisymmetric and bilinear function of v, and vo.

For example, here is one particular element from V' A V, which we write in two different ways
using the properties of the tensor product:

(u+v)@(v+w)—(V+w)®(u+v)=u®v—-vRu
FUQW-—WRUF+VAW—WRVEVAV. (9.15)

Remark: Atensorv; ® vo € V ® V is not equal to the tensor vy ® vy if vi # vo.

Itis quite cumbersometo perform calculationsin the tensor product notation aswe did in Eq. (9.15).
So let us write the exterior productas u A v instead of u® v —v®u. Itis then straightforward to see
that the “wedge” symbol A indeed works like an anti-commutative multiplication, as we intended.
The rules of computation are summarized in the following statement.

Statement 1: One may savetimeandwrittu®@ v—v®u=uAv € VAV, and the result of
any calculation will be correct, as long as one follows the rules:

uAv=-vAu, (9.16)
(Au) Av=A(uAv), (9.17)
(U+V)AX=UuAX+VAX. (9.18)

It follows also thatu A (Av) = A (u A v) and that v A v = 0. (These identities hold for any vectors
u,v € V and any scalars A € K.)

Proof: These properties are direct consequences of the properties of the tensor product when
applied to antisymmetric tensors. For example, the calculation (9.15) now requires a simple expan-
sion of brackets,

(U+V)A(V+W)=uAvV+UuUAwW+ VAW

Here we removed the term v A v which vanishes due to the antisymmetry of A. Details left as
exercise. ]

Elements of the space V A V,suchasa A b + ¢ A d, are sometimes called bivectors.! We will
also want to define the exterior product of more than two vectors. To define the exterior product
of three vectors, we consider the subspace of V& V ® V that consists of antisymmetric tensors of
the form

a®b®c—ba®kc+cRka®kb-—clb®a
+b®c®a—a®c®b (9.19)

'It is important to note that a bivector is not necessarily expressible as a single-term product of two vectors; see the
Exercise at the end of Sec. ?2.
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and linear combinations of such tensors. These tensors are called totally antisymmetric because
they can be viewed as (tensor-valued) functions of the vectors a, b, c that change sign under ex-
change of any two vectors. The expression in Eq. (9.19) will be denoted for brevity by a A b A c,
similarly to the exterior product of two vectors,a®b — b ® a, which is denoted for brevity by a A b.
Here is a general definition.

Definition 2: The exterior product of k£ copies of V' (also called the k-th exterior power of V) is
denoted by A*V and is defined as the subspace of totally antisymmetric tensors within V ® ... @ V.
In the concise notation, this is the space spanned by expressions of the form

VIAVIA .. AVE, V;EV,

assuming that the properties of the wedge product (linearity and antisymmetry) hold as given by
Statement 1. For instance,

UAVIA . LAVE=(=DFviA. AviAu (9.20)

(“pulling a vector through k other vectors changes sign k times”). |
The previously defined space of bivectors is in this notation VA V' = A?V. A natural extension
of this notation is A’V = Kand A'V = V. | will also use the following “wedge product” notation,

n
/\ Ve =ViI AVa AL AV,
k=1

Tensors from the space A™V are also called n-vectors or antisymmetric tensors of rank n.
Question: How to compute expressions containing multiple products suchasa A b A ¢?

Answer: Apply the rules shown in Statement 1. For example, one can permute adjacent vectors
and change sign,
aAbAc=-bAaAc=DbAcAa,

one can expand brackets,
aA(x+4y)Ab=aAxAb+4aAyADb,

and so on. If the vectors a, b, ¢ are given as linear combinations of some basis vectors {ej}, we
can thus reduce a A b A c¢ to a linear combination of exterior products of basis vectors, such as
e; Nex ANes,e; N\ex N ey,etc.

1 1
27_2>’b - (27_270)’(: -

(—2,5,—3). Let us compute various exterior products. Calculations are easier if we introduce the

Example 1: Suppose we work in R? and have vectors a = (0,

basis {e1, e2, e3} explicitly:

1
a= 5(82—63), b:2(el_92), c = —2e; + ey — 3es.
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9. Tensors

We compute the 2-vector a A b by using the properties of the exterior product, suchasx A x =0
andx Ay = —y A x, and simply expanding the brackets as usual in algebra:

1
a/\b25(62—83)/\2(el—82)

= (e2 —e3) A (e1 —e)
=ey/Ne; —eg/Nel —exNex+e3Ner

= —ej Nex+ e ANeg —ex NAes.

The last expression is the result; note that now there is nothing more to compute or to simplify. The
expressions such as e; A e; are the basic expressions out of which the space R? A R? is built.
Let us also compute the 3-vectora A b A c,

aAbAc=(aAb)Ac
= (—e1/\e2+el/\e3—eg/\eg)/\(—2e1+5e2—3e3).

When we expand the brackets here, terms such as e; A es A e will vanish because
etNeaNe; = —ex Neg Aep =0,
so only terms containing all different vectors need to be kept, and we find

aAbAc=3e; ANex Aes+5e; AesAes+ 2es Neg Aey
:(3—5—|—2)e1/\e2/\e3:0.

We note that all the terms are proportional to the 3-vector e; A ez A e3, so only the coefficient in
front of e; A e2 A e3 was needed; then, by coincidence, that coefficient turned out to be zero. So
the result is the zero 3-vector. [ ]

Remark: Origin of the name “exterior.” The construction of the exterior product is a modern
formulation of the ideas dating back to H. Grassmann (1844). A 2-vector a A b is interpreted geo-
metrically as the oriented area of the parallelogram spanned by the vectors a and b. Similarly, a
3-vector a A b A c represents the oriented 3-volume of a parallelepiped spanned by {a, b, c}. Due
to the antisymmetry of the exterior product, we have (aAb)A(aAc) =0, (aAbAc)A(bAd) =0,
etc. We can interpret this geometrically by saying that the “product” of two volumes is zero if these
volumes have a vector in common. This motivated Grassmann to call his antisymmetric product
“exterior.” In his reasoning, the product of two “extensive quantities” (such as lines, areas, or vol-
umes) is nonzero only when each of the two quantities is geometrically “to the exterior” (outside)
of the other.

Exercise 2: Show thatin a two-dimensional space V, any 3-vector suchasa A b A ¢ can be sim-
plified to the zero 3-vector. Prove the same for n-vectors in N-dimensional spaces whenn > N.
[ |

One can also consider the exterior powers of the dual space V*. Tensors from A™V* are usually
(for historical reasons) called n-forms (rather than “n-covectors”).
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9.7. Forms

Definition 3: The action of a k-form f] A ... A f} ona k-vector vi A ... A vy, is defined by

ST (V1) B (Vo)

g

where the summation is performed over all permutations o of the ordered set (1, ..., k).

Example 2: With £ = 3 we have

(P*ANq"Arf)(aAbAc
) -

= p'(a)q’(b)r*(c) — p"(b)q"(a)r’(c)
+p’(b)a*(c)r(a) — p*(c)q’(b)r(a)
+p'(c)a’(a)r(b) —p*(c)q’(b)r(a)

Exercise 3: a) Showthata A b Aw = w A a A bwhere w is any antisymmetric tensor (e.g. w =
XAy Az).
b) Show that
wiANaAwa AbAws=—wi AbAws AaAws,

where w1, ws, wy are arbitrary antisymmetric tensors and a, b are vectors.
c) Due to antisymmetry, a A a = 0 for any vectora € V. Isit also true that w A w = 0 for any
bivector w € A2V?

9.7.3. Hodge star operator
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Tensors in Coordinates

"The introduction of numbers as coordinates is an act of violence.”

10.1. Index notation for tensors

Hermann Weyl.

So far we have used a coordinate-free formalism to define and describe tensors. However, in many

calculationsabasisin V' isfixed, and one needs to compute the components of tensors in that basis.

In this cases the index notation makes such calculations easier.

Suppose abasis {ey, ..., e, } in V'is fixed; then the dual basis {ek} is also fixed. Any vectorv € V

is decomposed asv = _ v¥e; and any covectoras f* = fre”.

k k
Any tensor from V' ® V' is decomposed as

A:ZAjkej®ek evVeV
gk

and so on. The action of a covector on a vector is f* (v) = Z frvk, and the action of an operator

k

on a vector is ZAjkvkek. However, it is cumbersome to keep writing these sums. In the index

gk

notation, one writes only the components vy, or A;;, of vectors and tensors.

499 |Definition
GivenT € Ty(V):

J1gr
j1=1 jr+s:1
The index notation of this tensor is

jr+1 "‘jr+s

n n
_ . Jr+1Jrts Lj1 J . )
T—Z Z T; elRerre;, Qe

10.1.1. Definition of index notation

The rules for expressing tensors in the index notations are as follows:
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10. Tensors in Coordinates

(J Basis vectors e, and basis tensors (e.g. e, ® e]) are never written explicitly. (It is assumed

248

that the basis is fixed and known.)

Instead of a vector v € V, one writes its array of components v* with the superscript index.
Covectors f* € V* are written fi with the subscript index. The index k runs over integers
from 1 to N. Components of vectors and tensors may be thought of as numbers.

Tensors are written as multidimensional arrays of components with superscript or subscript
indices as necessary, for example Aj; € V* @ V*orBi™ € V ® V ® V*. Thus e.g. the
Kronecker delta symbol is written as 5% when it represents the identity operator 1y

Tensors with subscript indices, like A;;, are called covariant, while tensors with superscript
indices, like A¥, are called contravariant. Tensors with both types of indices, like Afkm", are
called mixed type.

Subscript indices, rather than subscripted tensors, are also dubbed “covariant” and super-
script indices are dubbed “contravariant”.

For tensor invariance, a pair of dummy indices should in general be complementary in their
variance type, i.e. one covariant and the other contravariant.

As indicated earlier, tensor order is equal to the number of its indices while tensor rank is
equal to the number of its free indices; hence vectors (terms, expressions and equalities) are
represented by a single free index and rank-2 tensors are represented by two free indices. The
dimension of a tensor is determined by the range taken by its indices.

The choice of indices must be consistent; each index corresponds to a particular copy of V'
or V*. Thus it is wrong to write v; = uy, or v; + u’ = 0. Correct equations are v; = u; and
v’ 4+ u’ = 0. This disallows meaningless expressions such as v* + u (one cannot add vectors
from different spaces).

n
Sums over indices such as Z ayby are not written explicitly, the Z symbol is omitted, and
k=1
the Einstein summation convention is used instead: Summation over all values of an index

is alwaysimplied when thatindex letter appears once as a subscript and once as a superscript.

In this case the letter is called a dummy (or mute) index. Thus one writes f;v* instead of
> frvr and Alv* instead of > Aoy

k k
Summation is allowed only over one subscript and one superscript but never over two sub-
scripts or two superscripts and never over three or more coincidentindices. This corresponds
to requiring that we are only allowed to compute the canonical pairing of VV and V* but no
gy

other pairing. The expression v*v" is not allowed because there is no canonical pairing of V

n
and V, so, for instance, the sum Z v*v* depends on the choice of the basis. For the same
k=1
reason (dependence on the basis), expressions such as u*v*w* or A;;B** are not allowed. Cor-

rect expressions are u;viwy, and A;;, B,



10.1. Index notation for tensors

1 Oneneedsto pay close attention to the choice and the position of the letterssuch as j, &, [,... used
as indices. Indices that are not repeated are free indices. The rank of a tensor expression is
equal to the number of free subscript and superscript indices. Thus A{Cfuk is a rank 1 tensor
(i.e. a vector) because the expression Aiv’C has a single free index, j, and a summation over k
isimplied.

1 The tensor product symbol ® is never written. For example, if v ®@ f* = Zvjf,jej ® e,

ik
one writes 'kaj to represent the tensor v ® f*. The index letters in the expiession 'kaj are
intentionally chosen to be different (in this case, k and j) so that no summation would be
implied. In other words, a tensor product is written simply as a product of components, and
the index letters are chosen appropriately. Then one can interpret v’“fj as simply the product
of numbers. In particular, it makes no difference whether one writes fj’l}k or ’kaj. The position
of the indices (rather than the ordering of vectors) shows in every case how the tensor product
is formed. Note that it is not possible to distinguish V@ V* from V*® V in the index notation.

500 Example
It follows from the definition of &} that §5v = v'. This is the index representation of the identity
transformation 1v = v.

501 Example
Suppose w, x, y, and z are vectors from V whose components are w', ', /%, 2. What are the compo-
nents of thetensorw @ x +2y @z c Ve V?

Solution: » w'z* + 2y°2*. (We need to choose another letter for the second free index, k, which
corresponds to the second copyof VinV @ V.) «

502 Example
The operator A = 1y + Av @ u* € V @ V* acts on a vector x € V. Calculate the resulting vector
y = Ax.
In the index-free notation, the calculation is

y = Ax = <iv+)\v®u*)xzx+)\u* (x)v.
In the index notation, the calculation looks like this:
yF = ((5;i + )\vkuj> @) =aF + )\vkujxj.
In this formula, j is a dummy index and k is a free index. We could have also written Az7v*u; instead
of )\vkuj:vj since the ordering of components makes no difference in the index notation.
503 Example
In a physics book you find the following formula,

1
ng =3 (hﬂuv + hgup — hwﬁ) gaﬁ‘

To what spaces do the tensors H, g, h belong (assuming these quantities represent tensors)? Rewrite
this formula in the coordinate-free notation.
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10.2.

10. Tensors in Coordinates

Solution: » He V@V *QV* , he V*V*®V* g€V ®V.Assuming the simplest case,
h:hT®h§®h§a g:g1®g27
the coordinate-free formulais

1 * * * * * * * * *
H = 281 ® (h] (g2) h5 ® h3 + hj (g2) h3 ® h3 —h3 (g2) h] ® h3) .

Advantages and disadvantages of index notation

Index notation is conceptually easier than the index-free notation because one can imagine ma-
nipulating “merely” some tables of numbers, rather than “abstract vectors.” In other words, we
are working with less abstract objects. The price is that we obscure the geometric interpretation of
what we are doing, and proofs of general theorems become more difficult to understand.

The main advantage of the index notation is that it makes computations with complicated ten-
sors quicker.

Some disadvantages of the index notation are:

O If the basis is changed, all components need to be recomputed. In textbooks that use the
index notation, quite some time is spent studying the transformation laws of tensor com-
ponents under a change of basis. If different basis are used simultaneously, confusion may
result.

1 The geometrical meaning of many calculations appears hidden behind a mass of indices. It
is sometimes unclear whether a long expression with indices can be simplified and how to
proceed with calculations.

Despite these disadvantages, the index notation enables one to perform practical calculations
with high-rank tensor spaces, such as those required in field theory and in general relativity. For
this reason, and also for historical reasons (Einstein used the index notation when developing the
theory of relativity), most physics textbooks use the index notation. In some cases, calculations can
be performed equally quickly using index and index-free notations. In other cases, especially when
deriving general properties of tensors, the index-free notation is superior.

Tensor Revisited: Change of Coordinate

Vectors, covectors, linear operators, and bilinear forms are examples of tensors. They are multilin-
ear maps that are represented numerically when some basis in the space is chosen.

This numeric representation is specific to each of them: vectors and covectors are represented by
one-dimensional arrays, linear operators and quadratic forms are represented by two-dimensional
arrays. Apart from the number of indices, their position does matter. The coordinates of a vector
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10.2. Tensor Revisited: Change of Coordinate

are numerated by one upper index, which is called the contravariant index. The coordinates of
a covector are numerated by one lower index, which is called the covariant index. In a matrix of
bilinear form we use two lower indices; therefore bilinear forms are called twice-covariant tensors.
Linear operators are tensors of mixed type; their components are numerated by one upper and one
lower index. The number of indices and their positions determine the transformation rules, i‘'ethe
way the components of each particular tensor behave under a change of basis. In the general case,
any tensor is represented by a multidimensional array with a definite number of upper indices and
a definite number of lower indices. Let’s denote these numbers by r and s. Then we have a tensor
of the type (7, s), or sometimes the term valency is used. A tensor of type (r, s), or of valency (r, s)
is called an r-times contravariant and an s-times covariant tensor. This is terminology; now let’s
proceed to the exact definition. It is based on the following general transformation formulas:

n n
i1 dr i1 ir Tk ks vhi... hy
Xijo = Z . Z Shy o STy e T Xy kel (10.1)
hlvn-vhr
ki,....ks
n n
Vil i1 7 k1 ks vhi... hy
Xj1~--js - Z ) 'ZTM T T]':rsjl T Sjs Xkl...ks : (10.2)
hi,..., hy
ki, ..., ks

Definition (Tensor Definition in Coordinate)
A (r+ s)-dimensional array X;ll‘.‘_‘. Z of real numbers and such that the components of this array obey
the transformation rules

n n
SR T i1 i k1 ks vhi...h
Xlotr — N ) S ST TR (10.3)
hlv---vhr
1. ks
n n
Wil b 11 7 k1 ks vhi... hy
Xpld = P 'ZThl e T Sy S0 XKy ke (10.4)
Ri, ... hr
klv--nks

under a change of basis is called tensor of type (r, s), or of valency (r, s).

Formula 10.4 is derived from 10.3, so it is sufficient to remember only one of them. Let it be the
formula 10.3. Though huge, formula 10.3 is easy to remember.

Indices i1, ..., i and j1, ..., js are free indices. In right hand side of the equality 10.3 they
are distributed in S-s and T'-s, each having only one entry and each keeping its position, i'eupper
indices iy, ..., i, remain upper and lower indices j1, ..., js remain lowerin right hand side of the
equality 10.3.

Otherindices hy, ..., hr. and k1, ..., ks are summation indices; they enter the right hand side
of 10.3 pairwise: once as an upper index and once as a lower index, once in S-s or T-s and once in
components of array )?Zi::: ,’3

When expressing Xé.ll‘.'.'_éfs through )?Zi_‘_‘:,?: each upper index s served by direct transition matrix S
and produces one summation in 10.3:

o ZZ::l LY S;;‘ X . (10.5)
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In a similar way, each lower index is served by inverse transition matrix 7" and also produces one
summation in formula 10.3:

X = Zzzzl LY The X (10.6)

Formulas10.5 and 10.6 are the same as 10.3 and used to highlight how 10.3 is written. So tensors are
defined. Further we shall consider more examples showing that many well-known objects undergo
the definition 12.1.

Example

Verify that formulas for change of basis of vectors, covectors, linear transformation and bilinear forms
are special cases of formula 10.3. What are the valencies of vectors, covectors, linear operators, and
bilinear forms when they are considered as tensors.

Example
The &7 is a tensor.

Solution: »

07 = AL(AT)isf = Al(ATHE = o]

|

Example
The €;;1, Is a pseudo-tensor.

Example

Let a;; be the matrix of some bilinear form a. Let’s denote by b components of inverse matrix for a;;.
Prove that matrix b" under a change of basis transforms like matrix of twice-contravariant tensor.
Hence it determines tensor b of valency (2, 0). Tensor b is called a dual bilinear form for a.

Rank

The order of a tensor is identified by the number of its indices (e.g. Aék is a tensor of order 3) which
normally identifies the tensor rank as well. However, when contraction (see S 10.3.4) takes place
once or more, the order of the tensor is not affected but its rank is reduced by two for each contrac-
tion operation.!

m “Zerotensor” is a tensor whose all components are zero.

m “Unit tensor” or “unity tensor”, which is usually defined for rank-2 tensors, is a tensor whose
all elements are zero except the ones with identical values of all indices which are assigned
the value 1.

'In the literature of tensor calculus, rank and order of tensors are generally used interchangeably; however some au-
thors differentiate between the two as they assign order to the total number of indices, including repetitive indices,
while they keep rank to the number of free indices. We think the latter is better and hence we follow this convention
in the present text.
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10.3. Tensor Operations in Coordinates

m While tensors of rank-0 are generally represented in a common form of light face non-indexed
symbols, tensors of rank > 1 are represented in several forms and notations, the main ones
are the index-free notation, which may also be called direct or symbolic or Gibbs notation,
and the indicial notation which is also called index or component or tensor notation. The
first is a geometrically oriented notation with no reference to a particular reference frame
and hence it is intrinsically invariant to the choice of coordinate systems, whereas the sec-
ond takes an algebraic form based on components identified by indices and hence the no-
tation is suggestive of an underlying coordinate system, although being a tensor makes it
form-invariant under certain coordinate transformations and therefore it possesses certain
invariant properties. The index-free notation is usually identified by using bold face symbols,
like a and B, while the indicial notation is identified by using light face indexed symbols such
asa’and B;;.

10.2.2. Examples of Tensors of Different Ranks

O Examples of rank-0 tensors (scalars) are energy, mass, temperature, volume and density.
These are totally identified by a single number regardless of any coordinate system and hence
they are invariant under coordinate transformations.

d Examples of rank-1 tensors (vectors) are displacement, force, electric field, velocity and ac-
celeration. These need for their complete identification a number, representing their mag-
nitude, and a direction representing their geometric orientation within their space. Alterna-
tively, they can be uniquely identified by a set of numbers, equal to the number of dimensions
of the underlying space, in reference to a particular coordinate system and hence this iden-
tification is system-dependent although they still have system-invariant properties such as
length.

O Examples of rank-2 tensors are Kronecker delta (see S 10.4.1), stress, strain, rate of strain and
inertia tensors. These require for their full identification a set of numbers each of which is
associated with two directions.

1 Examples of rank-3 tensors are the Levi-Civita tensor (see S 10.4.2) and the tensor of piezo-
electric moduli.

[ Examples of rank-4 tensors are the elasticity or stiffness tensor, the compliance tensor and
the fourth-order moment of inertia tensor.

[ Tensors of high ranks are relatively rare in science.

10.3. Tensor Operations in Coordinates

There are many operations that can be performed on tensors to produce other tensors in general.
Some examples of these operations are addition/subtraction, multiplication by a scalar (rank-0 ten-
sor), multiplication of tensors (each of rank > 0), contraction and permutation. Some of these
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operations, such as addition and multiplication, involve more than one tensor while others are

performed on a single tensor, such as contraction and permutation.
In tensor algebra, division is allowed only for scalars, hence if the components of an indexed
tensor should appear in a denominator, the tensor should be redefined to avoid this, e.g. B; = Ai
{2

10.3.1. Addition and Subtraction

Tensors of the same rank and type can be added algebraically to produce a tensor of the same rank

and type, e.g.
a=2> +c (10.7)
A; = B; — C; (10.8)
A, =B+ C} (10.9)

509 | Definition

Given two tensors Y?l'.": 32 and Z;'-ll‘. " ’;; of the same type then we define their sum as

1 eee U e by _ 01Uy
Xl f T Yl d, = 25005

510 [Theorem
Given two tensors Y;-i:: ZJ’" and Z?{fﬂ ’]’" oftype (r, s) then their sum
i _ oyl ie ) viLe. i
i = X5 Y

is also a tensor of type (r, s).

Proof.
n n
1.ty i1 i Tk1 ks ghi... hy
Xpih = e D S ST T X
hl’“-’hr
klv---vks
n n
8]0 by i1 i Tk1 ks vhi... hy
Y-t = Yy Sh ST T
h17~"’hr
kl:"~7k.9
Then

n n
e bp 71 i k1 ks vhi... hy
Zit =y Ly S Sy T T X
h17~'~7h'r
k17~~-7ks

n n

i1 ir k1 ks vhi...hr

+D D S ST T
hlv"-7hr
klw“)ks

n n
SR i1 i k1 ks (vhi...hr Jhi... hy
ZRT =) e S ST T (Xkl...ks +Yk1...ks>
h‘17"'7h"f‘
k‘lv-“vks
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| |

Addition of tensors is associative and commutative:
(A+B)+C=A+(B+0C) (10.10)
A+B=B+A (10.11)

Multiplication by Scalar

A tensor can be multiplied by a scalar, which generally should not be zero, to produce a tensor of
the same variance type and rank, e.g.
Agk - ang (10.12)

where a is a non-zero scalar.

Definition

Given Xi-'r a tensor of type (r, s) and a a scalar we define the multiplication of X/ " by v as:

T R S
Yali=aX

Theorem
Given X;ill'."‘_éfs a tensor of type (r, s) and « a scalar then

01w by T1een by
Yials =aX g

is also a tensor of type (r, s)

The proof of this Theorem is very similar to the proof of the Theorem 510 and the proof is left as an
exercise to the reader.

As indicated above, multiplying a tensor by a scalar means multiplying each component of the
tensor by that scalar.

Multiplication by a scalar is commutative, and associative when more than two factors are in-

volved.

Tensor Product

This may also be called outer or exterior or direct or dyadic multiplication, although some of these
names may be reserved for operations on vectors.

The tensor product is defined by a more tricky formula. Suppose we have tensor X of type (7, s)
and tensor Y of type (p, ¢), then we can write:

Zil---ir+p _ il.‘.ir ir+1---i'r+p
J1--Jstq J1-Js Js+1eJstq’

Formula 10.3.3 produces new tensor Z of the type (7 + p, s + ¢). Itis called the tensor product of
XandYanddenotedZ =X®Y.
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513 Example

A;Bj = C;; (10.13)
Ay =Y, (10.14)

Direct multiplication of tensors is not commutative.

514 Example (Outer Product of Vectors)
The outer product of two vectors is equivalent to a matrix multiplication uv’, provided that u is rep-
resented as a column vector and v as a column vector. And so v is a row vector.

U1 UVl UV2  ULV3

T U2 U2V  UV2 U203
uRQv=uv = {Ul V9 U3} = . (10.15)

us U3vV]  UV2  U3V3

Uy ULV]  ULV2 U4V3

In index notation:
(uv?)j = uv;
The outer product operation is distributive with respect to the algebraic sum of tensors:
AB+C)=AB+AC & (BC)A=BA+CA (10.16)

Multiplication of a tensor by a scalar (refer to S 10.3.2) may be regarded as a special case of direct
multiplication.

The rank-2 tensor constructed as a result of the direct multiplication of two vectors is commonly
called dyad.

Tensors may be expressed as an outer product of vectors where the rank of the resultant product
is equal to the number of the vectors involved (e.g. 2 for dyads and 3 for triads).

Not every tensor can be synthesized as a product of lower rank tensors.

10.3.4. Contraction

Contraction of a tensor of rank > 1 is to make two free indices identical, by unifying their symbols,
and perform summation over these repeated indices, e.g.

Ag contraction Aé (10.17)
R
Azlk contraction on jl Agf (10.18)

Contraction results in a reduction of the rank by 2 since it implies the annihilation of two free
indices. Therefore, the contraction of a rank-2 tensor is a scalar, the contraction of a rank-3 tensor
is a vector, the contraction of a rank-4 tensor is a rank-2 tensor, and so on.
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For non-Cartesian coordinate systems, the pair of contracted indices should be different in their
variance type, i.e. one upper and one lower. Hence, contraction of a mixed tensor of type (m, n)
will, in general, produce a tensor of type (m — 1,n — 1).

A tensor of type (p, q) can have p x ¢ possible contractions, i.e. one contraction for each pair of
lower and upper indices.

Example (Trace)

In matrix algebra, taking the trace (summing the diagonal elements) can also be considered as con-
traction of the matrix, which under certain conditions can represent a rank-2 tensor, and hence it yields
the trace which is a scalar.

Inner Product

On taking the outer product of two tensors of rank > 1 followed by a contraction on two indices of
the product, an inner product of the two tensors is formed. Hence if one of the original tensors is
of rank-m and the other is of rank-n, the inner product will be of rank-(m + n — 2).

The inner product operation is usually symbolized by a single dot between the two tensors, e.g.
A - B, to indicate contraction following outer multiplication.

In general, the inner product is not commutative. When one or both of the tensors involved in
the inner product are of rank > 1 the order of the multiplicands does matter.

The inner product operation is distributive with respect to the algebraic sum of tensors:

A-B+C)=A-B+A-C & (B+C)-A=B-A+C-A (10.19)

Example (Dot Product)

A common example of contraction is the dot product operation on vectors which can be regarded as
a direct multiplication (refer to S 10.3.3) of the two vectors, which results in a rank-2 tensor, followed
by a contraction.

Example (Matrix acting on vectors)
Another common example (from linear algebra) of inner product is the multiplication of a matrix (rep-
resenting a rank-2 tensor) by a vector (rank-1 tensor) to produce a vector, e.qg.

[Ab]i]].c =A;b"  contraction on jk [A b, = At/ (10.20)

The multiplication of two n x n matrices is another example of inner product (see Eq. ??).

For tensors whose outer product produces a tensor of rank > 2, various contraction operations
between different sets of indices can occur and hence more than one inner product, which are dif-
ferent in general, can be defined. Moreover, when the outer product produces a tensor of rank > 3
more than one contraction can take place simultaneously.

Permutation

A tensor may be obtained by exchanging the indices of another tensor, e.g. transposition of rank-2
tensors.
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Obviously, tensor permutation applies only to tensors of rank > 2.
The collection of tensors obtained by permuting the indices of a basic tensor may be called iso-
mers.

Kronecker and Levi-Civita Tensors

These tensors are of particularimportance in tensor calculus due to their distinctive properties and
unique transformation attributes. They are numerical tensors with fixed components in all coordi-
nate systems. The firstis called Kronecker delta or unit tensor, while the second is called Levi-Civita

The § and etensors are conserved under coordinate transformations and hence they are the same
for all systems of coordinate.?

Kronecker
This is a rank-2 symmetric tensor in all dimensions, i.e.
dij = 0ji (4,7 =1,2,...,n) (10.21)

Similar identities apply to the contravariant and mixed types of this tensor.
It is invariant in all coordinate systems, and hence it is an isotropic tensor.3
Itis defined as:

0ij = ! (i=3) (10.22)
0 (i #j)
and hence it can be considered as the identity matrix, e.g. for 3D
011 d12 013 1 00
[5ij] = d21 d22 23 | =[O0 1 O (10.23)
031 032 033 0 0 1

Covariant, contravariant and mixed type of this tensor are the same, that is

53 — 55’ = §U = §; (10.24)

Permutation ¢

This is an isotropic tensor. It has a rank equal to the number of dimensions; hence, a rank-n per-
mutation tensor has n” components.

It is totally anti-symmetric in each pair of its indices, i.e. it changes sign on swapping any two of
its indices, that is

€iy.oigeipenin = Ei1.ip.ifsnin (10.25)

’For the permutation tensor, the statement applies to proper coordinate transformations.
3In fact it is more general than isotropic as it is invariant even under improper coordinate transformations.
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10.4. Kronecker and Levi-Civita Tensors

The reason is that any exchange of two indices requires an even/odd number of single-step shifts
to the right of the first index plus an odd/even number of single-step shifts to the left of the sec-
ond index, so the total number of shifts is odd and hence it is an odd permutation of the original
arrangement.

Itis a pseudo tensor since it acquires a minus sign under improper orthogonal transformation of
coordinates (inversion of axes with possible superposition of rotation).

Definition of rank-2 € (¢;;):

€10 =1, €1 = —1 & €11 = €99 =0 (10.26)

Definition of rank-3 € (¢;51):

1 (i, j, k is even permutation of 1,2,3)
€ijk = —1 (4,7, k is odd permutation of 1,2,3) (10.27)
0 (repeated index)

The definition of rank-n € (€;,4,...i,,) is similar to the definition of rank-3 € considering index rep-

etition and even or odd permutations of its indices (i1, i2, - - - ,4,) corresponding to (1,2, -+ ,n),
thatis
1 [(i1,12,...,1n) iseven permutation of (1,2,...,n)]
€ivig.in = § —1 [(i1,12,...,in) isodd permutation of (1,2,...,n)] (10.28)
0 [repeated index]

e may be considered a contravariant relative tensor of weight 41 or a covariant relative tensor of
weight —1. Hence, in 2, 3 and n dimensional spaces respectively we have:

€ij = € (10.29)
eijr = €* (10.30)
€irig..iy = €112 (10.31)

Useful Identities Involving ¢ or/and ¢
Identities Involving §

When an index of the Kronecker delta is involved in a contraction operation by repeating an index
in another tensor in its own term, the effect of this is to replace the shared index in the other tensor
by the other index of the Kronecker delta, that is

5@'jAj =A; (10.32)

In such cases the Kronecker delta is described as the substitution or index replacement operator.
Hence,
5ij5jk = 0k (10.33)
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Similarly,
0ij0jk0ki = OikOki = 04y = 1 (10.34)

where n is the space dimension.

Because the coordinates are independent of each other:

Ox;
% = ajZL‘i =T; = 6ij (10.35)
J

Hence, in an n dimensional space we have

Oix;i =05 =1 (10.36)
For orthonormal Cartesian systems:
oz'  Oxd y

For a set of orthonormal basis vectors in orthonormal Cartesian systems:
€ e = 5ij (10.38)

The double inner product of two dyads formed by orthonormal basis vectors of an orthonormal
Cartesian system is given by:
e;e;: eye = 5ik5jl (10.39)
Identities Involving ¢

Forrank-3 e
€ijk = €kij = €jki = —€ikj = —€jik = —€kji (sense of cyclic order) (10.40)

These equations demonstrate the fact that rank-3 eis totally anti-symmetric in all of its indices since
a shift of any two indices reverses the sign. This also reflects the fact that the above tensor system
has only one independent component.

Forrank-2 e:
€ij = (] — Z) (10.41)

Forrank-3 e:

1, . . .

€ije = 5 (7 = 1) (k= 1) (k=) (10.42)

Forrank-4 e:

1, . ) ) . )

i = 15 (= 1) (k=0) (1 =0) (k= j) (I = j) (I = k) (10.43)

For rank-n e:

n—1 1 n 1
€aras-an = [Z' H (aj — az):| = m H (aj — ai> (10.44)

260



10.4. Kronecker and Levi-Civita Tensors

where S(n — 1) is the super-factorial function of (n — 1) which is defined as
k
S(ky=[it=1"-2!-...- k! (10.45)
=1

Asimpler formula for rank-n e can be obtained from the previous one by ignoring the magnitude of
the multiplication factors and taking only their signs, that is

€arag-an = H o (aj — a,i) =0 ( H (aj — ai)> (10.46)

1<i<j<n 1<i<j<n
where
+1 (
o(k) =14 -1 (k < 0) (10.47)
0 (k = 0)
For rank-n e:
€ivig-in Citig in = T (10.48)

because this is the sum of the squares of ¢;,;,...;,, over all the permutations of n different indices
which is equal to n! where the value of € of each one of these permutations is either +1 or —1 and
hence in both cases their square is 1.
For a symmetric tensor A
EijkAjk =0 (10.49)

because an exchange of the two indices of A, does not affectits value due to the symmetry whereas
a similar exchange in these indices in ¢, j;, results in a sign change; hence each term in the sum has
its own negative and therefore the total sum will vanish.

fijkAiAj = ﬁijk:AiAk: = eijkAjAk =0 (10.50)

because, due to the commutativity of multiplication, an exchange of the indices in A’s will not affect
the value but a similar exchange in the corresponding indices of ¢;;;, will cause a change in sign;
hence each term in the sum has its own negative and therefore the total sum will be zero.

For a set of orthonormal basis vectors in a 3D space with a right-handed orthonormal Cartesian
coordinate system:

ei X ej = 5ijkek (10.51)
e; - (ej X ek) = €jk (10.52)
Identities Involving ) and ¢
€ijk01i02;03K = €123 = 1 (10.53)
For rank-2 e:

di 05
€ij€kl = = 0i6j1 — 0udj (10.54)

Ojk Oyt
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€€kl = Ok
eijel-j =2
Forrank-3 e:
0l Oim  Oin
€ijk€imn = | 6j1 Ojm  Ojn | = 0il0imOknT0im0jn0ki+0in0;10km—0i0jn0km—0im0;10kn—0indjmOk
Okl Okm  Okn
5y G
€ijkElmk = = 0i10jm — OimIji
dji 9;

(10.55)

(10.56)

(10.57)

(10.58)

The last identity is very useful in manipulating and simplifying tensor expressions and proving vec-

tor and tensor identities.
€ijk€Ljk = 204
€ijk€ijk = 205 = 6

since the rank and dimension of ¢ are the same, which is 3 in this case.

For rank-n e:
Oirjr  Oirjo Oi jn
| Oiajr ding Oinjn
€irig-in €j1jo-jn —
Oinj1  Oingo Oipjn

According to Egs. 10.27 and 10.32:

€ijk0ij = €ijkOik = €;jk0jk = 0

10.4.4. ~ Generalized Kronecker delta

The generalized Kronecker delta is defined by:

1 [(j1...jn)is even permutation of (i; ..

1ein
6j1---jn o _1

0 [repeated j’s]

It can also be defined by the following n x n determinant:

i1 11 . i1

5j1 6j2 6j77,

12 12 12

0.dn 5j1 6j2 6jn
jl--~jn -

(5j1 6j2 5jn
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Jin)]

(10.59)

(10.60)

(10.61)

(10.62)

)]
(10.63)

(10.64)
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10.5.1.

10.5. Types of Tensors Fields
where the 5;'- entries in the determinant are the normal Kronecker delta as defined by Eq. 10.22.
Accordingly, the relation between the rank-n ¢ and the generalized Kronecker delta in an n di-
mensional space is given by:

€irin..iy = 51 2...n‘ & 61122...1" — 51121271171 (1065)

11%2...0n

Hence, the permutation tensor e may be considered as a special case of the generalized Kronecker
delta. Consequently the permutation symbol can be written as an n x n determinant consisting of
the normal Kronecker deltas.
If we define
o2 =6, (10.66)

then Eq. 10.58 will take the following form:
80, = 0167, — 6107 (10.67)

Other identities involving § and e can also be formulated in terms of the generalized Kronecker
delta.
On comparing Eq. 10.61 with Eq. 10.64 we conclude

O = € e, (10.68)

Types of Tensors Fields

In the following subsections we introduce a number of tensor types and categories and highlight
their main characteristics and differences. These types and categories are not mutually exclusive
and hence they overlap in general; moreover they may not be exhaustive in their classes as some
tensors may not instantiate any one of a complementary set of types such as being symmetric or
anti-symmetric.

Isotropic and Anisotropic Tensors

Isotropic tensors are characterized by the property that the values of their components are invari-
ant under coordinate transformation by proper rotation of axes. In contrast, the values of the com-
ponents of anisotropic tensors are dependent on the orientation of the coordinate axes. Notable
examples of isotropic tensors are scalars (rank-0), the vector 0 (rank-1), Kronecker delta §;; (rank-2)
and Levi-Civita tensor €;;;, (rank-3). Many tensors describing physical properties of materials, such
as stress and magnetic susceptibility, are anisotropic.

Direct and inner products of isotropic tensors are isotropic tensors.

The zero tensor of any rank is isotropic; therefore if the components of a tensor vanish in a partic-
ular coordinate system they will vanish in all properly and improperly rotated coordinate systems.*

“For improper rotation, this is more general than being isotropic.
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10. Tensors in Coordinates

Consequently, if the components of two tensors are identical in a particular coordinate system they
are identical in all transformed coordinate systems.

As indicated, all rank-0 tensors (scalars) are isotropic. Also, the zero vector, 0, of any dimension
is isotropic; in fact it is the only rank-1 isotropic tensor.

518 |Theorem
Any isotropic second order tensor T;; we can be written as

Tij = Adij

for some scalar \.

Proof. First we will prove that T is diagonal. Let R be the reflection in the hyperplane perpendic-
ular to the j-th vector in the standard ordered basis.

-1 ifk=1=j
Ry, =
0r1  otherwise
therefore
R=R"ANR*=I=RTR=RR" =1
Therefore:

Tyj =) RipRjgTpg = RiiRjjTiji # j = Tij = —Ty; = Ti; = 0
p.q

Now we will prove that T;; = T7;. Let P be the permutation matrix that interchanges the 1st and
j-th rows when acrting by left multiplication.

oy ifk=1
Py=46y ifk=j

dr; otherwise

(PTP)u=> PlLuPoi = PokPoi= Y PuiPout > PokPoi= Y SnkOnit6udj+0160u = Spk
m m mlj m=1,j mALj m

Therefore:
2 2
Tjj = ZPijqupq = Zijqu = Z5quqq = Z51qqu =Tn
q q q

pq

10.5.2. Symmetric and Anti-symmetric Tensors

These types of tensor apply to high ranks only (rank > 2). Moreover, these types are not exhaustive,
even for tensors of ranks > 2, as there are high-rank tensors which are neither symmetric nor anti-
symmetric.
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Arank-2 tensor A;; is symmetric iff for all i and j
Aji = Aij (10.69)
and anti-symmetric or skew-symmetric iff
Aji = —A; (10.70)

Similar conditions apply to contravariant type tensors (refer also to the following).
Arank-n tensor A;, . ;, is symmetricin its two indices ; and ¢; iff

A = Aiyijipin (10.71)

i1eeignijoin
and anti-symmetric or skew-symmetric in its two indices ¢; and 7; iff
Aiy igeiijein = —Piy g i (10.72)

Any rank-2 tensor A;; can be synthesized from (or decomposed into) a symmetric partA ;) (marked
with round brackets enclosing the indices) and an anti-symmetric part A(;; (marked with square
brackets) where

1 1
Aij = A(ij) + A[ij], A(ij) = 5 (Aij + Aji) & A[ij} = 5 (Aij — Aj') (10.73)
A rank-3 tensor A;;;, can be symmetrized by
1
AGijk) = 30 (Aijk + Akij + Ajki + Aikj + Ajik + Aka') (10.74)
and anti-symmetrized by
1
Alijk) = 3 (Aijk + Anij + Ajri — Aikj — Ajie — Arji) (10.75)
Arank-n tensor A;, . ;, can be symmetrized by
1 . - "
Ay in) = = (sum of all even & odd permutations of indices i’s) (10.76)
n:
and anti-symmetrized by
1 . . .
Ajj,..i,) = —7 (sum of all even permutations minus sum of all odd permutations) (10.77)

n!
For a symmetric tensor A;; and an anti-symmetric tensor B% (or the other way around) we have
AijBY =0 (10.78)

The indices whose exchange defines the symmetry and anti-symmetry relations should be of the
same variance type, i.e. both upper or both lower.

The symmetry and anti-symmetry characteristic of a tensor is invariant under coordinate trans-
formation.
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A tensor of high rank (> 2) may be symmetrized or anti-symmetrized with respect to only some
of its indices instead of all of its indices, e.g.

1

1
A(zg)k = 5 (Aijk + Ajik) & A[ij]k = 5 (Aijk — Ajik) (10,79)
A tensor is totally symmetric iff
Air i = Ay .in) (10.80)
and totally anti-symmetric iff
Ay i = Ay i) (10.81)

For a totally skew-symmetric tensor (i.e. anti-symmetric in all of its indices), nonzero entries can
occur only when all the indices are different.
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Tensor Calculus

11.1. Tensor Fields

In many applications, especially in differential geometry and physics, it is natural to consider a
tensor with components that are functions of the point in a space. This was the setting of Ricci’s
original work. In modern mathematical terminology such an objectis called a tensor field and often
referred to simply as a tensor.

519 | Definition
A tensor field of type (r,s)isamapT : V — T7 (V).

The space of all tensor fields of type (r, s) is denoted 7. (V). In this way, given T € T/ (V), if we
apply this to a pointp € V,we obtain T'(p) € T (V)
It’s usual to write the point p as an index:

Tp: (v1,...,wpn) = Tp(vr,...,wy) €R

520 Example

m If f € TO(V) then f is a scalar function.
m IfT € T2(V) then T is a vector field.

m IfT € TH(V) then T is called differential form of rank 1.

521 Example
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Differential Now we will construct the one of the most important tensor field: the differential.
Given a differentiable scalar function f the directional derivative

Duf(p) = & f(p-+ t0)
t=0

is a linear function of v.

(Dv—i-wf)(p) = (va)(p) + (Dwf)(p) (11-1)
(Devf)(p) = ¢(Du f)(p) (11.2)

As we already know the directional derivative is the Jacobian applied to the vector

D, f(p) = Dfy(v) = [O1f, ... Onfllv1,- - vn)"

In other words D, f(p) € T4 (V)

522 [ Definition

Let f : V — R be a differentiable function. The differential of f, denoted by df, is the differential
form defined by

df’pv = va(p)-
Clearly, df € T3 (V)

Let {u',u?,...,u"} be a coordinate system. Since the coordinates {u!,u?, ... u"} are them-
selves functions, we define the associated differential-forms {du!, du?, ..., du"}.
523 Proposition
Let {u',u?, ..., u"} be a coordinate system and 881;- (p) the corresponding basis of V. Then the
differential-forms {du', du?, ..., du™} are the corresponding dual basis:

i or o

Since 8u4 = ', it follows that
oul J

df =) 55 du
=1

We also have the following product rule

d(fg) = (df)g + f(dg)

As consequence of Theorem 524 and Proposition 523 we have:

524 |Theorem
GivenT € T (V) bea (r,s) tensor. Then T' can be expressed in coordinates as:

n n i . . 0 67“ 8T
_ J1-gr r
T=3 3 AT duh @de ® 5. P) @ 5 —(p)
Jj1=1  jp=1 It e
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525

526

11.1. Tensor Fields
|

Change of Coordinates

(p)} the

Let {u!,u?, ... ,u"} and {a',@?,. .., a"} two coordinates system and {g—r(p)} and {gf
U; (7
basis of V with {du’/} and {d@’} are the corresponding dual basis:
By the chain rule we have that the vectors change of basis as:
ﬁ _ ou; or
8ﬁj p)= 87]]' P ou;

()

So the matrix of change of basis is:

t Gﬁj
And the covectors changes by the inverse:
(4 = 52
Theorem (Change of Basis For Tensor Fields)
Let {u',u?, ..., u"} and {u',w?,. .., a"} two coordinates system and T a tensor
pifeih 1 am) = ou ot gt dulj i, ™)
jij‘; ’ ’ oun 8Uip 87]]{ aﬂ]t/z J1---Jq ] 0

Example (Contravariance)
The tangent vector to a curve is a contravariant vector.

Solution: » Let the curve be given by the parameterization 2* = z*(¢). Then the tangent vector

to the curveis )
dz’

dt
Under a change of coordinates, the curve is given by

T =

ot =a(t) = 2" (2} (1), -+, 2"(1)
and the tangent vector in the new coordinate system is given by:

d.’l?li

T/i —
dt

By the chain rule, , o
dﬂi‘n B 835” da:.j

dt ~ Oxd dt
Therefore,
) '81'”‘
T =TI =
oxd

which shows that the tangent vector transforms contravariantly and thus itis a contravariant vector.
<
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Example (Covariance)
The gradient of a scalar field is a covariant vector field.

Solution: » Let ¢(x) be ascalar field. Then let

B (09 09 0¢ [J0)
G_v¢_<8x1’0$2’8x3’ T Qxn
thus o6
Gi= o
In the primed coordinate system, the gradient is
oy
I
Gi T O
where ¢’ = ¢/(x') = ¢(x(x’)) By the chain rule,
o' 99 oz’
ozt OxJ Ox"t
Thus .
ox?
Gi=Cigen
which shows that the gradient is a covariant vector.
|
Example

A covariant tensor has components xy, 2%, 3yz — x in rectangular coordinates. Write its components

in spherical coordinates.

Solution: » Let A; denote its coordinates in rectangular coordinates (z!, 22, 23) = (z, v, 2).

Al =y Ay = 22, A3 =3y —=x

Let A, denote its coordinates in spherical coordinates (z!, 2%, 23) = (r, ¢, 0):

Then ,
ox’

dzk

The relation between the two coordinates systems are given by:

A= 2% a4

x=rsingcosh; y=rsingsind; z = rcos¢

And so:

~ ozt Ox? ox?

A= gt gpr et gar s

— sin ¢ cos O(zy) + sin ¢sin (22) + cos ¢(3y — x)

= sin ¢ cos §(r sin ¢ cos §) (r sin ¢ sin §) + sin ¢ sin O(r cos ¢)*

+ cos ¢(3rsin ¢ sin @ — 7 sin ¢ cos )
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Ay = g 2A1+g 2A2+gsz (1.7)
= 1 cos ¢ cos (xy) + 7 cos Ppsin B(z%) + —rsin ¢(3y — z) (1.8)
= 7 cos ¢ cos A(r sin ¢ cos ) (r sin ¢ sin §) + r cos ¢ sin O(r cos ¢)* (11.9)
+ 7 sin ¢(3r sin ¢ sin @ — rsin ¢ cos 0) (11.10)
As = gx;Al + g zAQ + ngA (11.11)
= —rsin ¢ sin(zy) + rsin ¢ cos (2?) + 0) (11.12)
= —rsin ¢ sin @(r sin ¢ cos §) (r sin ¢ sin @) 4 7 sin ¢ cos O(r cos ¢)? (11.13)

(11.14)

11.2. Derivatives

In this section we consider two different types of derivatives of tensor fields: differentiation with
respect to spacial variables ', ..., 2™ and differentiation with respect to parameters other than
the spatial ones.

The second type of derivatives are simpler to define. Suppose we have tensor field T' of type
(r,s) and depending on the additional parameter ¢ (for instance, this could be a time variable).
Then, upon choosing some Cartesian coordinate system, we can write

OX L . X3t hyat, 2 — X;i:::;;(t,xl, . ,:c”). m15)
at h—0 h

The left hand side of 11.15 is a tensor since the fraction in right hand side is constructed by means

of two tensorial operations: difference and scalar multiplication. Taking the limit h — 0 pre-
serves the tensorial nature of this fraction since the matrices of change of coordinates are time-
independent.

So the differentiation with respect to external parameters is a tensorial operation producing new
tensors from existing ones.

Now let’s consider the spacial derivative of tensor field T', e.g, the derivative with respect to z'.
In this case we want to write the derivative as

aT” TZ1 ”" el h, . ah) =T (g
1]5 — llm ( ) .71---.75( )7 (-”.16)
ox h—0 h

but in numerator of the fraction in the right hand side of 11.16 we get the difference of two tensors

bound to different points of space: the point 2!, ..., " and the point ! + h, ..., 2™

In general we can’t sum the coordinates of tensors defined in different points since these tensors
are written with respect to distinct basis of vector and covectors, as both basis varies with the point.
In Cartesian coordinate system we don’t have this dependence. And both tensors are written in the
same basis and everything is well defined.

We now claim:
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11. Tensor Calculus

529 [Theorem
For any tensor field T of type (r, s) partial derivatives with respect to spacial variables uy, . . ., uy
0 .9 g
8ua 8:cc J1--Js”
~——
m
in any Cartesian coordinate system represent another tensor field of the type (r, s + m).
Proof. Since T is a Tensor
gty QU U OWR Oty oy
Jredg BT ou’t  Qute Owr  Oude Ji-dgr T
and so:
O iy o [ounr  durduh A .
TP (Wl u) = T e A T (TR 710 (11.17)
Ou® J1+Ja ou® \ du”r Ou'r Oult Ouda ™ J1-+Jq
o (ounr  dutrdu AW\ ..
- T @, )+ (11a8)
ou® \ du”r Ou'e Oult oula J1-+dq
Qut  Qu ouh AW B .
SRl L) (11.19)
ouh ou'r Oudt owa Qu® J1-+Jq
We are assuming that the matrices
ou's oul
ou's oult
are constant matrices.
And so . )
9 ou's 0 9 our 0
ou® Outs ou® Quit
Hence
0 [ou  Ouv owt ...871?; e --?é(—l a") =0
ous \ 9wt 9ulr Owir  Oude | Jredg T
And
O i out  dur du AW D ..
Tl ) = 5 (@t ... a") (11.20)
Ou® J1-+Ja out Ou'e Oult oula Que Ji+Jq
outt  Qur AW A, [ D ..
— @t ey (1)
ouh Oii'r Out owla Qus | oul, J1-Ja
]

530 Remark
We note that in general the partial derivative is not a tensor. Given a vector field

jar

V =0 ——
ouw
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11.2. Derivatives

then

ov  Ov Or j 0?r
- = - v - .
out  Ou' dus out oul
2
The term S D in general is not null if the coordinate system is not the Cartesian.
u” ou

531 Example
Calculate

Dym Oxn (AU N I + BU i\
Solution: »
8mm8An(A”>\ixj + Bija:i)\j) = AYg§ingim 4 BUgimgin (11.22)
=A™ 4 B™ (11.23)

<

532 Example
Prove that if F;y is an antisymmetric tensor then

Tiji = 0iFji + 0jFki + O Fij
is a tensor .

Solution: »
The tensor F;;, changes as:

or? dx* _
Fok = G g
Then
ox? dzk _
oxd dzF\ - oxd dxk -
=0, | — = | Fop + —— —— O, F, 1.2
0 <83§‘/a ax’b> b + or'a a:U/ba b ( 5)
ox? dzF\ - oxd dxk dxt -
=0 | = | o+ — 09, F, 1.2
<ax/a (9x’b> b G b (fax/aa b (11.26)
The tensor

Tijk = 0 Fjp + 0 Fl; + Op Fj
is totally antisymmetric under any index pair exchange. Now perform a coordinate change, 7T}, will

transform as

ozt dxd Oxk
Tope = D2'a D’ Hprc ik + Lape

where this I, is given by:

ox’ ox? OxF
Tape = Oz'a Z'(ax/b 8xlc)

ij_|_...
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11.3.

534 | Theorem (Divergence Theorem for Tensors)

11. Tensor Calculus

such I will clearly be also totally antisymmetric under exchange of any pair of the indices a, b, c.
Notice now that we can rewrite:

0 0zt OxF 7 B 0%xi OxP oxl 0%l
z'a (8x’b 8x’c) gkt = Ozlag Hpic’ Ik + 9z Oglagic” Ik +o
and they all vanish because the object is antisymmetric in the indices a, b, c while the mixed partial
derivatives are symmetric (remember that an object both symmetric and antisymmetric is zero),
hence T;;, is a tensor. <

Iabc =

Problem

Give a more detailed explanation of why the time derivative of a tensor of type (r, s) is tensor of type

(r,$).

Integrals and the Tensor Divergence Theorem

Itis also straightforward to do integrals. Since we can sum tensors and take limits, the definition of
a tensor-valued integral is straightforward.

For example, / T;;...(x) dV is a tensor of the same rank as Tj;..., (think of the integral as the
limit of a sum). v

It is easy to generalize the divergence theorem from vectors to tensors.

LetT;ji... be a continuously differentiable tensor defined on a domain V' with a piecewise-differentiab
boundary (i.e. for almost all points, we have a well-defined normal vector n!), then we have

0
L ¢ - L
/S T;j..ren’ dS /V axe(ng--JcZ) dv,

with n being an outward pointing normal.

The regular divergence theorem is the case where T" has one index and is a vector field.

Proof. The tensor form of the divergence theorem can be obtained applying the usual divergence

theorem to the vector field v defined by v, = @'t/ - - 'CkTij.--ke, wherea, b, - - - , c arefixed constant
vectors.
Then
vy o o ..
V-v=— =d't/...c-r 1k
Oxt Ox! ’
and

n-v=nlvy=ddt . ~ckTij...kme.

Since a, b, - - - , ¢ are arbitrary, therefore they can be eliminated, and the tensor divergence theo-
rem follows. ]
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11.4. Metric Tensor

Metric Tensor

This is a rank-2 tensor which may also be called the fundamental tensor.
The main purpose of the metric tensor is to generalize the concept of distance to general curvi-
linear coordinate frames and maintain the invariance of distance in different coordinate systems.
In orthonormal Cartesian coordinate systems the distance element squared, (ds)2, between two
infinitesimally neighboring points in space, one with coordinates x* and the other with coordinates
x' + da', is given by
(ds)2 = datdx’ = (L-jdacida:j (11.27)

This definition of distance is the key to introducing a rank-2 tensor, g;;, called the metric tensor
which, for a general coordinate system, is defined by

ds)? = gi-dxid:nj (11.28)
J

The metric tensor has also a contravariant form, i.e. g/.
The components of the metric tensor are given by:

9ij =i & gl =¢.¢ (11.29)

where the indexed € are the covariant and contravariant basis vectors:

. Or

6 = — & e = vu! (11.30)
ou*

where r is the position vector in Cartesian coordinates and v/ is a generalized curvilinear coordi-
nate.

The mixed type metric tensor is given by:

I
@
X

I
(=9

<

g;=¢-¢ =45, & g/ 7 (11.31)

and hence it is the same as the unity tensor.

For a coordinate system in which the metric tensor can be cast in a diagonal form where the
diagonal elements are -1 the metric is called flat.

For Cartesian coordinate systems, which are orthonormal flat-space systems, we have

gij =6 = gij = 5z‘j (11.32)
The metric tensor is symmetric, that is
gi=gi & g7=4g" (11.33)

The contravariant metric tensor is used for raising indices of covariant tensors and the covariant
metric tensor is used for lowering indices of contravariant tensors, e.g.

Ai = gijAj Ai = gijAj (11.34)
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11. Tensor Calculus

where the metric tensor acts, like a Kronecker delta, as an index replacement operator. Hence, any
tensor can be cast into a covariant or a contravariant form, as well as a mixed form. However, the
order of the indices should be respected in this process, e.g.

A= g A% £ A = g AP (11.35)
Some authors insert dots (e.g. Af) to remove any ambiguity about the order of the indices.
The covariant and contravariant metric tensors are inverses of each other, that is
a1 . -1
l9ii] = [9”] & [g7] = gi] (11.36)
Hence
ik _ i ki _ 537
9 ;=0 & gig? =9, (11.37)
Itis common to reserve the “metric tensor” to the covariant form and call the contravariant form,
which is its inverse, the “associate” or “conjugate” or “reciprocal” metric tensor.
As atensor, the metric has a significance regardless of any coordinate system although it requires
a coordinate system to be represented in a specific form.
For orthogonal coordinate systems the metric tensor is diagonal, i.e. g;; = g = 0 fori # j.
For flat-space orthonormal Cartesian coordinate systems in a 3D space, the metric tensor is given
by:
1 00
9] = 0] =] 0 1 0 | =[0"] =[g"] (11.38)
0 01

For cylindrical coordinate systems with coordinates (p, ¢, z), the metric tensor is given by:

1 0 0 1 0 O
2 ij 1
lgisl =10 0 0 & g7 =10 2 0 (11.39)
0 0 1 0 0 1
For spherical coordinate systems with coordinates (r, 0, ¢), the metric tensor is given by:
1 0 0 1 0 0
2 ij 1
gl =10 + 0 & [g7]=|0 5 0 (11.40)
1
2 i2
0 0 7r°sin“6 0 0 TanZ0

11.5. Covariant Differentiation

Let {=!,... 2"} be a coordinate system. And

or
ozt

:ie{l,...,n}}

p
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11.5. Covariant Differentiation

the associated basis

. or Or
The metric tensor g;; = T; 90 )"
Tt Odx

Given a vector field

v OF
- Qxd
then '
ov B ovl Or . Q%r

oxt  Ox* OxJ Ozt 0xJ
The last term but can be expressed as a linear combination of the tangent space base vectors using

the Christoffel symbols
O%r p Or

or dxd Y ozk

535 | Definition
The covariant derivative Ve, Vv, also written V;v, is defined as:

k
Vv : ov _ <8v +Ujrkij> or

~ or ozt oxk”

The Christoffel symbols can be calculated using the inner product:

o*r  Or i or Or i
<axz~ 8:1:j’837l> = <axk amz> =g

Ogab 9%r ﬁ n ﬁ O%r
dxc  \ Oxc Oz’ Jxb Ox’ Oxc Oxb

using the symmetry of the scalar product and swapping the order of partial differentiations we have

9gjn N Ogri  09ij 2< d*r  Or >

ozt | Oxd  Ozk ~ T\ 0xidxi’ ok

On the other hand,

and so we have expressed the Christoffel symbols for the Levi-Civita connection in terms of the
metric:

gul*ij =

oxt  Oxi  Ox!

1 <59jl Ogi 8gij>
5 .

536 | Definition
Christoffel symbol of the second kind is defined by:

ok _ g" <agil g agij)
]

2 \9zd  Oxt ox! M)

where the indexed g is the metric tensor in its contravariant and covariant forms with implied sum-
mation over l. It is noteworthy that Christoffel symbols are not tensors.
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11. Tensor Calculus
\

The Christoffel symbols of the second kind are symmetric in their two lower indices:
Iy =T% (11.42)

537 Example
For Cartesian coordinate systems, the Christoffel symbols are zero for all the values of indices.

538 Example
For cylindrical coordinate systems (p, ¢, z), the Christoffel symbols are zero for all the values of indices
except:

Ik, = —p (11.43)

where (1,2, 3) stand for (p, ¢, z).

539 Example
For spherical coordinate systems (r, 8, ¢), the Christoffel symbols can be computed from

ds? = dr? + r?d6* + r? sin® dp?

We can easily then see that the metric tensor and the inverse metric tensor are:

1 0 0
9= 0 72 0

0 0 r2sin?4

Using the formula:

1
I igml(ajgiz + 0ig1; — 0195i)

Where upper indices indicate the inverse matrix. And so:

o
o
|
3
w0
2.
=
[N}
SS

1
0 - 0
r
1
=1 = o 0
r
0 0 —sinfcosd
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54

—h

11.5. Covariant Differentiation

1
0 0 -
T
r?= 0 0 cotf
1
— cotf O
,
Theorem
Under a change of variable from (y!, ... y") to (z!, ..., a™), the Christoffel symbol transform as

— oxP 0z . OyF  OyF 9%a™m
i =5 90 L M3 T 50m Duiow
oyt OyJ ox ox™ Jytoy’

where the overline denotes the Christoffel symbols in the y coordinate system.

Definition (Derivatives of Tensors in Coordinates)

m For a differentiable scalar f the covariant derivative is the same as the normal partial deriva-
tive, that is:

fi=Ffi=0f (11.44)

This is justified by the fact that the covariant derivative is different from the normal partial
derivative because the basis vectors in general coordinate systems are dependent on their
spatial position, and since a scalar is independent of the basis vectors the covariant and par-
tial derivatives are identical.

m For a differentiable vector A the covariant derivative is:

Aji = OA; — FfiAk (covariant) (11.45)
Aj;i = QA7 + T AF (contravariant) '
m For a differentiable rank-2 tensor A the covariant derivative is:
Ajkii = OiAji — Fé-z-Alk — Fin»Ajl (covariant)
A% = 9; A% 4+ T] A% + TF A7 (contravariant) (11.46)
k k k ak 5
Al = OiAj + FliAjlfF;.iAl (mixed)
m For a differentiable rank-n tensor A the covariant derivative is:
A pq = OaPin ™y T+ Taghin  Daghim iy + -+ Taghiny 5 (11.47)
_F?quz]m...p - FZ@qA;(Jz...p - ngAﬁn.‘.a

Since the Christoffel symbols are identically zero in Cartesian coordinate systems, the covariant
derivative is the same as the normal partial derivative for all tensor ranks.
The covariant derivative of the metric tensor is zero in all coordinate systems.
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11. Tensor Calculus
Several rules of normal differentiation similarly apply to covariant differentiation. For example,
covariant differentiation is a linear operation with respect to algebraic sums of tensor terms:

8;7; (aA + bB) = ac‘?;iA + ba,zB (11.48)

where a and b are scalar constants and A and B are differentiable tensor fields. The product rule
of normal differentiation also applies to covariant differentiation of tensor multiplication:

0. (AB) = (8;¢A) B+ A0;B (11.49)

This rule is also valid for the inner product of tensors because the inner product is an outer prod-
uct operation followed by a contraction of indices, and covariant differentiation and contraction of
indices commute.

The covariant derivative operator can bypass the raising/lowering index operator:

A = gi; A = OmA’ = ;O A7 (11.50)

and hence the metric behaves like a constant with respect to the covariant operator.

A principal difference between normal partial differentiation and covariant differentiation is that
for successive differential operations the partial derivative operators do commute with each other
(assuming certain continuity conditions) but the covariant operators do not commute, that is

8@6j = 6J81 but Qz-&;j % 6;]-8;1- (11.51)

Higher order covariant derivatives are similarly defined as derivatives of derivatives; however the
order of differentiation should be respected (refer to the previous point).

Geodesics and The Euler-Lagrange Equations

Given the metrictensor ginsomedomain U C R", the length of a continuously differentiable curve
v : [a,b] — R™ is defined by

In coordinates if y(¢) = (2!, ...2") then:

Thedistance d(p, ¢) between two points pand ¢ is defined as the infimum of the length taken over
all continuous, piecewise continuously differentiable curves v : [a,b] — R" such thaty(a) = p
and v(b) = ¢. The geodesics are then defined as the locally distance-minimizing paths.

So the geodesics are the curve y(x) such that the functional

b
L(y) = / v G@) 3 (@) de.
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11.6. Geodesics and The Euler-Lagrange Equations

is minimized over all smooth (or piecewise smooth) functions y(z) suchthatz(a) = pand z(b) = q.
This problem can be simplified, if we introduce the energy functional

1

b
B0 = [ 900,340 dr

For a piecewise C' curve, the Cauchy-Schwarz inequality gives

L(y)? <2(b—a)E(y)

with equality if and only if
9(v'7)
is constant.
Hence the minimizers of E() also minimize L(~).

The previous problem is an example of calculus of variations is concerned with the extrema of
functionals. The fundamental problem of the calculus of variations is to find a function x(t¢) such

b
- / St (t), ' (8) dt

is minimized over all smooth (or piecewise smooth) functions z(t) satisfying certain boundary conditions—
for example, z(a) = Aand z(b) = B.

If Z(¢) is the smooth function at which the desired minimum of I () occurs, and if I(Z(t) +en(t))
is defined for some arbitrary smooth function eta(x) with n(a) = 0 and n(b) = 0, for small enough

that the functional

g, then
b
Hasen) = [ S+ en '+ o) i
a

is now a function of £, which must have a minimum ate = 0. In that case, if I(¢) is smooth enough,
we must have

’50—/f$ t, 2,2 \n(t) + fo(t, 2,2 ) (t)dt =0.

If we integrate the second term by parts we get, using n(a) = 0 and n(b) = 0,

One can then argue that since 7(t) was arbitrary and & is smooth, we must have the quantity in
brackets identically zero. This gives the Euler-Lagrange equations:

d o

0
%f(t,w,xl) - %@ (t,l',x/) =0. (11.52)

In general this gives a second-order ordinary differential equation which can be solved to obtain
the extremal function f(xz). We remark that the Euler-Lagrange equation is a necessary, but not a
sufficient, condition for an extremum.

This can be generalized to many variables: Given the functional:

b
:/ Ft 2 (1), M), .. 2" (), 2™ (1)) dt
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11. Tensor Calculus
We have the corresponding Euler-Lagrange equations:

%f(t,xl(t),:c’l(t), (@), () — C;Zt(%?ﬂc(t,xl(t),:r’l(t), (@), 2() = 0. (11.53)

542 | Theorem
A necessary condition to a curve -y be a geodesic is

d2’7/\ 5 ﬂdv” _
dt? modt  dt

Proof. The geodesics are the minimum of the functional

b
L) = | Vo G@) (@) da.

Let
1 dzt dx¥

B= o0y an
We will write the Euler Lagrange equations.

d 0L OL

dX\9(dxt/dN) Dzt

Developing the right hand side we have:

OF 1 e
dar — 2wt
The first derivative on the left hand side is

oL

Gix = o)

where we have made the dependence of g on ) clear for the next step. Now we differentiate with
respect to the curve parameter:

d . ey . 1 | ey .
a[gm(x(/\))x“]zaugmw“x +guxw“=§8uguw“x +§8uguxx“x + gt

Putting it all together, we obtain
" 1 . L
Ju T = _5 (aug,u)\ + 8ugu)\ - 8)\guu) rrr = _F)\,uzzx x

where in the last step we used the definition of the Christoffel symbols with three lower indices.
Now contract with the inverse metric to raise the first index and cancel the metric on the left hand
side. So

e LT
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Applications of Tensor

12.1. The Inertia Tensor

Consider masses m,, with positionsr, all rotating with angular velocity w about 0. So the velocities
are v, = w X ry. The total angular momentum is

L= Zra X MaVa

[e%

= Zmara X (WX ry)
[e%

= Zma(]ra\Qw — (ro - w)rya).
(0%

by vector identities. In components, we have
Li = Iijwj,

where

543 | Definition (Inertia tensor)
The inertia tensor is defined as

Lij =Y _mallral?di; — (ra)i(ra);].

For a rigid body occupying volume V' with mass density p(r), we replace the sum with an integral
to obtain

Iij = / p(r)(:xkxkéij - 1‘i$j) dv.
1%
By inspection, I is a symmetric tensor.

544 Example
Consider a rotating cylinder with uniform density py. The total mass is 2¢ma? py.

283



12. Applications of Tensor

T3

20

T

Use cylindrical polar coordinate:

x1 = rcosb
Lo = rsinf
T3 = I3

dV =r dr df dzs

We have

I33 = / po(ai + z3) AV
%

a pr2m ol
= po/ / / r2(r dr df dzy)
0 JO —¢

r

4
:p0-27702€[410

= eomla.

Similarly, we have

I = / po(as + z3) dV
v

a 2 l
= po / / / (r*sin® @ + x3)r dr df dx3
0o Jo J—¢
a 27 4
= ,00/ / r <r2 sin? 6 [l’g]e_g + ) dé dr
0o Jo s
a 2w 9
= ,0(]/ / r (7“2 sin? 620 + €3> dé dr
o Jo 3
2 a 2
=po | 27a - 53—{—2[/ r? dr/ sin? @
3 0 0

a’? 2
= poma’l (2 + 552

By symmetry, the result for 15 is the same.

73

3
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12.1. The Inertia Tensor

How about the off-diagonal elements?

Iz = / poxrixrs dV
v

a pt 27
= —po/ / / r? cos Oz dr dzs 46
0o J—¢Jo

=0

2m
Since / df cos 8 = 0. Similarly, the other off-diagonal elements are all 0. So the non-zero compo-
0

nents are
1
I35 = 5Ma2
2 2
a ¢
ILiw=In=M|—+ —
11 22 ( 1 + 3 )
3 1 N
In the particular case where £ = a;f’ we have I;; = ima%ij. So in this case,
L= 2Ma?
= — a~w
2

for rotation about any axis.

545 Example (Inertia Tensor of a Cube about the Center of Mass)
The high degree of symmetry here means we only need to do two out of nine possible integrals.

Ly = / dVp(y* + 2°) (12.1)
b/2 b/2 b/2
=p dm/ d,y/ dz(y? + 22) (12.2)
b2 Jow2 T
b/2 b/2
= pb/ dy (zy* + =2%) (12.3)
—b/2 —b/2
b/2 13
= b/ dy [ by? + == (12.4)
P —b/2 ( 34
b2
1
= pb 1by3 + —by (12.5)
3 27|,
Loy 14
(L b 12.
pb<12b + 12()) (12.6)
L s 1,9
= — = —Mb“. 12.
pr 6 b (12.7)

On the other hand, all the off-diagonal moments are zero, for example I, = / dVp(—xy).

This is an odd function of x and y, and our integration is now symmetric about the origin in all di-
rections, so it vanishes identically. So the inertia tensor of the cube about its center is

100

_ 1

Izész 01 0
00 1
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12.1.1. The Parallel Axis Theorem

The Parallel Axis Theorem relates the inertia tensor about the center of gravity and the inertia tensor

about a parallel axis.
For this purpose we consider two coordinate systems: the first r = (x,y, z) with origin at the

center of mass of an arbitrary object, and the second r' = (2/, 3/, 2’) offset by some distance. We
consider that the object is translated from the origin, but not rotated, by some constant vector a.

In vector form, the coordinates are related as
/
r =a-+r.

Note that a points towards the center of mass - the direction is important.

546 |Theorem
If 1;; is the inertia tensor calculated in Center of Mass Coordinate, and J;; is the tensor in the trans-

lated coordinates, then:
Jij = Iij + M(a25,~j - aiaj).

547 Example (Inertia Tensor of a Cube about a corner)
The CM inertia tensor was

1/6 0 0
I=Mp 0 1/6 0
0 0 1/6

If instead we want the tensor about one corner of the cube, the displacement vector is
a=(b/2,b/2,b/2),

soa? = (3/4)b%. We can construct the difference as a matrix: the off-diagonal components are
1 1 1
252 (L) (Lo)] = L
4 2 2 2
M= (L) (Lp)] = —Lame2
2 2 4

and off-diagonal,

so the shifted inertia tensor is

16 0 0 /2 —1/4 —1/4
J =MV’ 0 1/6 0 + MO | —1/4 1/2 —1/4 (12.8)
0 0 1/6 ~1/4 —1/4 1/2

2/3 —1/4 —1/4
=Mb | —1/4 2/3 —1/4 (12.9)
~1/4 —1/4 2/3
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12.2. Ohm’s Law

12.2. Ohm’s Law

Ohm’s law is an empirical law that states that there is a linear relationship between the electric
current j flowing through a material and the electric field F applied to this material. This law can
be written as
j=0oF

where the constant of proportionality o is known as the conductivity (the conductivity is defined as
the inverse of resistivity).

One important consequence of equation 12.2 is that the vectors j and E are necessary parallel.

This law is true for some materials, but not for all. Forexample, if the mediumis made of alternate
layers of a conductor and an insulator, then the current can only flow along the layers, regardless
of the direction of the electric field. Itis useful therefore to have an alternative to equation in which
j and E do not have to be parallel.

This can be achieved by introducing the conductivity tensor, o;;, which relates j and F through
the equation:

Ji = o By

We note that as j and F are vectors, it follows from the quotient rule that o, is a tensor.

12.3. Equation of Motion for a Fluid: Navier-Stokes
Equation

12.3.1. Stress Tensor

The stress tensor consists of nine components o;; that completely define the state of stress at a
point inside a material in the deformed state, placement, or configuration.

011 012 013
0= |o21 022 023
031 032 033
The stress tensor can be separated into two components. One component is a hydrostatic or

dilatational stress that acts to change the volume of the material only; the other is the deviator
stress that acts to change the shape only.

011 012 031 cg 0 O 011 —OH 012 031
012 022 093 = 0 ow O + 012 022 —0g 0923
031 023 033 0 0 om 031 023 033 —OH

287
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12.3.2. Derivation of the Navier-Stokes Equations

548

549

The Navier-Stokes equations can be derive
some properties of fluids. In order to deriv

d from the conservation and continuity equations and
e the equations of fluid motion, we will first derive the

continuity equation, apply the equation to conservation of mass and momentum, and finally com-

bine the conservation equations with a physical understanding of what a fluid is.

The first assumption is that the motion of a fluid are described with the flow velocity of the fluid:

Definition
The flow velocity v of a fluid is a vector field

which gives the velocity of an element of fluid at a position x and time t

v =v(x,t)

Material Derivative

s . . dr
A normal derivative is the rate of change of of an property at a point. For instance, the value o

could be the rate of change of temperature at a point (z, y). However, a material derivative is the

rate of change of an property on a particle i

dL
m Rate of change of the property, o

m Change in position of of the particlei

Therefore, the material derivative can be

n a velocity field. It incorporates two things:

n the velocity field v

defined as

Definition (Material Derivative)

Given a function u(t, x,y, z)
Du

du

Continuity Equation

An intensive property is a quantity whose value does not depend on the amount of the substance

for which it is measured. For example, the t

emperature of a system is the same as the temperature

of any part of it. If the system is divided the temperature of each subsystem is identical. The same

applies to the density of a homogeneous system; if the system is divided in half, the mass and the

volume change in the identical ratio and th

e density remains unchanged.

The volume will be denoted by U and its bounding surface area is referred to as OU. The conti-

nuity equation derived can later be applied

to mass and momentum.

Reynold’s Transport Theorem The first basic assumption is the Reynold’s Transport Theorem:
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12.3. Equation of Motion for a Fluid: Navier-Stokes Equation

Theorem (Reynold’s Transport Theorem)

Let U be a region in R™ with a C* boundary OU. Let x(t) be the positions of points in the region and
let v(x, t) be the velocity field in the region. Let n(x, t) be the outward unit normal to the boundary.
Let L(x,t) be a C? scalar field. Then

d oL
dt(/ULdV>—/Uath+/aU(v‘n)LdA.

What we will write in a simplified way as
d
— LdV:—/ LV-ndA—/QdV. (12.10)
dt Jy ou U

The left hand side of the equation denotes the rate of change of the property L contained inside

the volume U. The right hand side is the sum of two terms:

m Afluxterm, / Lv-n dA, which indicates how much of the property L is leaving the volume

U
by flowing over the boundary OU

m Asinkterm, / Q@ dV,which describes how much of the property L is leaving the volume due

U
to sinks or sources inside the boundary

This equation states that the change in the total amount of a property is due to how much flows
out through the volume boundary as well as how much is lost or gained through sources or sinks
inside the boundary.

If the intensive property we’re dealing with is density, then the equation is simply a statement of
conservation of mass: the change in mass is the sum of what leaves the boundary and what appears
within it; no mass is left unaccounted for.

Divergence Theorem The Divergence Theorem allows the flux term of the above equation to be
expressed as a volume integral. By the Divergence Theorem,

/ Lv-ndA:/V-(Lv)dV.
U U

Therefore, we can now rewrite our previous equation as

d
pm ULdV:—/U[V-(Lv)—i—Q] dv.

Deriving under the integral sign, we find that
d
/ LdV:—/ V. (Lv)+Qdv.
v dt U
Equivalently,

dt
This relation applies to any volume U; the only way the above equality remains true for any volume

/dL+V-(Lv)+QdV:0.
U

U is if the integrand itself is zero. Thus, we arrive at the differential form of the continuity equation

v (Iv)+Q=0.
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12. Applications of Tensor

Conservation of Mass

Applying the continuity equation to density, we obtain

dp
%+V-(pv)+Q—0.

This is the conservation of mass because we are operating with a constant volume U. With no

sources or sinks of mass (Q = 0),

%—l—v-(pv) =0. (12.11)

The equation 12.11is called conversation of mass.

In certain cases it is useful to simplify it further. For an incompressible fluid, the density is con-
stant. Setting the derivative of density equal to zero and dividing through by a constant p, we obtain
the simplest form of the equation

V.-v=0.

Conversation of Momentum

We start with

F = ma.

Allowing for the body force F = a and substituting density for mass, we get a similar equation

d
b = pﬁv(xa Y, Z7t)
Applying the chain rule to the derivative of velocity, we get

b_ 8:4_@@_}_@@4_@%
“P\ot Torar Tayar T azot)

Equivalently,
0
b:p(8;’+v-Vv>.

Substituting the value in parentheses for the definition of a material derivative, we obtain

Dv
— =bh. 12.12
Py (12.12)

Equations of Motion
The conservation equations derived above, in addition to a few assumptions about the forces and
the behaviour of fluids, lead to the equations of motion for fluids.

We assume that the body force on the fluid parcels is due to two components, fluid stresses and

other, external forces.
b=V.o+f (12.13)
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12.3. Equation of Motion for a Fluid: Navier-Stokes Equation

Here, o is the stress tensor, and f represents external forces. Intuitively, the fluid stress is repre-
sented as the divergence of the stress tensor because the divergence is the extent to which the
tensor acts like a sink or source; in other words, the divergence of the tensor results in a momen-
tum source or sink, also known as a force. For many applications f'is the gravity force, but for now
we will leave the equation in its most general form.

General Form of the Navier-Stokes Equation

We divide the stress tensor ¢ into the hydrostatic and deviator part. Denoting the stress deviator
tensor as T', we can make the substitution

o=—pl+T. (12.14)

Substituting this into the previous equation, we arrive at the most general form of the Navier-

Stokes equation:
Dv

PDr = —Vp+ V. -T+f (12.15)
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Integration of Forms

13.1. Differential Forms

551 | Definition
A k-differential form field in R"™ is an expression of the form

w = Z Q5. 5 A dxjy A - - dzjy,

where the a;, j,.. ;, are differentiable functions in R".

A O-differential form in R™ is simply a differentiable function in R™.

552 Example

9(z,y,z,w) =z +y* + 2% + '
is a 0-form in R%,

553 Example
An example of a 1-form field in R3 is

w = xzdz 4 3?dy + zy2idz.

554 Example
An example of a 2-form field in R? is

w = z2dz A dy + y?dy A dz + dz A da.

555 Example
An example of a 3-form field in R? is

w=(r+y+z)deAdyAdz.

We shew now how to multiply differential forms.
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13. Integration of Forms

556 Example
The product of the 1-form fields in R3

wy = ydx + zdy,

wo = —2xdx + 2ydy,

is

w1 Awy = (222 4+ 2y%)dx A dy.

557 | Definition

Let f(x1, o, ..., x,) be aO-forminR™. The exterior derivative d f of f is
df =) —dux;.
f=2 750

i=1
Furthermore, if
w= f(x1,22,...,2p)dz;; Adzj, A--- Adxy,

is a k-form in R™, the exterior derivative dw of w is the (k + 1)-form

dw =df(z1,z2,...,2,) Adzj, Adzj, A--- Adaj,.

558 Example
IfinR?, w = x3y*, then

d(z3y*) = 322y dx + 4233 dy.

559 Example
IfinR?, w = 2%yda + 23y*dy then

dw = d(z?ydx + 23y*dy)
= (2zydz + 2%dy) A dx + (32%y*de + 423y3dy) A dy
= 22dy Adz + 3z2y*dr A dy

= (32%y* — 2?)dz A dy

560 Example
Consider the change of variables x = u + v,y = uv. Then

dz = du + dw,

dy = vdu + udv,

whence
dz Ady = (u —v)du A do.
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13.2. Integrating Differential Forms

561 Example

13.2.

1303.

Consider the transformation of coordinates xyz into uvw coordinates given by

u=x+y+z,v= : ,w:yiﬂ.
Y+ z rT+y+z
Then
du = dz 4+ dy + dz,
< Y
dv =— dy + dz,
22" (y+272
Y+ z T x
dw = — dz + dy + —————d=z.
@rytz? @ty ta2 "’ @ryta?
Multiplication gives
du ANdvAdw = — = — yly + 2)
(+22@+y+2)? (Y+2)P(r+y+2)?
z2(y + 2) Yy

— dz Ady A d
, Pty )
z24 =yt —zxr — Y
= d dy Adz.
22wty rapt NYNE

Integrating Differential Forms
Let

W= Z @iy, i (X) dz'' A .. A dat*

be a differential form and M a differentiable-manifold over which we wish to integrate, where M

has the parameterization

for in the parameter u domain D . Then defines the integral of the differential form over as

oz ... %) L
W = Qjq,...\i (M(u))—du - du ,
/S /Dz1<z:<zk b 8(u17"- >uk)
where the integral on the right-hand side is the standard Riemann integral over D, and
A(ul, ... uk)

is the determinant of the Jacobian.

Zero-Manifolds
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562 | Definition

A0-dimensional oriented manifold of R™ is simply a point x € R"™, with a choice of the + or — sign.
A general oriented 0-manifold is a union of oriented points.

563 | Definition
Let M = +{b} U —{a} be an oriented 0-manifold, and let w be a 0-form. Then

[ w =) - wa).

—x has opposite orientation to +x and

/ w=— / w.
—X +x
564 Example

Let M = —{(1,0,0)} U +{(1,2,3)} U —{(0,—2,0)} be an oriented 0-manifold, and let w = x +
2y + z2. Then

/ w = —w((1,0,0)) + w(1,2,3) — w(0,0,3) = —(1) + (14) — (—4) = 17.
M

13.4. One-Manifolds

565 | Definition

A l-dimensional oriented manifold of R™ is simply an oriented smooth curve I' € R™, with a choice
of a + orientation if the curve traverses in the direction of increasing t, or with a choice of a — sign

if the curve traverses in the direction of decreasing t. A general oriented 1-manifold is a union of
oriented curves.

The curve —I" has opposite orientation to I" and
/ w=-— / w.
-r r

dx
Iff: R?2 — R2andifdr = , the classical way of writing this is

dy
/f-dr.
r

We now turn to the problem of integrating 1-forms.

'Do not confuse, say, —{(1,0,0)} with —(1,0,0) = (—1,0,0). The first one means that the point (1,0, 0) is given
negative orientation, the second means that (—1, 0, 0) is the additive inverse of (1, 0, 0).
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567

13.4. One-Manifolds

Example
Calculate

/ zydx + (z + y)dy
r
where T is the parabola y = 2%, x € [—1;2] oriented in the positive direction.

Solution: » We parametrise the curve asz = ¢,y = 2. Then

zydr + (z +y)dy = £2dt + (¢ + 2)dt* = (33 + 2¢%)dt,

2
/w = /(3t3—|—2t2)dt
T -1

9 2
= {t?’ + 34
-1

whence

3 4
69
R
What would happen if we had given the curve above a different parametrisation? First observe that
the curve travels from (—1, 1) to (2, 4) on the parabola y = 2. These conditions are met with the
parametrisation x = v/t — 1,y = (vt — 1)2,¢ € [0;9]. Then

ryda + (e +y)dy = (VE—1Pd(VE—1) + (VE—1) + (Vi - DDAV~ 1)?
— B(Vi- 1P +2(Vi- D2A(VE-1)

1
= —3(Vt—12+2(vt—1)%)de,
2\/73( (Vt—1) (VEt—1)?)
whence
9
1
w = — 3Vt =12 +2(vt — 1)?)dt
Lo = | 57601 2= 1)
2 3/2
- -y
_
=
as before.
|

It turns out that if two different parametrisations of the same curve have the same ori-
entation, then their integrals are equal. Hence, we only need to worry about finding a
suitable parametrisation.

Example
Calculate the line integral

/ ysinzdx 4 x cos ydy,
r

where I is the line segment from (0, 0) to (1, 1) in the positive direction.
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13. Integration of Forms

Solution: » This line has equation y = x, so we choose the parametrisation x = y = ¢. The
integral is thus
1
/ ysinzdr + xcosydy = / (tsint + tcost)dt
r 0
1
= [t(sinx — cost)]§ — / (sint — cost)dt
0
= 2sinl —1,
upon integrating by parts.
|

568 Example
Calculate the path integral

r+y r—y
d d
/1“1‘2‘1'92 y+x2—|—y2 x
around the closed square I’ = ABCD with A = (1,1), B = (-1,1),C = (-1,-1),and D =
(1, —1) in the direction ABC' D A.

Solution: » On AB,y = 1,dy = 0,on BC,x = —1,de = 0,onCD,y = —1,dy = 0,and on
DA,z =1,dx = 0. Theintegralis thus

/wz/cd—i—/ w—i—/ w—i—/ w
r AB BC CD DA
/1x—1d +/1y—1d +/1 1, +/1 y+1l,
1 2241 1 Y+l Y x4 1 y?+1 Y
1
1
_ 4/ LI
_1$2+1

= 4arctanz|!;

= 2.

When the integral is along a closed path, like in the preceding example, it is customary
to use the symbol §I§ rather than / The positive direction of integration is that sense

r r
that when traversing the path, the area enclosed by the curve is to the left of the curve.

569 Example
Calculate the path integral

55 z2dy + yidz,
r

where T is the ellipse 9% + 43> = 36 traversed once in the positive sense.
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13.4. One-Manifolds

Solution: » Parametrise the ellipse as x = 2cost,y = 3sint,t € [0;27]. Observe that when

traversing this closed curve, the area of the ellipse is on the left hand side of the path, so this
parametrisation traverses the curve in the positive sense. We have

2T
yﬁw = / (4 cos? t)(3cost) 4+ (9sint)(—2sint))dt
r 0
27
= / (12 cos® t — 18sin® t)dt
0
= 0.

<

570

Definition
Let T be a smooth curve. The integral

/ F)lax|

57

r
is called the path integral of f along 1.
Example
Find/x]dx” whereT isthe triangle startingat A : (—1,—1)to B : (2,—2),andendinginC : (1,2).
r
—r—4
Solution: » The lines passing through the given points have equations Lap : y = x3 ,and

LBc:y: —4x + 6. OI’ILAB

2

andon Lgc
zl|dx|| = 24/(dz)? + (dy)? = 2(\/1 + (—4)?)dz = 2/17dz.
Hence
[allaxi = [ wlaxi+ [ ajix|
r LA% Lpc )
= / li\/zodx—k/ 2V/17dz
—1 2
V10 3V1T
T 2 2
<
Homework
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13. Integration of Forms

Figure 13.1. Example 571.

572 Problem
Consider/ zdx + ydy and/ xy||dx]|.
c c

1. Evaluate / xdx + ydy where C is the3
straight Iince path that starts at (—1,0)
goes to (0,1) and ends at (1,0), by
parametrising this path. Calculate also

xyl|dx|| using this parametrisation.
¢ 574
2. Evaluate / xdx+ydy where C'is the semi-
circle thatgtarts at (—1,0) goes to (0,1)

and ends at (1,0), by parametrising this

13.5. Closed and Exact Forms

575 Lemma (Poincaré Lemma)

path. Calculate also / xy||dx|| using this
c

parametrisation.

Problem

Find / xdx + ydy where T is the path shewn in
figure 1‘:’?, starting at O(0,0) going on a straight
line to A (4 cos g, 4sin %) and continuing on an
arcofacircleto B (4 cos g, 4sin g)

Problem

Find }Ig zdx + xdy + ydz where I is the intersec-
r
tion of the sphere x? +y? + z?> = 1 and the plane

x 4+ y = 1, traversed in the positive direction.

If w is a p-differential form of continuously differentiable functions in R™ then

d(dw) = 0.

Proof. We will prove this by induction on p. Forp = 0 if

w= f(x1,x2,...,2)

then
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13.5. Closed and Exact Forms

and

n

0? 0?

1<j<k<n 8$]3l‘k axkaﬂjj
= 0,

since w is continuously differentiable and so the mixed partial derivatives are equal. Consider now

an arbitrary p-form, p > 0. Since such a form can be written as

w = Z aj1j2-~jpdxj1 VAN d$]’2 AR 'd$]’p,

where the a;, j,.. ;, are continuous differentiable functions in R™, we have

dw = Z dajljgmjp A\ dCL‘jl A d:EjQ JANER d:EjP

n

oa;. ;
= Z <Z gihdml> /\d:Ejl /\dl‘j2 A "'dI‘jp,

it is enough to prove that for each summand
d(da Adzj, Adzj, A---day,) = 0.

But
d(da Adzj, Adaj, A+ -day,) = dda A (daj, Adzj, A---daj,)
+da A d(dzj, Adzj, A~ daj,)
= daAd(dzj, Adzj, A+ daj, ),
since dda = 0 from the case p = 0. But an independent induction argument proves that

d(daj, Adzj, A---day,) =0,

completing the proof. ]

576 | Definition
Adifferential form w is said to be exact if there is a continuously differentiable function F such that

dF = w.

577 Example
The differential form
xdx + ydy

is exact, since

1
xdr +ydy =d (2(952 + y2)> )
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579

580

13. Integration of Forms
Example
The differential form
ydz 4+ zdy

is exact, since
ydx + xdy = d (zy) .

Example
The differential form

€ Y
d d
x? 4 y? x+:c2+y2 Y

is exact, since

T Yy _ 1 2 2
. +y2dx+ = +y2dy =d (210ge(:v +y )) .
Let w = dF be an exact form. By the Poincaré Lemma Theorem 575, dw = ddF = 0.
A result of Poincaré says that for certain domains (called star-shaped domains) the
converse is also true, that is, if dw = 0 on a star-shaped domain then w is exact.

Example
Determine whether the differential form
2z(1 — eY) e¥

d d
(14 22)2 wdl—l—i-:v2 Y

w =

is exact.

Solution: » Assume thereis a function F' such that

dF =w
By the Chain Rule
oF oF
F=2= bl
d 3 dx + 5 dy

This demands that
oF _ 2x(1-—eY)

dr  (1+a2)2’
oF e
oy 1422
We have a choice here of integrating either the first, or the second expression. Since integrating the
second expression (with respect to y) is easier, we find
eV
1+ a2

F(ZL‘,y): +¢($)>

where ¢(x) is a function depending only on z. To find it, we differentiate the obtained expression
for F with respect to x and find

or 2xeY ;
9 Uree 0@
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13.5. Closed and Exact Forms

OF
Comparing this with our first expression for —, we find

ox
2z
/ —_
¢ (J:) - (1 +x2)27
thatis )
¢($) = _1+CC2 +c,
where cis a constant. We then take
eY —1
F = — .

|
581 Example
Is there a continuously differentiable function such that

dF = w = y?23de + 2zy23dy + 3xy%2%dz ?
Solution: » We have

dw = (2u23dy + 3y?22dz) Adz
+(2y23dx + 2x23dy + 62y2%dz) A dy

+(3y?22dx + 6xyz2dy + 6zy%2d2) A dz

= ()7

so this form is exact in a star-shaped domain. So put

oF oF oF
dF = —dz + —dy + —dz = y?23dz + 2zy2z3dy + 3zy?22d=.
ox oy 0z
Then OF
— =9?2 = F=uxy’2+aly,2),
Ox
oF
i 2ryzd = F = 29?25 4+ b(x, 2),
Y
OF
5 = 3xy?2? = F = ay?23 + c(z,y),
z

Comparing these three expressions for I, we obtain F'(z, vy, 2) = zy?z5. <«
We have the following equivalent of the Fundamental Theorem of Calculus.

582 | Theorem

A and endpoint B. Then
B
/w :/ dF = F(B) — F(A).
r A

In particular, if I is a simple closed path, then

95“’:

Let U C R™ be an open set. Assume w = dF'is an exact form, and T" a path in U with starting point
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\

583 Example
Evaluate the integral

2x 2y
d d
y§$2+y2 x+x2+y2 Y
T

where T is the closed polygon with vertices at A = (0,0), B = (5,0), C = (7,2), D = (3,2),
E = (1,1), traversed in the order ABCDEA.

Solution: » Observe that

4xy
sody Adz —

2x 2y
d d du ) = —
<w2+y2 pE y) (% +y?)

and so the form is exact in a start-shaped domain. By virtue of Theorem 582, the integral is 0. «

4y

584 Example
Calculate the path integral

yg(zr? —y)dz + (y° — z)dy,

where T is a loop of 2> + y® — 2y = 0 traversed once in the positive sense.

Solution: » Since

the form is exact, and since this is a closed simple path, the integral is 0. «

13.6. Two-Manifolds

585 | Definition
A 2-dimensional oriented manifold of R? is simply an open set (region) D € R2, where the +
orientation is counter-clockwise and the — orientation is clockwise. A general oriented 2-manifold

is a union of open sets.

The region — D has opposite orientation to D and

e

/D fz,y)dA

where d A denotes the area element.

We will often write

In this section, unless otherwise noticed, we will choose the positive orientation for the
regions considered. This corresponds to using the area form dxdy.
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13.7. Three-Manifolds
Let D C R2. Given afunction f : D — R, the integral

D/ fdA

is the sum of all the values of f restricted to D. In particular,

[aa

D

is the area of D.

13.7. Three-Manifolds

586 | Definition
A 3-dimensional oriented manifold of R? s simply an open set (body) V' € R3, where the + ori-

entation is in the direction of the outward pointing normal to the body, and the — orientation is in
the direction of the inward pointing normal to the body. A general oriented 3-manifold is a union of
open sets.

The region — M has opposite orientation to M and

= f
/M fav

where dV denotes the volume element.

We will often write

In this section, unless otherwise noticed, we will choose the positive orientation for the
regions considered. This corresponds to using the volume form dz A dy A dz.

Let V C R3. Given afunction f : V — R, the integral

V/ Fdv

is the sum of all the values of f restricted to V. In particular,

/dV

Vv
is the oriented volume of V.
587 Example
Find
z2ye™* dV.

[0;1]3

305



13. Integration of Forms

Solution: » Theintegralis

/01 </01</01x2ye“”yzdz>dy>dx = Al</01$(exy_1)dy>dx

13.8. Surface Integrals

588 |Definition

A 2-dimensional oriented manifold of R? is simply a smooth surface D € R3, where the + orienta-
tion is in the direction of the outward normal pointing away from the origin and the — orientation is
in the direction of the inward normal pointing towards the origin. A general oriented 2-manifold in

R3 is a union of surfaces.

The surface —X has opposite orientation to ¥ and

e

In this section, unless otherwise noticed, we will choose the positive orientation for the
regions considered. This corresponds to using the ordered basis

{dy ANdz, dz A dz, dz A dy}.

589 | Definition
Let f : R3 — R. The integral of f over the smooth surface X (oriented in the positive sense) is given

/ e

P

by the expression

Here

HdQXH = \/(dzv Ady)? + (dz Adz)? + (dy A dz)?

is the surface area element.

590 Example
Evaluate / z”d2xH where X is the outer surface of the section of the paraboloid z = x? + y?,0 <

by
z <1.
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13.8. Surface Integrals
Solution: » We parametrise the paraboloid as follows. Let z = u,y = v, z = u® + v2. Observe
that the domain D of ¥ is the unit disk u2 + v? < 1. We see that
dz A dy = du A do,

dy A dz = —2udu A dv,
dz Adx = —2vdu A dv,

and so
HdZXH = mdu A dw.
Now,
/ZHdZXH = /(u2 + %)V 1 + 4u? + 4v2dudo.
b D
To evaluate this last integral we use polar coordinates, and so

2 1
/(u2+1}2)\/1+4u2+4v2dudv = /0 /0 P21+ 4p2dpdd

D
s 1

|
591 Example
Find the area of that part of the cylinder 2% + y? = 2y lying inside the sphere 2% + y? + 2% = 4.

Solution: » We have
P2yt =2 = 2+ (y-1)>% =1

We parametrise the cylinder by putting x = cosu,y — 1 = sinu, and z = v. Hence

dz = —sinudu, dy = cosudu, dz = dv,
whence
dx ANdy =0,dy Adz = cosudu A dv,dz A dx = sinudu A dw,
and so
Hd2xH = /(dz Ady)? + (dz Adz)? + (dy A dz)?
= Vcos?u +sin?udu A dv
= duAdv.

The cylinder and the sphere intersect when 22 + y? = 2y and 22 + 32 + 22 = 4, thatis, when
22 =4—2y,ie.v? =4 —2(1 +sinu) = 2 — 2sinu. Also 0 < u < 7. The integral is thus

V2—2sinu

[l = //2 2Smucwduz/oﬂwmdu
%

= 2\/§/ V1 —sinudu
0
= 2V2(4v/2-4).
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594

595

596
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13. Integration of Forms
Example
Evaluate

/xdydz + (2% = zz)dzdx — zydady,
5
where X is the top side of the triangle with vertices at (2,0, 0), (0,2, 0), (0,0,4).

Solution: » Observe that the plane passing through the three given points has equation 2z +
2y + z = 4. We project this plane onto the coordinate axes obtaining

4 r2-z/2 8
/xdydz:/ / (2—y—2/2)dydz = -,
0 JO 3

3

2 r4-2z
/(22 — zx)dzdz = / / (22 — zz)dzdz = 8,
0 JO
b

2 pr2—y 2
—/azydxdy = —/ / zydzdy = —3
0o JO

b
and hence
/xdydz + (2% — zz)dzdz — zydzdy = 10.
b
|
Homework
Problem
Eva[uate/de2xH where Y isthesurface z =z + 12,0 <z < 1,0 <y < 2.
%
Problem

Consider the cone z = +/x2 + y2. Find the surface area of the part of the cone which lies between the
planes z = 1and z = 2.

Problem
Evaluate / :1:2Hd2xH where ¥ is the surface of the unit sphere x> + y? + 2% = 1.
>

Problem
Evaluate/ sz2xH over the conical surface z = \/x? + y? between z = O and z = 1.
s

Problem

You put a perfectly spherical egg through an egg slicer, resulting inn slices of identical height, but you
forgotto peel it first! Shew that the amount of egg shell in any of the slices is the same. Your argument
must use surface integrals.
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13.9. Green’s, Stokes, and Gauss’ Theorems
598 Problem
Evaluate
/xydydz — 22dzdz + (x + 2)dzdy,

by
where 3 is the top of the triangular region of the plane 2x + 2y + z = 6 bounded by the first octant.

13.9. Green’s, Stokes’, and Gauss’ Theorems

We are now in position to state the general Stoke’s Theorem.

599 |Theorem (General Stoke’s Theorem)
Let M be a smooth oriented manifold, having boundary OM. If w is a differential form, then

/ w:/ dw.
oM M

In R, if wis a 1-form, this takes the name of Green’s Theorem.

600 Example

Evaluategg (z — y®)dz + 23dy where C is the circle 2 + y*> = 1.
c

Solution: » We will first use Green’s Theorem and then evaluate the integral directly. We have
dw = d(z—y*) Adz+d(z?) Ady
= (dz — 3y3dy) A dx + (3x3dz) A dy
= (3y% + 322)dz A dy.
The region M is the area enclosed by the circle 22 + 32 = 1. Thus by Green’s Theorem, and using

polar coordinates,
55 (z —y?)dz + 23dy = / (3y% + 322)dzdy
c

T 1
= / / 3p%pdpdd
0

%

2
Aliter: We can evaluate this integral directly, again resorting to polar coordinates.

2m
yg (x —y>)de + 23dy = / (cos B — sin® §)(— sin §)d6 + (cos® #)(cos §)dh
C 0
2
= / (sin* 6 + cos* @ — sin 0 cos §)d6.
0

To evaluate the last integral, observe that 1 = (sin? @ + cos? #)? = sin* 0 + 2sin? 6 cos? 6 + cos? 6,
whence the integral equals

2T 2T
/ (sin @ + cos* @ — sinf cos§)df = / (1 — 2sin? 6 cos? § — sin @ cos §)d6
0 0
s

5
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<
In general, let

w = f(x,y)dz + g(x,y)dy

be a 1-form in R2. Then
dw = df(z,y) ANdx +dg(z,y) ANdy
= gf(a: )dx—l—gf(a: )dy | Adx + 9 (x )d:U+2 (z,y)dy | Ad
0 0
= %g(af, y) — ayf(ﬂl%:t/)) dz A dy

which gives the classical Green’s Theorem
/f(x Jdo + g(z, y)d —/ 9 @) - 2 pay)) dad
Y g\x,y)dy = 8xg Y y Y Y.
oM M

In R3, if wis a 2-form, the above theorem takes the name of Gauss or the Divergence Theorem.

Example

Evaluate / (x — y)dydz + zdzdx — ydady where S is the surface of the sphere
s

?+yP+22=9
and the positive direction is the outward normal.

Solution: » The region M is the interior of the sphere 22 + y? + 22 = 9. Now,

dw = (dz—dy)AdyAndz+dzAdzAde —dyAdeAdy
= dz AdyAdz.
The integral becomes
4
/dxdydz = %(27)
M
= 36m.

Aliter: We could evaluate this integral directly. We have

/(x —y)dydz = / rdydz,
> P

since (z,y, z) — —yisanodd function of y and the domain of integration is symmetric with respect

3 27
/ xdydz = / / lp|/9 — p2dpdd
% -3J0

= 36r.

/ zdzdx = 0,
b

toy. Now,

Also
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13.9. Green’s, Stokes, and Gauss’ Theorems

since (z,y, z) — zisan odd function of z and the domain of integration is symmetric with respect

/ —ydzdy = 0,
pX

since (z,y, z) — —yisanodd function of y and the domain of integration is symmetric with respect

to z. Similarly

toy. «
In general, let

w= f(z,y,z)dy ANdz + g(x,y, z)dz Adz + h(x,y, z)dz A dy
be a 2-form in R3. Then
dw = df(x,y,2)dy Adz+dg(z,y, z)dz Adz + dh(z,y, z)dx A dy
0 0 0
- (axf(aja Y, Z)d.ﬁl? + @f(xa Y, Z)dy + %f(ma Y, Z)dZ) A dy Ndz
0 0 0
+ %g(x, y, z)dx + @g(az, y, z)dy + ag(x, Y, z)dz) Adz Adx
0 0 0
+ %h(x, y, z)dx + 8—yh(w, y, z)dy + ah(x, Y, z)dz) Adz Ady
= ﬁf(x z)+ﬁ (x z)—l—gh(x z) Jdx Ady Adz
- 81' 7y7 8yg 7y7 82 7y7 y 9

which gives the classical Gauss’s Theorem

/f x,y, z)dydz+g(x,y, z)dzdz+h(z, y, z)dzdy /< (x,y, 2 E?g(x,y,z) + ;h(x,y,z)) dxdydz.
Yy z
oM M

Using classical notation, if

flz,y,z dydz
(r,9,2)|,dS = |dzdzx| ,
(z,y,2 dzdy

then

/V a)dV = /a-dS.
M

The classical Stokes’ Theorem occurs when w is a 1-form in R3.

602 Example
Evaluate §I§ ydx + (22 — 2)dy + (2 — x)dz where C is the intersection of the sphere x® + y* + 22 = 4

c
and the plane z = 1.

Solution: » We have

dw = (dy) Adz+ (2dz —dz) Ady + (dz —dz) Adz
= —dxAdy+2dzAdy+dyAdz+dzAdx

= deAdy+dy Adz+dz Adz.
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13. Integration of Forms

Sinceon C, z = 1, the surface ¥ on which we are integrating is the inside of the circle 22 +4% +1 = 4,
i.e., 22 4+ y? = 3. Also, z = 1 impliesdz = 0 and so

/dw = /dxdy.
by X

Since this is just the area of the circular region 22 4 y? < 3, the integral evaluates to

/dxdy = 3.

b
|
In general, let
be a 1-form in R3. Then
dw = df(z,y,2) Adx +dg(z,y,2) ANdy + dh(x,y,z) Adz
— (B s et 2 fe )+ o s ) Ada
+ 9 (z z)dav—l—g (x,y,2)d —}-g (x,y,2)dz | Ad
8mg 'Y, ayg ' Ys Y azg 'Y, Yy

3} 0 0
+ ((%h@, y, z)dx + a—yh(az,y, z)dy + ah(x, Y, z)dz) Ndz
0

0
= (ayh(xvyaz) - ag(l‘,y, Z)) dy Adz
+ 2f( ) — gh( ))dzAd
Oz x,Y,z O T, Y,z z xT
0 0
((%,g(m7y> Z) - a*yf(x,y, Z)) dz A dy

which gives the classical Stokes’ Theorem

/ F(@,y, 2)de + gle,y, 2)dy + h(z, y, 2)dz
oM

0 0
M

0 0
+ gg(:ﬂ,y, Z) - %f(‘rﬁ% Z)) d.’L‘dy

0 0
+ %h(l‘aya Z) - %f(xaya Z)) dl’dy

Using classical notation, if
f(z,y,2) dz dydz
a=|g(x,y,2)|, dr=|dy|, dS= |dzdz|,

h(z,y, z) dz dzdy
then
/(V X a)-dS = /a-dr.
M oM
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13.9. Green’s, Stokes, and Gauss’ Theorems

Homework

603 Problem

Evaluate §£ z3yda 4 xydy where C' is the square with vertices at (0, 0), (2,0), (2,2) and (0, 2).
c

604 Problem
Consider the triangle \ with vertices A : (0,0), B : (1,1),C : (=2,2).

O If Lpg denotes the equation of the line joining P and @ find L o, L oc, and Lpc.

® FEvaluate
§I§ y?dz + xdy.
A

® Find
/(1 —2y)dx A dy
D
where D is the interior of A\.

605 Problem
Problems 1through 4 refer to the differential form

w=xdy ANdz + ydz A dx + 2zdz A dy,

and the solid M whose boundaries are the paraboloid z = 1 — 2> — y?, 0 < z < 1 and the disc
2?2 +y? < 1,z = 0. The surface OM of the solid is positively oriented upon considering outward

normals.

1. Prove thatdw = 4dx A dy A dz.
Vica?

1 —z2  pl-z?—y?
2. Prove that in Cartesian coordinates, / w = / / / 4dzdydzx.
oM —1J-v1=22 Jo

2r  pl pl—r?
3. Prove that in cylindrical coordinates, / dw = / / / 4rdzdrdé.
M o Jo Jo

4. Prove th(:lt/ xdydz + ydzdx + 2zdxdy = 2.
oM

606 Problem
Problems 1through 4 refer to the box

M={(z,y,2) eR®:0<2<1,0<y<1,0<z<2},
the upper face of the box
U={(z,y,2) ER®:0<2<1,0<y<1, z=2},
the boundary of the box without the upper top S = M \ U, and the differential form

w = (arctany — 2?)dy A dz + (coszsin z — y*)dz A dz + (222 + 62y*)dz A dy.
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13. Integration of Forms

1. Prove that dw = 3y?dz A dy A dz.

2. Provethat/ (arctan y—=2)dydz+(cos z sin z—y®)dzdz+(222+62y )da:dy—/ / / 3y?dadydz =

2. Here the boundary of the box is positively oriented considering outward normals.

3. Prove that the integral on the upper face of the box is / (arctany — 2?)dydz + (cos zsin z —
U

1,1
y®)dzdz + (222 + 62y?)dzdy = / / 4z + 12y%dady = 6.
0o Jo

4. Prove that the integral on the open box is / (arctan y—x?)dydz+(cos z sin z—y°)dzdz+
OM\U
(2zz + 62y?)dzdy = —4.

607 Problem
Problems 1through 3 refer to a triangular surface T in R? and a differential form w. The vertices of T
areat A(6,0,0), B(0,12,0),and C(0, 0, 3). The boundary of of the triangle T is oriented positively
by starting at A, continuing to B, following to C, and ending again at A. The surface T is oriented
positively by considering the top of the triangle, as viewed from a point far above the triangle. The
differential form is

2
w = (2zz + arctane”) dz + (zz + (y + 1)Y) dy + <xy + % +log(1 + z2)> dz.

1. Prove that the equation of the plane that contains the triangle T is 2x + y + 4z = 12.

2. Prove thatdw = ydy A dz + (22 — y) dz A dx + zdz A dy.

2
3. Prove that/ (2zz + arctane®) dz + (zz + (y + 1)Y) dy + (my + ‘% + log(1 + 22)> dz =
or

3 pl2—4z 6 r3—z/2
/ / ydydz + / / 2xdzdx=108.
0o Jo o Jo

608 Problem
Use Green’s Theorem to prove that

/(x2 + 2¢%)dy = 16,
r

where T is the circle (x — 2)? + y? = 4. Also, prove this directly by using a path integral.

609 Problem
Let T denote the curve of intersection of the plane x+vy = 2 and the sphere x> — 2z +1y? — 2y +22 = 0,
oriented clockwise when viewed from the origin. Use Stoke’s Theorem to prove that

/ydx + zdy + zdz = —27V/2.
r

Prove this directly by parametrising the boundary of the surface and evaluating the path integral.
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13.9. Green’s, Stokes, and Gauss’ Theorems

610 Problem
Use Green’s Theorem to evaluate

yg (2® — y¥)da + (% + 4*)dy,

where C'is the positively oriented boundary of the region between the circles x> + y?> = 2 and x> +
2
y* =4
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Answers and Hints

106 Since polynomials are continuous functions and the image of a connected set is connected for a contin-
uous function, the image must be an interval of some sort. If the image were a finite interval, then f(z, kx)
would be bounded for every constant k, and so the image would just be the point f(0,0). The possibilities
are thus

1. asingle point (take for example, p(z,y) = 0),
2. asemi-infinite interval with an endpoint (take for example p(z, y) = 2% whose image is [0; +00]),

3. asemi-infinite interval with no endpoint (take for example p(z,y) = (zy — 1)? + 22 whose image is
J0; +00),

4. all real numbers (take for example p(z,y) = x).

120 0
121 2
122 ¢ = 0.
123 0
126 By AM-GM,
22y2 22 _ (22 + 32 + 22)3 B (22 + 2 + 22)2 0
22+ y2 +22 T 27(22 +y2 +22) 27
as (z,y,z) — (0,0,0).
138 0
139 2
140 ¢ = 0.
141 0
144 By AM-GM,
22222 B (x2+y2+22)3 B (x2+y2+z2)2 o

22492+ 22 T 27(22 +y2 +22) 27
as (z,y,z) — (0,0,0).
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172 We have
F(x+h) - F(x)

(x+h) X L(x+h) —x X L(x)
= (x+h) x (L(x) + L(h)) —x X L(x)
= xX L) +hx L(x)+h x L(h)

[[h X L(h)|

— 0ash — 0. For let
[l

Now, we will prove that

h = Z hkek7
k=1
where the e, are the standard basis for R™. Then
L(h) = hiL(ey),
k=1
and hence by the triangle inequality, and by the Cauchy-Bunyakovsky-Schwarz inequality,

L) < S el L(ew)|
< (i )Y (e (1L e 12)

= Il (Zkoy (1L Cen) )2,

1/2

whence, again by the Cauchy-Bunyakovsky-Schwarz Inequality,

[ x L(b)[| < [h[[[[L(h)] < [[]P|l|L(ex)]*)"

And so ,
|[h X L(h)]| 2] L(ex)]]*)"/?
< —0
([l [hl
184 Observe that
z ifx <P
f(z,y) =
y? ifz > g2
Hence
B 1 ifz > g2
z 0 ifx>y?
and
o 0 ifx>y?
Y 2y ifx > y?
185 Observe that
v 2y , 1 -1 2
g(1,0,1) = (30),  f(z,y) = ;o g(my) =
2ry 22 y z 0
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and hence

1 -1 2
91(1707 1) = ) f'(g(l,o, 1) = f(3,0) =
0O 1 0 0 9

This gives, via the Chain-Rule,

0 ofJ1 -1 2 0 0 0
(f og)/(1707 1) = f'(g(l’ov 1))9/(13()’ ]-) - =
0 910 1 O 09 0

The composition g o fis undefined. For, the output of fis R?, but the input of g is in R3.

186 Since f(0,1) = (01), the Chain Rule gives

1 -1 0 -1
10
(90 f)'(0,1) = (¢'(£(0,1)))(£(0,1)) = (¢'(0,1))(£(0,1)) = [0 0 Ll 0 0
1 1 2 1
189 We have
O vrs D O 0 LI
%(x+z) +87x(y+z) _8:58 = 2(1+8x)(x+z)+28x(y+z)—0.
At (1,1, 1) the last equation becomes
0z 0z 0z 1

219 a)Here VT = (y+2)i+ (z + 2)j + (y + z)k. The maximum rate of change at (1,1, 1) is |[VT(1,1,1)| =
2+/3 and direction cosines are
vT 1, 1, 1
v - vt

b) The required derivative is

= cos ad + cos Bj + cos vk

3i— 4k 2

T(1,1,1)e——= ==
v(”)wf&\ 5

220 a)Here V¢ = F requires V x F = 0 which is not the case here, so no solution.
b) Here V x F = 0 so that
o(x,y,2) =2y + v’z +2+c
221 Vf(z,y,z) = (e¥?, xzeV?, xye¥?) = (Vf)(2,1,1) = (e, 2¢, 2¢).
222 (V X f)(z,y,2) = (0,2,ye™) = (V X f)(2,1,1) = (0,2,¢?).

224 The vector (1,—7,0) is perpendicular to the plane. Put f(x,y,2) = 2% + y? — 5oy + 2z — yz + 3.
Then (Vf)(z,y,2) = (2 — by + 2,2y — 5z — zx — y). Observe that Vf(z,y, 2) is parallel to the vector
(1,-7,0), and hence there exists a constant a such that

2z —-by+2z2y—bx—zx—y)=a(l,-7,0) = z=a, y=a, z=4a
Since the point is on the plane
r—T7Yy=-—6 —= a—Ta=—-6 —= a=1.

Thusz=y=1andz =4.
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227 Observe that
£(0,0) =1, f.(z,y) = (cos Qy)e“OSQy = f.(0,0) =1,

fy(z,y) = —2xsin 2ye” “52Y = f,(0,0) = 0.
Hence
f(x,y) =~ £(0,0) + f2(0,0)(x — 0) + f,(0,0)(y — 0) = f(x,y) =1+
This gives f(0.1,-0.2) = 1 + 0.1 = 1.1.
228 This is essentially the product rule: duv = udv + vdu, where V acts the differential operator and X is
the product. Recall that when we defined the volume of a parallelepiped spanned by the vectors a, b, ¢, we

saw that
ae(bxc)=(axb)ec.

Treating V = V, + V as a vector, first keeping v constant and then keeping u constant we then see that
Vae(uxv)=(VXu)ev, Vie(uxv)=-Ve(vxu =—(VxXxv)eu.
Thus
Ve(uxv)=(Vy+Vy)e(uxv)=Vye(uxv)+Vye(uxv)=(Vxuev—(VXv)eu.

231 Anangle of % with the z-axis and g with the y-axis.

X

323 Let [y | beapointon S. If this point were on the zz plane, it would be on the ellipse, and its distance
z
x
1

to the axis of rotation would be |z| = 5\/ 1 — z2. Anywhere else, the distance from | | to the z-axis is the

z
0
distance of this point to the point || : /22 + y2. This distance is the same as the length of the segment

z

on the zz-plane going from the z-axis. We thus have

1
/x2+y2 — 5 /1— 22,
or
4a? 4+ 4y? + 22 = 1.
x
324 Let |y | beapointon S. If this point were on the zy plane, it would be on the line, and its distance to
z
X
1
the axis of rotation would be |z| = §|1 — 4y|. Anywhere else, the distance of | | to the axis of rotation is

z
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T 0
the same as the distance of |y | to |y |, thatis v22? + 22. We must have

z 0

1
Va2 422 = §|1 — 4y,

which is to say
922 + 922 —16y2 +8y — 1 =0.

325 Aspiral staircase.
326 Aspiral staircase.

328 Theplanes A : x4+ z = 0and B : y = 0 are secant. The surface has equation of the form f(A, B) =
eATHB? A = 0, and it is thus a cylinder. The directrix has direction i — k.

329 Rearranging,
1
N 5((;c+y+z)2 — (@ + 2+ 2%) - 1=0,

andsowemaytake A : xz +y+2z=0,5: 22 + y? + 22 = 0, shewing that the surface is of revolution. Its
axisis the line in the directioni + j + k.

330 Consideringtheplanes A: x —y =0, B : y — z = 0, the equation takes the form

1 1 1
AB)=—+—=———-1=0
f(4,B) ATB A +B ’
thus the equation represents a cylinder. To find its directrix, we find the intersection of the planes x = y and
T 1

y = z. Thisgives |y | =1t |1|. Thedirection vectoris thusi+j + k.

z 1

331 Rearranging,
(+y+2°—@+y*+2°)+2@+y+2)+2=0,

sowemaytake A:x +y+2=0,5 : 22 + y? + 22 = 0 as our plane and sphere. The axis of revolution is
then in the direction of i 4+ j + k.

332 After rearranging, we obtain
(z—1)> =2y =0,

or
x Y

- 1=0.
zflzfl—’—

Considering the planes
A:x2=0,B:y=0, C:2=1,

we see that our surface is a cone, with apex at (0,0, 1).

323



A. Answers and Hints

333 The largest circle has radius b. Parallel cross sections of the ellipsoid are similar ellipses, hence we may

increase the size of these by moving towards the centre of the ellipse. Every plane through the origin which

makes a circular cross section must intersect the yz-plane, and the diameter of any such cross section must
2 2

be a diameter of the ellipse x = 0, 1‘;—2 + 2—2 = 1. Therefore, the radius of the circle is at most b. Arguing

similarly on the zy-plane shews that the radius of the circle is at least b. To shew that circular cross section
of radius b actually exist, one may verify that the two planes given by a?(b? — ¢?)2% = c%(a? — b?)a? give
circular cross sections of radius b.

334 Any hyperboloid oriented like the one on the figure has an equation of the form

22 £E2 y2

072:94»[)7271

When z = 0 we must have

1
4 + 2 =1 :>a:§,b:1.
Thus
§ 2, 2
— =42"+y" -1
Hence, letting z = +2,
4 1 y? 1 1 3
7:42 2—12—:2 z =1 = ===
2 oty e 7+ 1 1 1=
y2
sinceatz = £2, 22 + 1= 1. The equation is thus
32
%=4$2+y2—1.

572

1. LetLy:y=x+1,Ly: —x + 1. Then

/ rdrx +ydy = rdx + ydy + / xdx + ydy
c

Lo

1 1
zdz(z + 1)dx —|—/ zdz — (—z + 1)dz
0

—1

S t—

Also, both on L, and on L, we have ||dx| = v/2dz, thus

/ rylldx| = / rylldx] + / ry|dx]
C Ly Lo
= \// a:—&—lda:—\[/ —z+ 1)dz

= 0.

2. Weputz =sint,y = cost,t € [—g ; g} Then

/2
/ xdz + ydy / (sint)(cost)dt — (cost)(sint)dt
C —7/2

= 0
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Also, ||dx|| = y/(cost)? + (—sint)2dt = dt, and thus

[ wvlax|
C —/2

Il
3
~
N
—
[2)
=.
=
~
=
—
Q
o
7]
~
S—
o
~

573 LetT'; denote the straight line segment path from O to A = (24/3,2) and I'; denote the arc of the circle

a
centred at (0, 0) and radius 4 going counterclockwise from 6 = % tof = g

Observe that the Cartesian equation of the line &)4 isy = L Thenon I

V3

A 4
—d—= = -zdz.
V3 V3 3

2\/§ 4
/ zdz + ydy = / —xdx = 8.
Iy 0 3

On the arc of the circle we may put z = 4 cos 6, y = 4sin f and integrate from 0 = % tof = g Observe
that there

xdx + ydy = xdx +

Hence

xdx + ydy = (cos B)dcos 6 + (sin 0)dsin § = — sin 6 cos #df + sin 6 cos 0dd = 0,

and since the integrand is 0, the integral will be zero.

Assembling these two pieces,

/J:dx+ydy:/ a:d:(:—|—ydy+/ zdz +ydy =8+ 0=28.
T I Iy

Using the parametrisations from the solution of problem ??, we find on I'; that

1 2
z||dx|| = z+/(dx)2 + (dy)?2 = 21\/1 + —dx = —=xdx,
[dx[| = z1/(dz)? + (dy) 3 7

whence
2\/5 2 \f
z||dx|| :/ —uazdx =4V 3.
s/Fl 0 \/§
OnT'y that
z|dx|| = z/(dz)2 + (dy)2? = 16 cos 0V/sin? § + cos? #df = 16 cos 0d6,
whence

/5
/ a:HdXH:/ 16 cos 0d0 = 16sin ~ — 16sin ~ = 4sin — — 8.
T2 w/6 5 6 )

Assembling these we gather that

/x||dx|| :/ x||dx||+/ 2lldx]| = 4v/3 — 8 + 16sin .
r r, Ty 5
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574 The curve lies on the sphere, and to parametrise this curve, we dispose of one of the variables, y say,
fromwherey = 1 — zand 22 4+ 3% + 2% = 1 give

P+ (1-2)?+22=1 = 222-20+22=0

2
— 4(;10— ) +222 =
So we now put
1 +cost sint 1 1 cost
r=—-—4+— z=— =l-o2==-—-—
2T o 2 Y 27 72

We must integrate on the side of the plane that can be viewed from the point (1, 1, 0) (observe that the vector
1
2
1| is normal to the plane). On the zz-plane, 4 (a: — %) + 222 = 1lisan ellipse. To obtain a positive

0

parametrisation we must integrate from ¢ = 27 to ¢t = 0 (this is because when you look at the ellipse from
the point (1, 1, 0) the positive z-axis is to your left, and not your right). Thus

0 .
sint (1 cost
zdzx + zdy +ydz = / —d(7+—)
é‘ Y Y 27 \/i 2 2
+/0 (1+cost>d(l_ cost)
27 2 2 2 2
/ <1 cost) sint
+ —— — |d|l —
27 2 2 \/§
B /0 sint+cost+costsint7 1 a
a4 22 4 2v/2
T

7

593 We parametrise the surface by letting 2 = u,y = v, z = u + v?. Observe that the domain D of ¥ is the
square [0; 1] x [0;2]. Observe that
dz Ady = du A dv,

dy Adz = —du A do,
dz Adz = —2vdu A do,

and so
HdQXH = /2 +4v2du A dw.

The integral becomes

2 1
/ / vV 2 + 4v2dudv
o Jo

() ([

13v2
——

[ o]

b

594 Usingx =rcosf,y =rsinf, 1 <r <2,0 <6 < 2r,thesurface areais

27 2
V2 / / rdrdd = 37V/2.
0 1
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595 We use spherical coordinates, (xz,y, z) = (cos 8 sin ¢, sin 6 sin ¢, cos ¢). Here § € [0; 27] is the latitude

and ¢ € [0; 7] is the longitude. Observe that
dz A dy = sin ¢ cos pdo A d,
dy A dz = cos fsin? ¢pde A d6,

dz A dz = —sin @ sin? ¢de A d6,

and so
HdZ’XH = sin¢dep A df.

/ac2Hd2xH = /27T /7r cos? 0 sin® ¢pdpde
o Jo
47

The integral becomes

b3

?.
596 Putz = u,y =v, 2% = u? + 2 Then

dz = du, dy = dv, zdz = udu + vdv,

whence
dz Ady = duAdo,dy Adz = —Zdu A dv,dz Ade = — > du A du,
z z
and so
|d2x|| = /(dzAdy)?+ (dz Ada)? + (dy A dz)?
2 2
= 1+ # du A dv
z

= 2duAdv.

Hence

/ ZHdQXH = / Vu2 4+ 02 V2 dude = \/i/ozﬂ /01 p* dpdf =
b

u2+v2<1

272
3

597 If the egg has radius R, each slice will have height 2R /n. A slice can be parametrised by 0 < 6 < 27,

d1 < ¢ < o, with
Rcos¢1 — Rcosds = 2R/n.

The area of the part of the surface of the sphere in slice is

2w o2
/ / R?sin ¢d¢df = 27 R?(cos ¢y — cos py) = 4w R?/n.
0 1

This means that each of the n slices has identical area 4w R? /n.

598 We project this plane onto the coordinate axes obtaining

6 3—2’/2 27
/:cydydz = / / (3—y—z/2)ydydz = T
J o Jo

3 [ 6—2z
—/xzdzdm = —/ / 22dzdx = —2—7,
o Jo 2

b
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3 3y 27
/(ac + 2)dzdy = / / (6 —z — 2y)dzdy = 5
0o Jo

)

and hence .
/mydydz — 2%dzdx + (x4 2)dzdy = T
)

603 Evaluating this directly would result in evaluating four path integrals, one for each side of the square.
We will use Green’s Theorem. We have

dw

d(z%y) Adz + d(zy) Ady
= (32%ydz + 23dy) Adz + (ydz + xdy) A dy
= (y—23)dz Ady.

The region M is the area enclosed by the square. The integral equals

2 2
//(y—x?’)dxdy
o Jo

—4.

56 23yde + rydy
c

604 We have
. . . 1 4
O Lupisy=uxa;Lacisy=—x,and Lpcisclearlyy = fgzz: + 3"
O We have
! 5
/ yide +ady = / 22 + z)dz = -
7 2 1 4\ 1 615
2
d dy = —= 7> ——zx|de = ——
/ch T + xdy /1 ( 31‘—1—3 Bx) z 5
0 14
/ yide +xdy = / (2% — z)dx =
CA —2 3

Adding these integrals we find

® We have

0 —2/3+4/3
/(1 —2y)dx A dy / </ (1-— 2y)dy> dx
n -2 —x
1 —2/3+4/3
+/ (/ (1- 2y)dy> dz
0 T
0

_ MW
o 27 27
= -2

608 Observe that
d(z® 4 2y3) A dy = 2zdx A dy.
Hence by the generalised Stokes’ Theorem the integral equals
/2 4 cos 6
2zdz Ady = / 2p? cos Odp A df = 167.
0

—m/2
{(e-2)3+y2<4)
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Todoitdirectly, putx — 2 = 2cost,y = 2sint,0 < ¢ < 27. Then the integral becomes

2 2
/ (24 2cost)? + 16sin® t)d2sint = / (8cost + 16 cos? t
0 0

+8cos®t 4 32 costsin® t)dt
= 16m.

609 At the intersection path

O=a?+y>+22 2@ +y) =2 -y +92+22—4=2% —dy+ 22 =2y —1)> + 22 -2,

which describes an ellipse on the yz-plane. Similarly we get 2(z — 1)? + 22 = 2 on the zz-plane. We have

d(ydz + 2dy + zdz) =dyAdez +dz Ady + dz Adz = —de Ady — dy Adz —dz Adz.

Since dz A dy = 0, by Stokes’ Theorem the integral sought is

- / dydz — / dzdz = —27(V/2).

2(y—1)2+22<2 2(z—1)2422<2

(To evaluate theintegrals you may resort to the fact that the area of the elliptical region

, a?
lis wab).

If we were to evaluate this integral directly, we would set
y=1+cosb, z=+2sinh,z=2—y=1— cosb.
The integral becomes
27
/ (1 + cos0)d(1 — cos ) + v/2sin Od(1 + cos 0) + (1 — cos )d(v/2sin 6)
0

which in turn )
:/ sinf + sinf cos — V2 + V2 cos 0d0 = —27/2.
0

(z — $0)2 + (y — yo)2
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GNU Free Documentation License

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free soft-
ware needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the condi-
tions stated herein. The “Document”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
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B. GNU Free Documentation License

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A“Secondary Section” isanamed appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (orto related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the docu-
ment straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text format-
ters. A copy made in an otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that
can beread and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
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Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by referencein
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
appliestothe Documentare reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Docu-
ment, numbering more than 100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legi-
bly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in addi-
tion. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using pub-
lic has access to download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

Itis requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.
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4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections

2 and 3 above, provided that you release the Modified Version under precisely this License, with

the Modified Version filling the role of the Document, thus licensing distribution and modification

of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

A.

334

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modificationsin the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page.
If there is no section Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given onits Title Page, then add anitem describing
the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the “History” section. You may
omitanetwork location for awork that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.



K. Forany section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the sec-
tion, and preserve in the section all the substance and tone of each of the contributor ac-
knowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Mod-
ified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

0. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option des-
ignate some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other sec-
tion titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties-for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them all
as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
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unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy thatisincluded inthe collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if
the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the origi-
nal version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the re-
quirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
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9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.
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My, M,,125 Jacobi matrix, 69
My, M., M,.,126 locally invertible on S, 88
z,125 partial derivative, 67
7,125 repeated partial derivatives, 70
Z,126 scalar multiplication, 3
6(z,y),125 star-shaped domains, 302
Az,y,2) 121 the tensor product, 255
O(u,v,w)’
fgf,HG a dual bilinear form, 252
;107 acceleration, 60
Jf,m alternating, 239
f—neighborhood, 39 antisymmetric, 239, 241
k-differential form field in R™, 293 antisymmetric tensor, 243
k-th exterior power, 243 antisymmetric tensors, 243
n-forms, 244 apex, 145
n-vectors, 243 area element, 111, 304
1-form, 229
basis, 10

curl, 80 Beta function, 124
derivative of fat a, 64 bivector, 242
differentiable, 64 bivectors, 242
directional derivative of fin the direction of v boundary, 171,179

at the point x, 81 boundary point, 42
directional derivative of fin the direction of v boundary, 42

at the point x, 81 bounded, 179
distance, 6 bounded, 51
divergence, 78
dot product, 5 canonical ordered basis, 4
gradient, 76 center of mass, 125
gradient operator, 76 centroid, 126
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change of variable, 118, 120
charge density, 87
class C1, 75
class C?, 75
class C*°, 75
class C*, 75
clockwise, 171,172
closed, 40, 138, 179
closed surfaces, 200
closure of the dual space, 231
closure, 42
compact, 52
component functions, 56
components, 233
conductivity tensor, 287
cone, 145
conservative force, 155, 161
conservative vector field, 161
continuous at ¢, 50
continuously differentiable, 75
continuously differentiable, 74
contravariant, 234
contravariant basis, 214
converges to the limit, 41
coordinate change, 211
coordinates, 11, 233
curvilinear, 22
cylindrical, 22
polar, 22,122
spherical, 22
correlation, 135
counter clockwise, 171,172
covariance, 135
covariant, 234
covariant basis, 214
covector, 229
curlof F, 79
current density, 87
curve, 137

curvilinear coordinate system, 212

cylinder, 144
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density, 125
derivative, 57
deviator stress, 287
diameter, 51
differentiable, 57
differential form, 154
dilatational, 287
dimension, 10
directrix, 144
distribution function, 129
joint, 131
normal, 130
Divergence Theorem, 310
domain, 43, 55
double integral, 107, 111
polar coordinates, 122
dual space, 230
dummy index, 248

ellipsoid, 124, 148

elliptic paraboloid, 147

even, 33

exact, 301

expected value, 133

exterior, 42

exterior derivative, 294

exterior product, 241, 243
origin of the name, 244

exterior, 42

force, 60

free, 8

free index, 249

fundamental vector product, 179

Gauss, 310

generate, 9

geodesics, 280

gradient field, 160
gravitational constant, 155
Green’s Theorem, 167
Green’s Theorem., 309



helicoid, 25
helix, 56
Helmholtz decomposition, 206, 207
Hodge

Star, 245
homomorphism, 15
hydrostatic, 287
hyperbolic paraboloid, 147
hyperboloid of one sheet, 146, 148
hyperboloid of two sheets, 147
hypercube, 53
hypersurface, 116
hypervolume, 116

improper integral, 114
in a continuous way, 191
independent, 154
inertia tensor, 283
inner product, 5
integral
double, 107, 1M
improper, 114
iterated, 106
multiple, 103
surface, 180, 182, 188
triple, 116
inverse of frestricted to .S, 88
inverse, 88
irrotational, 162
isolated point, 42
isomers, 258
iterated integral, 107
iterated limits of f as (x,y) — (z0,%0), 48

Jacobian, 121
joint distribution, 131

Kelvin-Stokes Theorem, 195

lamina, 125
length, 5

length scales, 213
level curve, 29

Index

limit point, 42

line integral, 153

line integral with respect to arc-length, 157
linear combination, 8
linear function, 229

linear functional, 229
linear homomorphism, 15
linear transformation, 15
linearly dependent, 8
linearly independent, 8
locally invertible, 88

manifold, 149
mass, 125
matrix
transition, 13
matrix representation of the linear map L with

respect to the basis {x; }ic[1:m]> {¥i}ie[1;n) -

16
meridian, 145
mesh size, 104
moment, 125,126
momentum, 60
multilinear map, 233
multiple integral, 103

negative, 4

negatively oriented curve, 167
norm, 5

normal, 194

odd, 33

one-to-one, 87

open, 40

open ball, 39

open box, 39

opposite, 4

ordered basis, 11
orientation, 137
orientation-preserving, 156
orientation-reversing, 156
oriented area, 240
oriented surface, 191
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origin, 4

orthogonal, 11, 214
orthonormal, 11
outward pointing, 191

parametric line, 5
parametrization, 137
parametrized surface, 141,177
path integral of f alongTI'., 299
path-independent, 160
permutation, 33

piecewise C'!, 140

piecewise differentiable, 140
polygonal curve, 43

position vector, 59, 60
positively oriented curve, 167
probability, 129

probability density function, 129

random variable, 129

rank of an (r, s)-tensor, 234

real function of a real variable, 55
regular, 137,178

regular parametrized surface, 143, 178

regular point, 143

regular value, 143
reparametrization, 156

restriction of fto .S, 88

Riemann integrable, 104, 105
Riemann integral, 104, 105
Riemann sum, 104

right hand rule, 199

right-handed coordinate system, 17

saddle, 147

sample space, 129

scalar, 3

scalar field, 29, 55

second moment, 134

simple closed curve, 138

simply connected, 43, 161

simply connected domain, 43
single-term exterior products, 242
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smooth, 75

space of tensors, 234

span, 9

spanning set, 9

spherical spiral, 59

standard normal distribution, 130
star, 245

surface area element, 306
surface integral, 180, 182, 188, 192
surface of revolution., 145
symmetric, 239

tangent “plane”,; 150

tangent space, 150

tangent vector, 57

tensor, 233

tensor field, 267

tensor of type (r, s), 233

tensor product, 235

tied, 8

torus, 182

totally antisymmetric, 243

transition matrix, 13

triple integral, 116
cylindrical coordinates, 123
spherical coordinates, 123

unbounded, 51

uniform density, 125
uniform distribution, 130
uniformly distributed, 129
unit vector, 6

upper unit normal, 187

variance, 134
vector
tangent, 57
vector field, 29, 55
smooth, 167
vector functions, 191
vector space, 4
vector sum, 3
vector-valued function



Index

antiderivative, 60
indefinite integral, 60
vector-valued function of a real variable, 55
vectors, 3, 4
velocity, 60
versor, 6
volume element, 116, 305

wedge product, 241
winding number, 161
work, 153

zenith angle, 22
zero vector, 3
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