Lista 2

Funcionais Lineares, Axioma da Escolha, Base e Dimensão

- 1 Mostre que os números naturais (\mathbb{N}) podem ser vistos como um espaço vetorial sobre \mathbb{Q} . (Dica: use o fato que existe uma bijeção de \mathbb{N} em \mathbb{Q} .
- **2** Para os espaços abaixo, determine se são finito dimensionais e se sim determine a dimensão e uma base para o espaço:
 - a) Os números naturais visto como espaço vetorial sobre os racionais.
 - b) O conjunto de todas as sequências reais.
 - c) O conjunto das sequências reais que satisfazem $a_k = a_{k-1} + a_{k-2}$ para $k \geqslant 3$
 - d) Os números complexos $\mathbb C$ visto como um espaço vetorial sobre $\mathbb C$ e visto como um corpo sobre $\mathbb R$.
 - e) \mathbb{C}^n visto como um espaço vetorial sobre \mathbb{C} e visto como um espaço vetorial sobre \mathbb{R} .
 - f) O conjunto das matrizes $m \times n$ sobre K, $M_{n \times m}(K)$.
 - g) O conjunto das sequências que com apenas um número finito de termos não nulos.
- 3 Dado um corpo F. Um subcorpo K é um subconjunto de F que é corpo quando restringimos as operações de F a K.
 - a) Mostre que F é espaço vetorial sobre K.
 - b) Suponha que L é um subespaço \mathfrak{m} —dimensional sobre F. Suponha que F é um espaço \mathfrak{n} dimensional sobre K. Qual a dimensão de L sobre K?

4 — Calcule a dimensão dos seguintes espaços e determine uma base:

- a) O espaço dos polinômios de grau menor que p em n variáveis
- b) O conjunto dos polinômios homogêneos de grau menor que p em $\mathfrak n$ variáveis.
- c) O conjunto das funções em $F(S), \, |S| < \infty$ que se anulam em todos os pontos de um subconjunto $S_0 \subset S$.
- d) O conjunto das sequências que com apenas um número finito de termos não nulos.

5 — Dado Um conjunto linearmente independente de vetores E de um espaço vetorial V, prove que existe uma base E' de V contendo E. (Axioma da escolha)

- 6 Dado W_1 ⊂ V e seja \mathfrak{B}_1 uma base para W_1 prove que existe uma base \mathfrak{B} para V tal que \mathfrak{B}_1 ⊂ \mathfrak{B} .
- 7 Dado L um espaço vetorial \mathfrak{n} -dimensional e $M\subset L$ um subespaço \mathfrak{m} -dimensional. Prove que existem um número finito de funcionais $f_1,\ldots,f_{\mathfrak{n}-\mathfrak{m}}\varepsilon L^*$ tal que $M=\{l|f_1(l)=\ldots.f_{\mathfrak{n}-\mathfrak{m}}(l)=0\}$.
- 8 Prove que se L é um subespaço de V e dim $(L) = \dim(V) < \infty$, então L = V.
- 9 Prove que o axioma de comutatividade da soma pode ser deduzido dos outros axiomas.
- 10 Prove que em qualquer conjunto de vetores S existe um subconjunto S' linearmente independente tal que $\operatorname{span}(S) = \operatorname{span}(S')$. (Axioma da escolha)
- 11 Pode um funcional linear sobre os complexos assumir apenas valores reais?
- 12 Defina um funcional α em \mathbb{C}^3 tal que $\mathfrak{a}((1,1,1)=0$ e $\alpha(1,i,3)=0$.
- 13 Dado α um funcional linear não-nulo num espaço vetorial V de dimensão n. Prove que $C = \{x : \alpha(x) = 0\}$ é um espaço vetorial. Qual a dimensão de C?
- 14 Dado V espaço vetorial sobre os complexos e seja $\alpha,\beta,\gamma\in V$ linearmente independentes. Prove que $\alpha+\beta,\beta+\gamma$ e $\alpha+\gamma$ são linearmente independentes. Lembrando que uma bandeira é uma sequência estritamente crescente de subespaços encaixantes $L_0\subset L_1\subset\ldots\subset L_n\ldots$, e que uma bandeira é dita maximal em V se $L_0=\{0\}$, $\bigcup L_i=V$ e se nenhum subespaço M puder ser inserido entre L_i e L_{i+1} , ou seja se $L_i\subset M\subset L_{i+1}$ então $M=L_i$ ou $M=L_{i+1}$:
 - a) Prove que se $0=V_0\subsetneq V_1\subsetneq\ldots\subsetneq V_n=W_1$ uma bandeira maximal para W_1 e 0 e $0=L_0\subsetneq L_1\subsetneq\ldots\subsetneq L_m=W_2$ uma bandeira maximal para W_2 mostre que

$$0 \subseteq V_0 \subseteq V_1 \subseteq \ldots \subseteq V_n \subseteq V_n \oplus L_1 \subseteq V_n \oplus L_2 \ldots \subseteq V_n \oplus L_m = W_1 \oplus W_2 = V_1 \oplus V_2 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_4 \oplus V_5 \oplus V_6 \oplus$$

- \acute{e} bandeira maximal para V. Conclua que dimensão da soma direta de espaços vetoriais de dimensão finita tem dimensão finita igual a soma das dimensões.
- b) Seja $0 \subseteq F_0 \subseteq F_1 \subseteq \ldots \subseteq F_n \subseteq \ldots \subset V$ uma bandeira (não necessariamente finita) maximal para V. Prove sem usar lema de Zorn que V possui base.

- 15 Calcule todos os funcionais lineares de \mathbb{Z}^3 . Qual a dimensão do espaço dos funcionais lineares sobre \mathbb{Z}^3 ?[⊯]
- 16 Seja $T \in \mathfrak{L}(V)$, e seja $L \subset V$ o subespaço de V tal que $L = \{v : f(T(v) = 0, \forall f \in V^*\}$. Prove que $L = \ker(T)$.
- 17 Seja T a função de \mathbb{R}^3 em \mathbb{R}^3 definida por:

$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$$

- a) Verifique que T é uma transformação linear
- b) Determine a imagem de T
- c) Determine o posto de T
- 18 Dado $M_{n\times n}(K)$ o espaço vetorial das matrizes $n\times n$ sobre K e seja B uma matriz fixa em $M_{n\times n}(K)$. Se T(A)=AB-BA, prove que T(A) é uma transformação linear de $M_{n\times n}(K)$ em $M_{n\times n}(K)$. Determine a imagem e o posto de T.
- * 19 Mostre que $\mathbb R$ é um espaço vetorial de dimensão infinita sobre $\mathbb Q$.