Lista 4

Álgebra Linear Avançada II

Determinantes

1 — Dados os funcionais lineares $f_1, \ldots, f_r : V \to K$ defina a r – forma alternada $f = f_1 \curlywedge \cdots \curlywedge f_r : E \times \ldots \times E \to K$ definida como $f(v_1, \ldots, v_r) = \det(f_i(v_j))$.

- a) Prove que $f_1 \curlywedge \cdots \curlywedge f_r \neq 0$ se e somente se f_1, \ldots, f_r são L.I.
- b) Qual a relação entre $f_1 \perp \cdots \perp f_r$ e $f_1 \wedge \cdots \wedge f_r$?
- c) Prove que se $\{f_1, \ldots, f_n\}$ é uma base para V^* então os tensores $f_J = f_{j1} \wedge \cdots \wedge f_{jr}$ com $J \in \{(j_1, \ldots, j_r) | j_1 < \cdots < j_n, j_i \in \mathbb{N}\}$ constituem uma base para $\Lambda^r(V)$

2 — Prove que se A é uma matriz triangular superior, isto é, $A = (a_{ij})$ com $a_{ij} = 0$ se j < i, então $\det(A) = \prod_{i=1}^{n} a_{ii}$

- **3** Prove que det(AB) = det(A)det(B)
- **4** Prove que $det(A^t) = det(A)$
- **5** Use o exercício 2 para provar que se A é uma matriz quadrada diagonalizavel com autovalores $\lambda_1, \ldots, \lambda_n$ então $|\det(A)| = |\lambda_1 \cdots \lambda_n|$
- **6** Prove que $\{v_1, \ldots, v_n\}$ são uma base de V se e somente se $\det(A) = 0$, onde A é a matriz cujas linhas são os vetores v_1, \ldots, v_n .
- 7 Prove que para uma matriz em blocos

$$M = \left(\begin{array}{cc} A & B \\ 0 & D \end{array}\right)$$

então det(M)=det(A)det(D).

8 — Use a forma de jordam para mostrar que se $\lambda_1, \ldots, \lambda_n$ são os autovalores de A, com a respectiva multiplicidade então $|\det(A)| = |\lambda_1 \cdots \lambda_n|$.

9 — Se A é invertivel prove que

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right) = \left(\begin{array}{cc} A & 0 \\ C & I \end{array}\right) \left(\begin{array}{cc} I & A^{-1}B \\ 0 & D - \mathrm{CA}^{-1}B \end{array}\right)$$

e use esse fato para mostrar que $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(D-\mathrm{CA}^{-1}\,B).$

10 — Dados $A, B \in M_n(F)$. Prove que se A ou B são invertíveis então as matrizes $A + \alpha B$ são invertiveis exceto para um número finito de α s.

11 — Prove que $\det A_{\rm nn} \otimes B_{\rm mm} = \det (A_{\rm nn})^m \det (B)^n$

12 — Dado V espaço vetorial e g um produto interno (positivo definido). Chama-se gramaniano dos vetores $v_1, \ldots, v_k \in V$ ao número

$$\mathfrak{g}(v_1,\ldots,v_k)=\det(g(v_i,v_j))$$

Prove que:

- a) $\mathfrak{g}(v_1,\ldots,v_k) > 0$, se e somente se, os vetores v_1,\ldots,v_k são L.I.
- b) Se v_1 é perpendicular a $v_2, \dots v_k$ então $\mathfrak{g}(v_1, \dots, v_k) = |v_1|^2 \mathfrak{g}(v_2, \dots, v_k)$
- c) Seja w_1 a projeção ortogonal de v_1 sobre o espaço gerado por $v_2, \dots v_r$ e seja $h_1 = v_1 - w_1$. Prove que

$$\mathfrak{g}(v_1,\ldots v_r)=|h_1|^2\mathfrak{g}(v_2,\ldots,v_k)$$

d) Dado $P[v_1,\ldots,v_r]$ o paralelepipedo r—dimensional gerado por $v_1,\ldots,v_r\in V$. Definimos o r—volume do paralelepidedo por indução: se r=1 então o volume é igual a $|v_1|$. Supondo conhecido o volume de um paralelepipedo r-1 dimensional define-se

$$\operatorname{vol} P[v_1, \dots, v_r] = |h_1| = \operatorname{vol} P[v_2, \dots, v_r].$$

e)
Prove que vol
$$P[v_1, \dots, v_r] = \sqrt{\mathfrak{g}(v_1, \dots, v_k)} =$$

$$\sqrt{\det(g(v_i,v_j))}$$

f) Prove que se $\dim(V) = n$, e A é a matriz cujas colunas são os vetores v_1, \ldots, v_n . Prove que

$$\mathfrak{g}(v_1,\ldots,v_n) = (\det A)^2$$

g) Conclua do item anterior que o volume do paralelepide do gerado por v_1, \ldots, v_n tem volume igual a $|\det A|$.