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Preface

These lecture notes are written with four principles in mind:

1. You learn by doing, not by watching. Because of this, many of the routine or
technical aspects of proofs and examples have been left as exercises, which are sprinkled
through the text. Most of these really aren’t that hard; indeed, it often actually easier to
figure them out yourself than to pick through the details of someone else’s explanation.
It is also more fun. And it is definitely a better way to learn the material. I suggest you
do as many of these exercises as you can. Don’t cheat yourself.

2. Pictures often communicate better than words. Analysis is a geometrically and
physically motivated subject. Algebraic formulae are just a language used to communicate
visual/physical ideas in lieu of pictures, and they generally make a poor substitute. I’ve
included as many pictures as possible, and I suggest that you look at the pictures before
trying to figure out the formulae; often, once you understand the picture, the formula
becomes transparent.

3. Learning proceeds from the concrete to the abstract. Thus, I begin each dis-
cussion with specific examples and only later proceed to a more general/abstract idea.
This introduces a lot of “redundancy” into the text, in the sense that later formulations
subsume the earlier ones. So the exposition is not as “efficient” as it could be. This is a
good thing. Efficiency makes for good reference books, but lousy texts.

4. Mathematics is a Lattice, not a Ladder. Mathematical knowledge forms a heirarchy:
mastery of simpler concepts is necessary to learn advanced material. But this heirarchy
is not a linearly ordered ‘ladder’; it is a lattice, like a ramified network of ivy ascending a
brick wall.

To learn an advanced topic appearing late in this book, it is usually only necessary to
understand some previous material. Thus, each section heading is followed by a list of
prerequisites: the previous sections which have the material logically necessary for that
section. Some sections also list recommended material: this is not logically necessary, but
may be intuitively helpful.

If you are interested in a topic on page 300, you must first read the prerequisites to that
topic (and before that, the prerequisites to the prerequisites, etc.). But you need not read
the entire previous 300 pages. By utilizing this lattice of prerequisites, you can define
many different itineraries of self-study.
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Card(S)=5

Length(S)=1.1

Area(S)=2.11

Volume(S)=6.23 Frequency(S)=1/12

Probability(S)=1/6

Figure 1.1: The notions of cardinality, length, area, volume, frequency, and probability are all
examples of measures.

1 Basic Ideas

1.1 Preliminaries

1.1(a) The concept of size

Let X be a set, with subsets U,V ⊂ X Suppose we want to comparate the ‘sizes’ of U and V.
Perhaps we want a rigorous mathematical way to say that U is ‘bigger’ than V. We might also
want this concept of size to have an additive property; if U and V are disjoint, we might want
to speak of the ‘size’ of U tV as being the sum of the sizes of U and V separately.

Many notions of ‘quantity’ behave in this manner.

Cardinality, for discrete sets. For example, the population of a region or the number of
marbles in a bag.

Length, for one-dimensional objects like ropes or roads.

Area, for two-dimensional surfaces like meadows or carpets.

Volume, for three-dimensional regions: the capacity of a bottle, or a quantity of wine.

Mass, for quantities of matter.

Charge, for electrostatic objects.

Average Frequency —ie. how often, on average, a certain event occurs. Such frequencies
are additive. For example, the number of days during the year when it is overcast can be
written as a sum of:

• The number of days it is overcast and raining.

• The number of days it is overcast but not raining.

Probability: We often speak of the odds of certain events occuring; these are also additive.
For example, in a game of dice, the chance of rolling less than four is a sum of:



2 CHAPTER 1. BASIC IDEAS

X X X X

(A) (B)Closure under countable union Closure under countable intersection

Figure 1.2: (A) A sigma algebra is closed under countable unions; (B) A sigma algebra is
closed under countable intersections.

• The chance of rolling a one.

• The chance of rolling a two.

• The chance of rolling a three.

A measure is mathematical device which reflects this notion of ‘quantity’: each subset
U ⊂ X, is assigned a positive real number µ[U] which reflects the ‘size’ of U. Because of this,
one would expect that µ would be a function

µ : P(X)−→R

where P(X) := {S ⊂ X} is the power set of X. Unfortunately, it is usually impossible to
define a satisfactory notion of quantity for all subsets of X; instead, we must isolate a smaller
domain, where the measure will be well-defined. Subsets which are elements of this smaller
domain are called measurable, and they become our domain of discourse. Subsets not in the
domain are called non-measurable, and we try to ignore their existence whenever possible.

To understand this, suppose that, like the ancient Greeks, you wanted to represent all real
numbers as fractions of integers. Of course, we now know that only rational numbers can be
accurately represented in this way; irrational numbers are ‘non-measurable’ in terms of integer
fractions. In a sense, the set of rational numbers is ‘too small’ to completely describe all real
numbers. In the same way, the set of real numbers is too small to completely rank all subsets
of X; nonmeasurable sets are, for us, somewhat analogous to what irrational numbers were for
the ancient Greeks.

Hence, before we can define a measure, we must describe a suitable domain for it. This
domain will be a collection of subsets of the space X, called a sigma-algebra.

1.1(b) Sigma Algebras

Definition 1 Sigma-algebra, Measurable Space

Let X be a set. A sigma algebra over X is a collection X of subsets of X with the following
properties:
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1. X is closed under countable unions. In other words, if U1,U2, . . ., are in X , then their

union
∞
⋃

n=1

Un is also in X (Figure 1.2A).

2. X is closed under countable intersections. If U1,U2, . . ., are in X , then their inter-

section
∞
⋂

n=1

Un is also in X (Figure 1.2B).

3. X is closed under complementation; if U is in X , then U{ = (X \U) is also in X .

A measurable space is an ordered pair (X,X ), where X is a set, and X is a sigma-algebra
on X.

Example 2: Trivial Sigma Algebras

For any set X,

1. The collection {∅,X} is a sigma-algebra. 2. The power set P(X) is a sigma-algebra.

The first of these is clearly far too small to do anything useful; the second is generally too large
to be manageable.

One way to generate a ‘manageable’ sigma-algebra is to start with some collection M of
‘manageable’ sets, and then find the smallest sigma-algebra which contains all elements ofM.
This is called the sigma-algebra generated by M, and sometimes denoted “σ(M)”.

Example 3: (co)Countable sets

The most conservative collection of ‘manageable’ sets is

M := {{x} ; x ∈ X},

the singleton subsets of X. Then C = σ(M) is the sigma-algebra of countable and co-
countable sets. That is,

C := {C ⊂ X ; either C is countable, or X \C is countable}.

Exercise 1 Verify this.

Exercise 2 Verify: If X itself is finite or countable, then C = P(X).

Example 4: Partition Algebras

Let X be a set. Figure 1.3 shows a partition of X: a collection P = {P1,P2, . . . ,PN}

of disjoint subsets, such that X =
N
⊔

n=1

Pn. The sets P1, . . .PN are called the atoms of the

partition. Figure 1.4 shows the sigma-algebra generated by P: the collection of all possible
unions of P-atoms:

σ(P) = {Pn1 tPn2 t . . . tPnk ; n1, n2, . . . , nk ∈ [1..N ]}

Thus, if card [P] = N , then card [σ(P)] = 2N .
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X

P P
P

P

P

P

P
P

P

P
P

P

P
P

1 2
3

4

5
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8
9

10
11

12

13

14

Figure 1.3: P is a partition of X.

P P
P P
1 2

3 4

Figure 1.4: The sigma-algebra generated by a partition: Partition the square into four
smaller squares, so P = {P1,P2,P3,P4}. The corresponding sigma-algebra contains 16 ele-
ments.

Figure 1.5: Partition Q refines P if every element of P is a union of elements in Q.
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IfQ is another partition, we say thatQ refines P if, for every P ∈ P, there are Q1, . . . ,QN ∈

Q so that P =
N
⊔

n=1

QP ; see Figure 1.5. We then write “P ≺ Q” It follows (Exercise 3 ) that

(

P ≺ Q
)

⇐⇒
(

σ(P) ⊂ σ(Q)
)

Example 5: Borel Sigma-algebra of R
Let X = R be the real numbers, and let M be the set of all open intervals in R:

M = {(a, b) ; −∞ ≤ a < b ≤ ∞}

Then the sigma algebra B = σ(M) contains all open subsets of R, all closed subsets, all
countable intersections of open subsets, countable unions of closed subsets, etc. For example,
B contains, as elements, the set Z of integers, the set Q of rationals, and the set 6Q of
irrationals. B is called the Borel sigma algebra of R.

Exercise 4 Verify these claims about the contents of B.

Exercise 5 Show that B is also generated by any of the following collections of subsets:

M = {[a, b] ; −∞ ≤ a < b ≤ ∞} (all closed intervals)

M = {[a, b) ; −∞ ≤ a < b ≤ ∞} (right-open intervals)

M = {(∞, b] ; −∞ < b ≤ ∞} (half-infinite closed intervals)

M = {[a, b) ; −∞ < a < b <∞} (strictly finite intervals)

Example 6: Borel Sigma-algebras

Let X be any topological space, and let M be the set of all open subsets of X. The sigma
algebra σ(M) is the Borel sigma algebra of X, and denote B(X). It contains all open
sets and closed subsets of X, all countable intersections of open sets (called Gδ sets), all
countable unions of closed sets (called Fσ sets), etc. For example, X is Hausdorff, then
B(X) contains all countable and cocountable sets.

Example 7: Product Sigma algebras

Suppose (X,X ) and (Y,Y) are two measurable spaces, and consider the Cartesian product
X×Y. Let

M = {U×V ; U ∈ X , V ∈ Y} (see Figure 1.6A)

be the set of all ‘rectangles’ in X×Y. Then σ(M) is called the product sigma-algebra,
and denoted X ⊗Y . Thus, X ⊗Y contains all rectangles, all countable unions of rectangles,
all countable intersections of unions, etc. (see Figure 1.6B).

For example: if X and Y are topological spaces with Borel sigma algebras X and Y , and we
endow X×Y with the product topology, then X ⊗ Y is the Borel sigma algebra of X×Y.
(Exercise 6 )
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1
X

1
XX

2 X
2

x

1
U

U
2

(A) (B)

Figure 1.6: The product sigma-algebra.

We will discuss the product sigma algebra further in §2.1(b), where we construct the prod-
uct measure; see Examples (59b) and (61b).

Example 8: Cylinder Sigma algebras

Suppose (Xλ,Xλ) be measurable spaces for all λ ∈ Λ, where Λ is some (possibly uncountably

infinite) indexing set. Consider the Cartesian product X =
∏

λ∈Λ

Xλ. Let

M =

{

∏

λ∈Λ

Uλ ; ∀λ ∈ Λ, Uλ ∈ Xλ, and Uλ = Xλ for all but finitely many λ

}

.

Such subsets are called cylinder sets in X, and σ(M) is called the cylinder sigma-algebra,

and denoted
⊗

λ∈Λ

Xλ.

If Xλ are topological spaces with Borel sigma algebras Xλ , and we endow X with the

(Tychonoff) product topology, then
⊗

λ∈Λ

Xλ is the Borel sigma algebra of X.

Exercise 7 Verify this.

1.1(c) Measures

Prerequisites: §1.1(b) Recommended: §1.1(a)

Definition 9 Measure, Measure Space

Let (X,X ) be a measurable space. A measure on X is a map µ : X−→[0,∞] which is
countably additive, in the sense that, if Y1,Y2,Y3, . . . are all elements of X , and are disjoint,
then:

µ

[

∞
⊔

n=1

Yn

]

=
∞
∑

n=1

µ [Yn]
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A measure space is an ordered triple (X,X , µ), where X is a set, X is a sigma-algebra
and µ is a measure on X .

Thus, µ assigns a ‘size’ to the X -measurable subsets of X. Unfortunately, a rigorous con-
struction of a nontrivial example of a measure is quite technically complicated. Therefore, we
will first provide a nonrigorous overview of the most important sorts of measures.

〈i〉 The Counting Measure: The counting measure assigns, to any set, the cardinality
of that set:

µ [S] := card [S] .

Of course, the counting measure of any infinite set is simply “∞”; the counting measure
provides no means of distinguishing between ‘large’ infinite sets and small ones. Thus, it is only
really very useful in finite measure spaces.

〈ii〉 Finite Measure spaces: Suppose X is a finite set, and X = P(X). Then a measure µ
on X is entirely defined by some function f : X−→[0,∞]; for any subset {x1, x2, . . . , xN}, we
then define

µ{x1, x2, . . . , xN} =
N
∑

n=1

f(xn)

Exercise 8 Show that every measure on X arises in this manner.

〈iii〉 Discrete Measures: If (X,X , µ) is a measure space, then an atom of µ is a subset
A ∈ X such that:

1. µ[A] = A > 0;

2. For any B ⊂ A, either µ[B] = A or µ[B] = 0.

For example, in the finite measure space above, the singleton set {xn} is an atom if f(xn) > 0.
The measure space (X,X , µ) is called discrete if we can write:

X = Z t
∞
⊔

n=1

An

where µ[Z] = 0 and where {An}∞n=1 is a collection of atoms.

Example 10:

(a) The set Z, endowed with the counting measure, is discrete.

(b) Any finite measure space is discrete.

(c) If X is a countable set and µ is any measure, then (X,X , µ) must be discrete (Exercise 9
).



8 CHAPTER 1. BASIC IDEAS

U

v

U+v

Figure 1.7: The Haar Measure: The Haar measure of U is the same as that of U + ~v

〈iv〉 The Lebesgue measure: The Lebesgue Measure on Rn is the model of “length”
(when n = 1), “area” (when n = 2), “volume” (when n = 3), etc. We will construct this measure
in §2.1. For the most part, your geometric intuitions about lengths and volumes suffice to
understand the Lebesgue measure, but certain ‘pathological’ subsets can have counterintuitive
properties.

〈v〉 Haar Measures: The Lebesgue measure has the extremely important property of trans-
lation invariance; that is, for any set U ⊂ Rn, and any element ~v ∈ Rn, we have

µ [U] = µ [U + ~v] .

(see Figure 1.7.)
We can generalise this property to any topological group, G. Let G have Borel sigma-algebra

B, and suppose η is a measure on B so that, for any B ∈ B, and g ∈ G,

η [B.g] = η [B] .

This is called right translation invariance1. If G is locally compact and Hausdorff, then
there is a measure η satisfying this property, and η is unique (up to multiplication by some
constant, which can be thought of as a choice of ‘scale’). We call η the right Haar measure
on G.

Now consider left-translation invariance: For any g ∈ G and B ∈ B,

η [g.B] = η [B] .

Again, there is a unique measure with this property; the left Haar measure on G.
If G is abelian, then left-invariance and right-invariance are equivalent, and therefore, the

two Haar measures agree. If G is nonabelian, however, the two measures may disagree. When
the left- and right- Haar measures are equal, G is called unimodular.

Example 11:

1Remember: G may not be abelian, so left- and right- multiplication may behave differently.
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(A) As we attempt to cover the curve with balls of
smaller and smaller radius, we achieve a better and
better approximation of its length. Note that the num-
ber of balls of radius R required for a covering grows
approximately at a rate of 1

R . Thus, the Hausdorff
dimension of the curve is 1.

(B) As we attempt to cover the blob with balls of
smaller and smaller radius, we achieve a better and
better approximation of its area. Note that the num-
ber of balls of radius R required for a covering grows
approximately at a rate of 1

R2 . Thus, the Hausdorff
dimension of the blob is 2.

Figure 1.8: The Hausdorff measure.

(a) Let G be a finite group, of cardinality G. Define η{g} = 1/G for all g ∈ G. Then η is a
Haar measure on G, such that η[G] = 1 (Exercise 10 ).

(b) If G = Z, then the Haar measure is just the counting measure (Exercise 11 ).

(c) Suppose G = Rn, treated as a topological group under addition. Then the Haar measure
of Rn is just the Lebesgue measure.

(d) Suppose G = S1 = {z ∈ C ; |z| = 1}, treated as a topological group under complex
multiplication. The Haar measure on S1 is just the natural measure of arc-length on a
circle.

We will formally construct the Haar measure in §2.1(c) ( Proposition 66 part 2), and discuss
its properties in §??.

〈vi〉 Hausdorff Measure: The Lebesgue measure is a special case of another kind of mea-
sure. Instead of treating Rn as a topological group, regard Rn as a metric space. On any metric
space, there is a natural measure called the Hausdorff measure.

Heuristically, the Hausdorff measure of a set U is determined by counting the number of
open balls of small radius needed to cover U. The more balls we need, the larger U must be.



10 CHAPTER 1. BASIC IDEAS

However, for any nonzero radius R, a covering with balls of size R produces only an approximate
measure of the size of U, because any features of U which are much smaller than R are not
‘detected’ by such a covering. The Hausdorff measure is determined by looking at the limit of
the number of balls needed, as R goes to zero. (see Figure 1.8(A))

It is possible to define a Hausdorff measure µd for any dimension d ∈ (0,∞). For example:
the Lebesgue measure on Rn is a Hausdorff measure of dimension n. Note, that the dimension
parameter d is allowed to take on non-integer values.

The dimension d describes how rapidly the measure of a ball of radius ε grows as a function
of ε; we expect that, for any point x in our space,

µ [B(x, ε)] ∼ εd.

For any metric space X, there is a unique choice of dimension d0 that yields a nontrivial
Hausdorff dimension. For any value of d > d0, the measure µd will assign every set measure
zero, and for any value of d < d0, the measure µd will assign every open set infinite measure.

The unique value d0 is called the Hausdorff Dimension of the space X, and carries
important information about the geometry of X. For example: the Hausdorff measure of Rn
is n. Hence, if we tried to measure the ‘volume’ of subsets of R2, we would expect to get the
value zero. Conversely, if we tried to measure the ‘area’ of a nontrivial subset of R3, the only
sensible value to expect would be ∞. (see Figure 1.8 on the page before(B)).

We can construct a Haar measure on any subset U of Rn, by treating U as a metric
space under the restriction of the natural metric on Rn. For example: if U is an embedded
k-dimensional manifold, then the Hausdorff dimension of U is, k. However, there are also
‘pathological’ subsets of Rn which possess non-integer Hausdorff dimension. Benoit Mandelbrot
has coined the term fractal to describe such strange objects, and the Hausdorff dimension is
only one of many fractal dimensions which are used to characterise these objects.

We will formally construct the Hausdorff measure in §2.1(c) (Proposition 66 part 1), and
discuss its properties in §??.

〈vii〉 Stieltjes Measures: If we see R as a group, then the Lebesgue measure is the Haar
measure; if we see R as a metric space, then the Lebesgue measure arises as a Hausdorff
measure. If we instead treat R as an ordered set, then the Lebesgue measure arises as a
particular kind of Stieltjes measure.

One way to imagine an Stieltjes measure is with an analogy from commerce. Suppose
you wanted to determine the net profit made by a company during the time interval between
January 5, 1998, and March 27, 2005. One simple way to do this would be to simply compare
the net worth of the company on these two successive dates; the net profit of the company
would simply be the difference between its net worth on March 27, 2005 and its net worth on
January 5, 1998.

If f : R−→R is the function describing the net worth of the company over time, then f
is a continuous, nondecreasing function2. The net profit over any time interval (a, b] is thus

2Assuming the company is profitable!
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U

U

X

µ[  ]

R f

Figure 1.9: Stieltjes measures: The measure of the set U is the amount of height “accumu-
lated” by f as we move from one end of U to the other.

f(b)− f(a); this recipe defines a measure on R.
More generally, given an ordered set (X, <), we can define a measure as follows. First we

define our sigma-algebra X to be the sigma-algebra generated by all left-open intervals of
the form (a, b], where, for any a and b in X,

(a, b] := {x ∈ X ; a < x ≤ b}.

Observe that, if X = R with the usual linear ordering, then this X is just the usual Borel
sigma-algebra from Example 5 on page 5.

Now suppose that f : X−→R is a right-continuous, nondecreasing function3 Define the
measure of any interval (a, b] to be simply the difference between the value of f at the two
endpoints a and b:

µf (a, b] := f(b)− f(a)

(see Figure 1.9)
We then extend this measure to the rest of the elements of X by approximating them with

disjoint unions of left-open intervals.
We call µf a Stieltjes measure, and call f the accumulation function or cumulative

distribution of µf . Under suitable conditions, every measure on (X,X ) can be generated in
this way. Starting with an arbitrary measure µ, find a “zero point” x0 ∈ X, so that,

• µ(x0, x] is finite for all x > x0.

• µ(x, x0] is finite for all x < x0.

Then define the function f : X−→R by:

f(x) :=

{

µ(x0, x] if x > x0

−µ(x, x0] if x < x0

3That is: if x < y, then f(x) ≤ f(y), and sup
x<y

f(x) = f(y).
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U

X

K

B
X

B

Outer regularity Inner regularity

Figure 1.10: (A) Outer regularity: The measure of B is well-approximated by a slightly larger
open set U. (B) Inner regularity: The measure of B is well-approximated by a slightly smaller
compact set K.

For example, the Lebesgue Measure on R is obtained from accumulation function

f : R 3 x 7→ x ∈ R.

We will formally construct the Stieltjes measure in §2.1(b), and discuss its properties in
§2.2.

〈viii〉 Radon Measures: The Lebesgue measure, the Haar measure, the Hausdorff measure,
and accumulation measures are all measures defined on the Borel sigma-algebras of topological
spaces, and are examples of Radon Measures. This means that, any measurable subset (no
matter how pathological) can be well-approximated from above by slightly larger open sets
containing Y, and approximated from below by slightly smaller compact sets contained within
Y.

Formally, if X is a topological space with Borel sigma algebra X , then µ is a Radon
measure if it has two properties:

Outer regularity: For any B ⊂ B, and any ε > 0, there is an open set U ⊃ B so that
µ[U \B] < ε.

Inner regularity: For any B ⊂ B, and any ε > 0, there is a compact set K ⊂ B so that
µ[B \K] < ε.

Thus, we can understand the behaviour of µ by understanding how µ acts on ‘nice’ subsets
of X. For example, we can determine an accumulation measure from its values on half-open
intervals.

If µ is a Radon measure on X, then let X0 ⊂ X be the maximal open subset of X of measure
zero. Formally:

X0 =
⋃

open U⊂X
µ[U]=0

U
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X

f

[0,oo)

U

Uµ[  ]

Figure 1.11: Density Functions: The measure of U can be thought of as the ‘area under the
curve’ of the function f in the region over U.

The support of µ is then the set supp [µ] = X \X0; thus, supp [µ] is closed, and µ[U] > 0 for
any open U ⊂ supp [µ]. If supp [µ] = X, then we say µ has full support. For example

1. The Lebesgue measure has full support on R.

2. If G is a topological group, then any (nonzero) Haar measure has full support (Exercise 12
).

3. Let µ be the measure on R such that µ{n} = 1 for any n ∈ Z, but µ(n, n+ 1) = 0. Then
supp [µ] = Z, so that µ does not have full support on R.

〈ix〉 Density Functions: Recall the commercial analogy we used to illustrate accumulation
measures. Suppose, once again, that you wanted to determine the net profit made by a company
during the time interval between January 5, 1998, and March 27, 2005. The ‘accumulation
measure’ method for doing this would be to subtract the net worth of the company on these
two successive dates. Another approach would be to add up the company’s daily net profits
on each of the 2638 days between these two successive dates; the total amount would then be
the net profit over the entire time interval. The mathematical model of this approach is the
density function.

Let ρ : Rn−→[0,∞) be a positive, continuous4 function on Rn. For any B ∈ B(Rn), define

µρ(B) :=

∫

B

ρ (see Figure 1.11)

Then µρ is a measure. We call ρ the density function for µ. If we ρ describes the density
of the distribution of matter in physical space, then µρ measures the mass contained within

4Actually, we only need ρ to be integrable. We will formally define ‘integrable’ in §?? it means what you
think it means.
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X

Y

Figure 1.12: Probability Measures: X is the ‘set of all possible worlds’. Y ⊂ X is the set of
all worlds where it is raining in Toronto.

any region of space. Alternately, if ρ describes charge density (ie. the physical distribution of
charged particles), then µρ measures the charge contained in a region of space.

It is important not to get density functions confused with accumulation functions: they
determine measures in very different ways. Indeed, the Fundamental Theorem of Calculus
basically says that a density functions are the ‘derivatives’ of an accumulation functions (see
Theorem 74 on page 57).

〈x〉 Probability Measures: A measure µ on X is a probability measure if µ[X] = 1 —ie.
the ‘total mass’ of the space is 1. We say that (X,X , µ) is a probability space.

Imagine that X is the space of possible states of some “universe” U . For example, in Figure
1.12, U is the weather over Toronto; thus, X is the set of all possible weather conditions. The
elements of the sigma-algebra X are called events; each event corresponds to some assertion
about U . For example, in Figure 1.12, the assertion “It is raining in Toronto” corresponds to
the event Y ⊂ X of all states in X where it is, in fact, raining in the Toronto of the universe
U . The measure µ[Y] is then the probability of this event being true (ie. the probability that
it is, in fact, raining in Toronto).

Example 12:

(a) Dice: Imagine a six-sided die. In this case, the X = {1, 2, 3, 4, 5, 6}, and X = P(X). The
probability measure µ is completely determined by the values of µ{1}, µ{2}, . . . , µ{6}.
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For example, suppose:

µ{1} = 1/12 µ{4} = 1/6
µ{2} = 1/12 µ{5} = 1/6
µ{3} = 1/3 µ{6} = 1/6

Then the probability of rolling a 2 or a 3 is µ{2, 3} = 1/12 + 1/3 = 5/12.

(b) Urns: Imagine a giant clay ‘urn’ full of 10 000 balls of various colours. You reach in and
grab a ball randomly. What is the probability of getting a ball of a particular colour?

In this case, X is the set of balls. If we label the balls with numbers, then we can write
X = {1, 2, 3, . . . , 10 000}. Again, X = P(X). Now suppose that the balls come in colours
red, green, blue, and purple. For simplicity, let

R = {1, 2, 3, . . . , 500} be the set of all red balls;
G = {501, 502, 503, . . . , 1500} be the set of all green balls;
B = {1501, 1502, 1503, . . . , 3000} be the set of all blue balls;
P = {3001, 3002, 3003, . . . , 10 00} be the set of all purple balls;

Thus (assuming the urn is well-mixed and all balls are equally probable), the probability
of getting a red ball is

µ[R] =
500

10000
= 0.05

while the probability of getting a green ball or a purple ball is

µ[G tP] = µ[G] + µ[P] =
1000

10000
+

7000

10000
= 0.1 + 0.7 = 0.8

(c) The unit interval: Let I = [0, 1] be the unit interval, with Borel sigma algebra I, and
let λ be the Lebesgue measure. Then λ(I) = 1, so that (I, I, λ) is a probability space.

(d) The Gauss-Weierstrass distribution: Define g : R−→(0,∞) by

g(x) =
1√
2π

exp

(

−x2

2

)

and let µ be the probability measure on R with density f . In other words, for any

measurable U ⊂ R, µ[U] =

∫

U

g(x) dx. This is called the Gaussian or standard

normal distribution.
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〈xi〉 Stochastic Processes: A stochastic process is a particular kind of probability measure,
which represents a system randomly evolving in time.

Imagine S is some complex system, evolving randomly. For example, S might be a die
being repeatedly rolled, or a publically traded stock, a weather system. Let X be the set of all
possible states of the system S, and let T be a set representing time. For example:

• If S is a rolling die, then X = {1, 2, 3, 4, 5, 6}, and T = N indexes the successive dice rolls.

• If S is a publically traded stock, then its state is its price. Thus, X = R. Assume trading
occurs continuously when the market is open, and let each trading ‘day’ have length c < 1.

Then one representation of ‘market time’ is: T =
∞
⊔

n=1

[n, n+ c].

• If S is a weather system, then the ‘state’ of S can perhaps be described by a large array
of numbers x = [x1, x2, . . . , xn] representing the temperature, pressure, humidity, etc. at
each point in space. Thus, X = Rn. Since the weather evolves continuously, T = R.

We represent the (random) evolution of S by assigning a probability to every possible history
of S. A history is an assignment of a state (in X) to every moment in time (i.e. T); in other
words, it is a function f : T−→X. The set of all possible histories is thus the space H = XT.

The sigma-algebra on H is usually a cylinder algebra of the type defined in Example 8.

Suppose that X has sigma-algebra X ; then we give H the sigma-algebra H =
⊗

t∈T

Xt. An event

—an element of H —thus corresponds to a cylinder set, a countable union of cylinder sets, etc.
Suppose, for all t ∈ T, that Ut ∈ X ; with Ut = X for all but finitely many t. The cylinder set

U =
∏

t∈T

Ut thus corresponds to the assertion, “For every t ∈ T, at time t, the state of S was

inside Ut.” A probability measure on (H,H) is then a way of assigning probabilities to such
assertions.

Example 13:

Suppose that S was a (fair) six-sided die. Then X = {1, 2, . . . , 6} and T = N. Thus,
H = {1, 2, . . . , 6}N is the set of all possible infinite sequences x = [x1, x2, x3, . . .] of
elements xn ∈ {1, 2, . . . , 6}. Such a sequence represents a record of an infinite succession of
dice throws. The sigma algebra H is generated by all cylinder sets of the form:

〈y1, y2, . . . , yN〉 =
{

x ∈ {1, 2, . . . , 6}N ; x1 = y1, . . . , xN = yN
}

where N ∈ N and y1, y2, . . . , yN ∈ {1, 2, . . . , 6} are constants. For example,

〈3, 6, 2, 1〉 =
{

x ∈ {1, 2, . . . , 6}N ; x1 = 3, x2 = 6, x3 = 2, x4 = 1
}

This event corresponds to the assertion, “The first time, you roll a three; the next time; a
six, the third time, a two; and the fourth time, a one”.
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Assuming the die is fair, this event should have probability
1

64
=

1

1296
. More generally, for

any y1, y2, . . . , yN ∈ {1, 2, . . . , 6}, we should have:

µ〈y1, y2, . . . , yN〉 =
1

6N

If the probabilities deviate from these values, we conclude the dice are loaded.

We will discuss the construction of stochastic processes in §??

1.2 Basic Properties and Constructions

Prerequisites: §1.1(c)

1.2(a) Continuity/Monotonicity Properties

Throughout this section, let (X,X , µ) be a measure space.

Lemma 14 If A ⊂ B ⊂ X are measurable, then µ[A] ≤ µ[B].

Proof: Let C = B\A; then C is also measurable, and µ[B] = µ[AtC] = µ[A]+µ[C] ≥ µ[A].
2

Proposition 15 Any measure µ has the following properties:

Subadditivity: If Un ∈ X for all n ∈ N, then µ

[

∞
⋃

n=1

Un

]

≤
∞
∑

n=1

µ[Un].

Lower-Continuity: If U1 ⊂ U2 ⊂ . . ., then µ

[

∞
⋃

n=1

Un

]

= lim
n→∞

µ[Un] = sup
n∈N

µ[Un].

Upper-Continuity: If U1 ⊃ U2 ⊃ . . ., then µ

[

∞
⋂

n=1

Un

]

= lim
n→∞

µ[Un] = inf
n∈N

µ[Un].

Proof: (1) For all N ∈ N, define VN =
N
⋃

n=1

Un. Then V1 ⊂ V2 ⊂ . . . , and
∞
⋃

n=1

Un =
∞
⋃

n=1

Vn,

so (1) follows from (2).
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K3

K4
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Figure 1.13: The Cantor set

(2) Define ∆1 = U1, and for all n > 1 defined ∆n = Un \ Un−1. Then the ∆n are disjoint,

and for any N ∈ N, Un =
N
⊔

n=1

∆n, while
∞
⋃

n=1

Un =
∞
⊔

n=1

∆n. Thus

µ

[

∞
⋃

n=1

Un

]

= µ

[

∞
⊔

n=1

∆n

]

=
∞
∑

n=1

µ [∆n] = lim
N→∞

N
∑

n=1

µ [∆n] = lim
N→∞

µ

[

N
⊔

n=1

∆n

]

= lim
N→∞

µ [Un]

(3) Exercise 13 2

1.2(b) Sets of Measure Zero

Let (X,X , µ) be a measure space. A set of measure zero is a subset Z ⊂ X so that µ(Z) = 0.

Example 16:

(a) Finite & Countable sets: If X = R and µ is the Lebesgue measure, then any finite or
countable set has measure zero. In particular, the integers Z and the rational numbers Q
have measure zero. However, the irrational numbers 6Q are not of measure zero.

Exercise 14 Verify these claims

(b) The Cantor Set: Any real number α ∈ [0, 1] has a unique5 trinary representation

0.a1a2a3a4 . . . so that α =
∞
∑

n=0

an
3n

. The Cantor set is defined (see Figure 1.13):

K = {α ∈ [0, 1] ; an = 0 or 2, for all n ∈ N}

This set is measurable and has measure zero.

Exercise 15 Verify this as follows:

5Well, almost unique. If α = 0.a1a2a3 . . . an−1an000 . . ., then we could also write α =
0.a1a2a3 . . . an−1bn2222 . . ., where bn = an − 1. This is analogous to the fact that 0.19999 . . . = 0.2 in
decimal notation.
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Let K0 = [0, 1]. Define I1 =
(

1
3
,
2
3

)

, and let K1 = K0\I1. Next let I2 =
(

1
9
,
2
9

)

t
(

7
9
,
8
9

)

,

and let K1 = K1 \ I2. Proceed inductively, constructing Kn+1 by deleting the ‘middle thirds’

from each of the 2n intervals making up Kn. Finally, define K∞ =
∞
⋂

n=1

Kn. Then verify:

1. Since K∞ is a countable intersection of nested closed sets, it is closed and nonempty. In
particular, it is measurable.

2. K∞ = K, as defined above.

3. µ(Kn+1) =
2
3
µ(Kn). Thus, µ(K∞) = lim

n→∞

(

2
3

)n

= 0.

(c) Submanifolds: If X = Rn and µ is the Lebesgue measure, then any submanifold of
dimension less than n has measure zero. For example, curves in R2 have measure zero,
and surfaces in R3 have measure zero.

(d) Let X = R and let f : R−→R be a nondecreasing function, which we regard as the
accumulation function for some measure. Then an interval (a, b] has measure zero if and
only if f is constant over (a, b], so that f(b) = lim

x↘a
f(x) (Exercise 16 ).

(e) Let X = R and let ρ : R−→[0,∞) be a continuous, nonnegative function, which we regard
as the density function for some measure. Then a subset U ⊂ X has measure zero if and
only if ρ(u) = 0 for all u ∈ U (exercise).

(f) Closed subgroups: Let G be a connected topological group, and H ⊂ G be a closed
proper subgroup. Then H has Haar measure zero (Exercise 17 ). For example, Z has
Lebesgue measure zero in R, and any vector subspace of Rn has Lebesgue measure zero.
Note: although Q ⊂ R also has Lebesgue measure zero, it is not for this reason (since Q
is not a closed subgroup).

Definition 17 Complete Measure Space; Completion

A measure space (X,X , µ) is called complete if, given any subset Z ∈ X of measure zero,
all subsets of Z are measurable. Formally:

(

µ[Z] = 0
)

=⇒
(

P(Z) ⊂ X
)

If (X,X , µ) is not complete, then the completion of X is defined:

˜X = {U ∪V ; U ∈ X , and V ⊂ Z for some Z ∈ X with µ[Z] = 0}

We can then extend µ to a measure µ̃ on ˜X by defining µ̃[U ∪V] = µ[U] for all such U and
V.

Exercise 18 Verify that ˜X is a sigma-algebra, and that µ̃ is a measure.
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For example, the completion of the Borel sigma algebra on Rn, with respect to the Lebesgue
measure, is called the Lebesgue sigma algebra. Since we can complete any measure space in
such a painless way, without affecting it’s essential measure-theoretic properties, it is generally
safe to assume that any measure space one works with is complete. This is analogous to the
process of completing a metric space6.

1.2(c) Measure Subspaces

Suppose (X,X , µ) is a measure space, and U ⊂ X is a measurable subset. If we define

U = {V ∈ X ; V ⊂ U}

then U is a sigma-algebra on U, and (U,U) is a measurable space. Let µ|U := µ|U : U−→[0,∞]

be the restriction of µ to U ; then µ|U is a measure on (U,U). We call (U,U , µ|U ) a measure

subspace of (X,X , µ).

Example 18:

(a) Let I = [0, 1] ⊂ R, and let I be the Borel sigma-algebra of I. Let λ be the restriction to
I of the one-dimensional Lebesgue measure on R; then (I, I, λ) is a measure subspace of
R.

(b) Let I2 = [0, 1] × [0, 1] ⊂ R2, and let I2 be the Borel sigma-algebra of I2. Let λ2 be the
restriction to I2 of the two-dimensional Lebesgue measure on R2; then (I2, I2, λ2) is a
measure subspace of R2.

(c) Consider the rational numbers, Q ⊂ R; let Q be the Borel sigma-algebra of Q, and let
λ be the restriction of the Lebesgue measure to Q. Then it is Exercise 19 to verify:
Q = P(Q), and λ ≡ 0, so that (Q,P(Q), 0) is a measure subspace of R

1.2(d) Disjoint Unions

Suppose (X1,X1, µ1) and (X2,X2, µ2) are two measure spaces; assume that the sets X1 and
X2 are disjoint. Let X = X1 tX2. Then the collection

X = {U1 tU2 ; U1 ∈ X1, U2 ∈ X2};

is a sigma-algebra on X (Exercise 20 ). Define µ : X−→[0,∞] by:

µ[U1 tU2] = µ1[U1] + µ2[U2]

then µ is a measure on X (Exercise 21 ). The measure space (X,X , µ) is called the disjoint
union of (X1,X1, µ1) and (X2,X2, µ2).

6Indeed, as we will see, this analogy is very apt.
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More generally, let Ω be a (poossibly infinite) indexing set, and for each ω ∈ Ω, let
(Xω,Xω, µω) be a measure space. Define:

X =
⊔

ω∈Ω

Xω; and X =

{

⊔

ω∈Ω

Uω ; Uω ∈ Xω, for all ω ∈ Ω

}

and define µ : X−→[0,∞] by: µ

[

⊔

ω∈Ω

Uω

]

=
∑

ω∈Ω

µω [Uω].

If Ω is countable, then “
∑

ω∈Ω

µω [Uω]” is defined the way you expect; if If Ω is uncountable,

then we define:
∑

ω∈Ω

µω [Uω] := sup
Υ⊂Ω, Υ countable

∑

υ∈Υ

µυ [Uυ]

Then (X,X , µ) is a measure space (Exercise 22 ).

1.2(e) Finite vs. sigma-finite

Prerequisites: §1.2(d)

The total mass of measure space (X,X , µ) is just the value µ[X]. If µ[X] < ∞, then we
say (X,X , µ) is finite; otherwise (X,X , µ) is infinite.

Example 19:

(a) (I, I, λ) is finite.

(b) R with the Lebesgue measure is infinite.

(c) Z with the counting measure is infinite.

(d) If G is a topological group, then the Haar measure is finite if and only if G is compact.
(Exercise 23 )

(X,X , µ) is called sigma-finite if it is a countable disjoint union of finite measure spaces.

Formally: X =
∞
⊔

n=1

Xn, where (Xn,Xn, µn) are finite.

Example 20:

(a) R with the Lebesgue measure is sigma-finite.

(b) Z with the counting measure is sigma-finite.

(c) Let Ω be an uncountably infinite set, and for each ω ∈ Ω, let Rω be a copy of the real line

equipped with Lebesgue measure. Then the measure space X =
⊔

ω∈Ω

Rω is not sigma-finite.

Exercise 24 Verify these three examples.
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Virtually all measure spaces dealt with in practice are sigma-finite. Finiteness in measure-
theory is analogous to compactness for topological spaces; sigma-finiteness is analogous to
sigma-compactness.

1.2(f) Sums and Limits of Measures

Let (X,X ) be a measurable space.

Proposition 21

1. If µ1 and µ2 are measures on (X,X ), and c1, c2 > 0, then µ = c1 · µ1 + c2 · µ2 is also a
measure.

2. Suppose that {µn}∞n=1 is a sequence of measures, and that the limit µ[U] = lim
n→∞

µn[U]

exists for all U ∈ X . Then µ is also a measure.

3. Suppose {cn}∞n=1 are nonnegative real constants, and that the limit µ[U] =
∑∞

n=1 cn ·
µn[U] exists for all U ∈ X . Then µ is also a measure.

Proof: Exercise 25 2

1.2(g) Product Measures

Suppose (X1,X1, µ1) and (X2,X2, µ2) are measure spaces, and consider the measurable space
is (X1 ×X2, X1 ⊗X2). The product of measures µ1 and µ2 is the unique measure µ1 × µ2 on
X1 ×X2 so that:

(µ1 × µ2) [U1 ×U2] = µ1[U1] · µ2[U2]

for any U1 ∈ X1 and U2 ∈ X2. This determines µ1 × µ2 on all disjoint unions of rectangles by:

(µ1 × µ2)

(

∞
⊔

n=1

Un
1 ×Un

2

)

=
∞
∑

n=1

µ1 (Un
1 ) · µ2 (Un

2 )

We will formally construct the product measure in §2.1(a).

Example 22:

(a) Suppose X and Y are finite sets, with probability measures µ and ν. Then X ×Y is a
finite set, and the the product measure µ× ν is simply defined:

µ×ν
{

(x1, y1), (x2, y2), . . . , (xN , yN)
}

= µ{x1}·ν{y1}+ µ{x2}·ν{y2}+ . . .+ µ{xN}·ν{yN}.
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X

U

U∆(   )

Figure 1.14: The diagonal measure

(b) If µ is the Lebesgue measure on R, then µ×µ is the Lebesgue measure on R2 (Exercise 26
Hint: It suffices to show that they agree on boxes).

(c) Suppose G1 and G2 are topological groups with left-Haar measures η1 and η2. If G =
G1 ×G2 is endowed with the product group structure and product topology, then η =
η1 × η2 is the left-Haar measure for G (Exercise 27 Hint: It suffices to show that η is
left-multiplication invariant). The same goes for right Haar measures, of course.

1.2(h) Diagonal Measures

Suppose (X,X , µ) is a measure space, and consider the measurable space (X2,X 2) = (X ×
X, X ⊗ X ). One possible measure on (X2,X 2) is the product measure µ2 = µ × µ, but this
is not the only candidate. Another valid measure is the diagonal measure µ∆, defined as
follows. For any subset U ∈ X2, define ∆(U) = {x ∈ X ; (x, x) ∈ U}, as shown in Figure
1.14. This represents the intersection of U with the ‘diagonal set’ of X2. Then define

µ∆(U) = µ
[

∆(U)
]

Exercise 28 Verify that µ∆ is a measure.

1.3 Mappings between Measure Spaces

1.3(a) Measurable Functions

Prerequisites: §1.1(b)

Definition 23 Measurable Function

Let (X1,X1), and (X2,X2), be measurable spaces. A function f : X1−→X2 is measurable
with respect to X1 and X2 if every X2-measurable set has an X1-measurable preimage under f .
Formally:
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For all A ⊂ X2, if A ∈ X2, then f−1(A) ∈ X1

When unambiguous, we simply say ‘f is measurable,’ without explicit reference to X1 and X2.
Note that this definition depends only on the sigma-algebras X1 and X2, and has nothing

to do with any actual measures on X1 or X2, per se. People often get confused and speak of a
function being “measurable” with respect to some choice of measure; what they mean is that
it is measurable with respect to the underlying sigma-algebras.

Example 24:

(a) Borel Measurable functions on R: A function f : R−→R is Borel measurable if
it is measurable with respect to the Borel sigma algebra; thus, if B ⊂ R is a Borel set,
then so is f−1(B). For example:

• Any continuous function f : R−→R is Borel-measurable.

• Any peicewise continuous function is Borel-measurable.

• If 11Q : R−→{0, 1} is the characteristic function of the rationals, then 11Q is Borel-
measurable.

• f is Borel measurable if and only if f−1[a, b) is a Borel set for every a, b ∈ R.

• In particular, any nonincreasing (or nondecreasing) function is Borel measurable.

Exercise 29 Verify these assertions.

(b) Borel Measurable functions in General:

Suppose X1 and X2 are topological spaces; then a function f : X1−→X2 is Borel
measurable if it is measurable with respect to the Borel sigma-algebras on X1 and X2.
For example:

• Any continuous function is Borel-measurable.

• f : X1−→X2 is Borel measurable if and only if the preimage of every open subset of
X2 is Borel-measurable in X1.

(Exercise 30)

(c) Characteristic functions: Let U ⊂ X, and let 11U : X−→{0, 1} be it’s characteristic
function:

11U(x) =

{

1 if x ∈ U
0 if x 6∈ U

Then 11U is a measurable function if and only if U is a measurable subset of X, where we
suppose {0, 1} has the power set sigma algebra {∅, {0}, {1}, {0, 1}}. (Exercise 31)
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f

Y

X

Figure 1.15: Measurable mappings between partitions: Here, X and Y are partitioned
into grids of small squares. The function f is measurable if each of the six squares covering Y
gets pulled back to a union of squares in X.

(d) Maps between partitions: Let X,Y be sets with partitions P and Q, respectively, and
let X = σ(Q) and Y = σ(Q). As shown in Figure 1.15, the function f : X−→Y is measur-
able with respect to X and Y if and only if, for every Q ∈ Q, there are P1,P2, . . . ,PK ∈ P

so that f−1(Q) =
K
⊔

k=1

Pk (Exercise 32).

Proposition 25 (Closure Properties of Measurable Functions)

Let (X,X ) be a measurable space

1. Let RN have the Borel sigma algebra. Suppose that f, g : X−→R are measurable. Then
the functions f + g, f · g, f g, min{f, g}, and max{f, g} are all measurable.

2. If (G,G) a topological group with Borel sigma algebra, and f, g : X−→G are measurable,
then so is f · g.

3. Let (T, T ) be a topological space with Borel sigma-algebra, and let fn : X−→T be a
measurable function for all n ∈ N. Suppose f(x) = lim

n→∞
fn(x) exists for all x ∈ X (with

the limit taken in the T-topology). Then f : X−→T is also measurable.

4. Let fn : X−→R be a measurable functions for all n ∈ N. Then the functions

f(x) = sup
n∈N

fn(x) f(x) = inf
n∈N

fn(x)

f∞(x) = lim sup
n→∞

fn(x) and f∞(x) = lim inf
n→∞

fn(x)

are all measurable. Also, if F (x) =
∞
∑

n=1

fn(x) exists for all x ∈ X, then it defines a

measurable function.

5. If (Y,Y) and (Z,Z) are also measurable spaces, and f : Y−→Z and g : X−→Y are
measurable, then f ◦ g : X−→Z is also measurable.
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x
1

x
2

3
x

U

pr
1,2

pr (U) = U x I
1,2

-1

Figure 1.16: Elements of pr1,2
−1(I2) look like“vertical fibres”.

Proof: Exercise 33 2

Definition 26 Pulled-back Sigma-algebra

Suppose (X,X ) is a measurable space, and f : Y−→X is some function. Then we can use
f to pull back the sigma-algebra on X to a sigma-algebra on Y, defined:

f−1 (X ) :=
{

f−1(U) ; U ∈ X
}

Exercise 34 Check that f−1 (X ) is a sigma-algebra

Lemma 27 f : (X,X )−→(Y,Y) is measurable if and only if f−1(Y) ⊂ X

Proof: Exercise 35 2

Example 28:

Consider the unit cube, I3 := I × I × I, where I := [0, 1] is the unit interval. Let I2 be the
unit square, and consider the projection onto the first two coordinates, pr1,2 : I3−→I2; if
x := (x1, x2, x3) ∈ I3, then pr1,2(x) = (x1, x2) ∈ I2.

Consider the pulled back sigma algebra pr1,2
−1(I2), (where I2 is the Borel sigma-algebra on

I2). Elements of pr1,2
−1(I2) look like “vertical fibres” in the cube (Figure 5.6). That is:

pr1,2
−1(I2) = {pr1

−1(U) ; U ∈ I2} = {U× I ; U ∈ I2} = I2 ⊗ {I}.
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f

X Y

Af (A)
-1

Figure 1.17: Measure-preserving mappings

Definition 29 Generating Sigma-algebras with Functions

Let (X1,X1), (X2,X2), . . . , (XN ,XN) be measurable space, and Y some set. For each
n ∈ [1..N ], let fn : Y−→Xn be some function.

The sigma algebra generated by f1, . . . , fN is the smallest sigma-algebra on Y so that
f1, . . . , fN are all measurable with respect to the sigma-algebras of their respective target
spaces.

This sigma-algebra is denoted by “σ(f1, . . . , fN)”. Suppose that Y1 = f−1
1 (X1), Y2 =

f−1
2 (X2), . . . ,YN = f−1

N (XN). Then (Exercise 36)

σ(f1, . . . , fN) = σ
(

Y1 ∪ Y2 ∪ . . . ∪ YN
)

.

Remark 30:

• For a single function f : Y−→X, it is clear that σ(f) = f−1(X ) (Exercise 37).

• Given N functions f1, . . . , fN , define F : Y−→X1 ×X2 × . . .×XN by:

F (y) =
(

f1(y), f2(y), . . . , fN(y)
)

Then σ(f1, . . . , fN) = F−1(X1 ⊗X2 ⊗ . . .XN). (Exercise 38).

1.3(b) Measure-Preserving Functions

Prerequisites: §1.3(a)

Definition 31 Measure-Preserving Function

Let (X1,X1, µ1) and (X2,X2, µ2) be measure spaces, and f : X1−→X2 some measurable
function. Then f is measure-preserving if, for every A ∈ X2, µ1 [f−1(A)] = µ2[A]. See
Figure 1.17.
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T
T

(A) (B)

Figure 1.18: (A) A special linear transformation on R2 maps a rectangle to parallelogram with
the same area. (B) A special linear transformation on R3 maps a box to parallelopiped with
the same volume.

U

I
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pr
  (

U
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-1 1

Figure 1.19: The projection from I2 to I is measure-preserving.

Example 32: SL(Rn)

Consider the group of special linear transformations of Rn:

SL [Rn] := {T : Rn−→Rn ; T is linear, and det(T ) = 1}

As illustrated in Figure 1.18, an element T ∈ SL [Rn] transforms cubes into parallellipipeds
having the same volume. Thus, T transforms Rn in a manner which preserves the Lebesgue
measure.

(Actually we don’t need det(T ) = 1, but only that |det(T )| = 1. Thus, for example, a map
which “flips” the space is also measure-preserving.)

Example 33: Projection Maps

Let I = [0, 1] be the unit interval, and I2 = [0, 1]× [0, 1] be the unit square. Let pr1 : I2−→I
to be the projection map of I2 onto the first coordinate; then pr1 is measure-preserving.
To see this, consider Figure 1.19. Suppose U ⊂ I has a Lebesgue measure (ie. a length) of
m. Then its preimage is

pr1
−1[U] = U× I ⊂ I2,

and U× I has a Lebesgue measure (ie. an area) of m× 1 = m.
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Definition 34 Pushed Forward Measure

Let (X1,X1, µ1) be a measure space, and (X2,X2) a measurable space, and suppose that
f : X1−→X2 is a measurable function. We use f to push forward the measure µ1 to a
measure, f ∗µ1, defined on X2 as follows: For any subset A ∈ X2,

f ∗µ[A] := µ
[

f−1(A)
]

.

Exercise 39 Prove that f∗µ is a measure.

Note that, although we pull back sigma-algebras, we must push forward measures. We
cannot, in general, “pull back” a measure; nor can we generally “push forward” a sigma-algebra.

Lemma 35 Let (X1,X1, µ1) and (X2,X2, µ2) be measure spaces, and let f : X1−→X2 be

some measurable function. Then f is measure-preserving if and only if f ∗µ1 = µ2.

Proof: Exercise 40 2

1.3(c) ‘Almost everywhere’

Prerequisites: §1.2(b),§1.3(a)

If a certain assertion is true (or a certain construction is well-defined) on the complement
of a set of measure zero, we say that it is true (resp. well-defined) almost everywhere.
Intuitively, this means there is a ‘bad’ set where the assertion/construction fails, but this bad
set doesn’t matter, because it is of measure zero. In the land of measure spaces, one can get
away with working with such almost everywhere constructs and assertions. Indeed, it is often
not possible, or even desirable, to define things everywhere on a space.

Synonymous with ‘almost everywhere’ are the terms mod zero and essential. In proba-
bility literature, the equivalent term is almost surely. Usually, ‘almost everywhere’ is abbre-
viated as a.e. (or a.e.[µ] if one wishes to specify the measure). Similarly, ‘almost surely’ is
abbreviated as a.s. (or a.s.[µ]).

Definition 36 Function mod Zero

Let (X,X , µ) be a measure space, and let Y be some other set. A function mod zero is
a function f defined almost everywhere on X. In other words, there is some measurable
subset X0 ⊂ X, with µ [X \X0] = 0, so that f : X0−→Y.

We often simply say that f : X−→Y is a ‘function defined mod zero’, or a ‘function defined
a.e.’.
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Example: Let f : 6Q−→ 6Q be defined f(x) = x. Then f is a mod zero function f : R−→ 6Q.

A function mod zero is can be ‘completed’ to a function defined ‘everywhere’ on X in
an entirely arbitrary manner, without affecting its measure-theoretic properties at all. To be
precise, if X1 is a complete measure space, then:

• Any given completion of f will be measurable if and only if all completions are measurable.

• Any given completion will be measure-preserving if and only if all completions are measure-
preservng

Exercise 41 Verify these assertions.

Lemma 37

1. If f, g : (X,X , µ)−→C are defined a.e., then the functions f + g, f · g, and f g, are also
defined a.e..

2. If f1 : (X1,X1, µ1)−→Y1 and f2 : (X2,X2, µ2)−→Y2 are defined a.e., then f1 × f2 :
(X1 ×X2,X1 ⊗X2, µ1 × µ2)−→Y1 ×Y2 is also defined a.e..

3. If f1 : (X1,X1, µ1)−→(X2,X2, µ2) and f2 : (X2,X2, µ2)−→Y are defined a.e., then f2◦f1 :
(X1,X1, µ1)−→Y is defined a.e..

Proof: Exercise 42 2

Definition 38 Essential Equality

Let (X,X , µ) be a measure space, and let Y be any set. Let f, g : X−→Y be defined a.e..
f and g are essentially equal (or equal almost everywhere) if there is some X0 ⊂ X

so that µ [X \X0] = 0, and so that, for all x ∈ X0, f(x0) = g(x0).
Sometimes we will write this: “f =µ g.”

Lemma 39 Let (X,X , µ) be a complete measure space, and (Y,Y) a measurable space. Let

f, g : X−→Y be arbitrary functions.

1. If f is measurable, and g =µ f , then g is also measurable.

2. In particular, if supp [f ] is a set of measure zero (ie. f =µ 0), then f is measurable.

Proof: Exercise 43 Hint: Prove (2) first. Then (1) follows from Part 1 of Proposition 25 on
page 25 2
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Exercise 44 Find a counterexample to Lemma 39 when (X,X , µ) is not complete.
The next result says that completing a sigma-algebra does not add any ‘essentially’ new

measurable functions. For this reason, we generally can assume that all measure spaces are
complete (or have been completed) without compromising the generality of our results.

Lemma 40 Let (X,X , µ) be a measure space, and let ˜X be the completion of X . Let

(Y,Y) be a measurable space, and let ˜f : X−→Y be ˜X -measurable. Then there exists a

function f : X−→Y such that (1) f is X -measurable, and (2) f =µ
˜f .

Proof: Exercise 45 2

Definition 41 Almost Everywhere Convergence

Let (X,X , µ) be a measure space, and let Y be a topological space. Let fn : X−→Y be
defined a.e., for all n ∈ N, and let f : X−→Y also be defined a.e..

The sequence {fn}∞n=1 converges to f almost everywhere if there is X0 ⊂ X so that
µ [X \X0] = 0, and so that, for all x ∈ X0, lim

n→∞
fn(x) = f(x).

We write this: “ lim
n→∞

fn = f , a.e.”.

Lemma 42 Let (X,X , µ) be a complete measure space, and Y a topological space. Suppose

that fn : X−→Y are measurable functions for all n ∈ N, and that lim
n→∞

fn = f , a.e.. Then f

is also measurable.

Proof: Exercise 46 2

Exercise 47 Find a counterexample to Lemma 42 when (X,X , µ) is not complete.

Definition 43 Essentially Injective

Let (X,X , µ) be a measure space, and let Y be any set. Let f : X−→Y be defined a.e..
f is essentially injective if f is injective everywhere except on a subset of X of measure

zero. In other words, there is some X0 ⊂ X, so that µ [X \X0] = 0, and so that the restriction

f|X0 : X0−→ ̂X is injective.
Sometimes we say that f is injective a.e..

Example 44:

(a) The map f : [0, 1]−→C defined f(x) = e2πix is essentially injective, since it is injective
everywhere except at the points 0 and 1, which both map to the point 1 ∈ C.

(b) If f : R−→R is defined: f(x) =

{

0 if x ∈ Q
x; if x ∈ 6Q. , then f is essentially injective.
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Definition 45 Essentially Surjective

Let (Y,Y , ν) be a measure space, and let X be any set. Let f : X−→Y be some function.
f is essentially surjective if f is surjective onto a subset of Y whose complement has

measure zero. In other words, the set Y \ image [f ] ⊂ Y has measure zero.

Example 46:

(a) The embedding (0, 1) ↪→ [0, 1] is essentially surjective, since [0, 1] \ image [f ] = {0, 1} has
measure zero.

(b) The embedding 6Q ↪→ R is essentially surjective.

(c) If f : (X,X , µ)−→(Y,Y , ν) is measure-preserving, it is essentially surjective (Exercise 48).

Definition 47 Essential Inverse

Let (X,X , µ) and (Y,Y , ν) be measure spaces, and let f : X−→Y be defined a.e.[µ]. An
essential inverse for f is a function, g : Y−→X, defined a.e.[ν], so that f ◦ g =µ IdY

and g ◦ f =µ IdX.
We then say f is essentially invertible.

Example: Define g : [0, 1]−→(0, 1) by: f(x) =

{

x if 0 < x < y
1
2

if x = 0 or x = 1
. Then g is an

essential inverse of the embedding (0, 1) ↪→ [0, 1].

Lemma 48 Let (X,X , µ) and (Y,Y , ν) be measure spaces, and let f : X−→Y be defined

a.e..
f is essentially injective and essentially surjective if and only if f is essentially invertible.

Proof: Exercise 49 2

Definition 49 Isomorphism mod Zero

Let (X,X , µ) and (Y,Y , ν) be measure spaces, and let f : X−→Y be defined mod zero.
f is an isomorphism mod zero if:

1. f is measurable with respect to X and Y .

2. f is measure-preserving.

3. f is essentially invertible, and the inverse function f−1 is also measurable and measure-
preserving.
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1.3(d) A categorical approach

Prerequisites: §1.3(b), §1.3(c)

Recall that Example (46c) says that all measure-preserving maps must be surjective; this
is to some extent an artifact of Definition 31 on page 27. We can weaken this definition as
follows...

Definition 50 Weakly Measure-Preserving

Let (X1,X1, µ1) and (X2,X2, µ2) be measure spaces, and f : X1−→X2 some measurable
function. Let Y = image [f ] ⊂ X2. Then f is weakly measure-preserving if it is measure-
preserving as a function f : X1−→Y. In other words, for every A ∈ X2, µ1 [f−1(A)] =
µ2[A ∩Y].

We now define the category,Meas, of measure spaces and weakly measure-preserving func-
tions mod zero, as follows:

• The objects of Meas are measure spaces.

• The morphisms of Meas are weakly measure-preserving functions, defined a.e..

As mentioned above, the composition of two such morphisms is well-defined. Also,

1. The monics ofMeas are the essentially injective maps (ie. embeddings of measure spaces).

2. The epics of Meas are the essentially surjective maps (ie. (strongly) measure-preserving
maps).

3. The isomorphisms of Meas are essential isomorphisms.

4. The product of two measure spaces (X,X , µ) and (Y,Y , ν) is (X×Y, X ⊗ Y, µ× ν).

5. The coproduct of two measure spaces (X,X , µ) and (Y,Y , ν) is (X tY, σ(X t Y), η),
where η(U) = µ(U ∩X) + ν(U ∩Y).

Exercise 50 Verify these statements.

2 Construction of Measures

2.1 Outer Measures

Prerequisites: §1.1(c)
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U

a b1 1

a b2 2
a b3 3

a b
4 4

a b5 5
a b6 6

a b7 7

a b8 8

Figure 2.1: The intervals (a1, b1], (a2, b2], . . . , (a8, b8] form a covering of U.

The theory of outer measures is rather abstract, so concrete examples are essential. However,
on a first reading, the multitude of examples may be confusing. I suggest that the reader initially
concentrate on the Lebesgue measure (developed in Examples 51, (54a), (56a), (59a), (61a), (62a),
and (65a)), and only skim the other examples. Then go back and study the other examples in
detail.

Let X be a set, with power set P(X). An outer measure is a function µ̃ : P(X)−→[0,∞]
having the following three properties:

(OM1) µ̃(∅) = 0.

(OM2) If U ⊂ V, then µ̃(U) ≤ µ̃(V)

(OM3) µ̃

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

µ̃ (An), for any subsets An ⊂ X.

Example 51: Lebesgue Outer Measure

Let X = R. If U ⊂ R, then a covering of U is a collection of left-open intervals
{

(an, bn]
}∞

n=1
,

(with −∞ ≤ an < bn ≤ ∞ for all n ∈ N) such that U ⊂
∞
⋃

n=1

(an, bn] (see Figure 2.1). The

Lebesgue Outer Measure is defined:

µ̃ (U) = inf
{

(an,bn]
}∞

n=1
a covering of U

∞
∑

n=1

(bn − an)
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We will prove that µ̃ satisfies properties (OM1), (OM2), and (OM3) in §2.1(a), and also
construct other examples of outer measures there; the reader is encouraged to glance at
§2.1(a) to get some intuition about outer measures before continuing this section.

For µ̃ to be a measure, we want (OM3) to be an equality in the case of a disjoint union:

µ̃

(

∞
⊔

n=1

Un

)

=
∞
∑

n=1

µ̃ (Un) , (2.1)

But (2.1) fails in general. Indeed, there may even be a pair of disjoint sets U and V such that

µ̃ (U tV) < µ̃(U) + µ̃(V) (2.2)

Intuitively, this is because U and V have ‘fuzzy boundaries’, which overlap in some weird way.
If Y = U tV, then of course U = U ∩Y and V = U{ ∩Y. Thus, we can rewrite (2.2) as:

µ̃ [Y] < µ̃ [U ∩Y] + µ̃
[

U{ ∩Y
]

(2.3)

To obtain the additivity property (2.1), we must exclude sets with ‘fuzzy boundaries’; hence
we should exclude any subset U which causes (2.3). Indeed, we will require something even
stronger. We say a subset U ⊂ X is µ̃-measurable if it satisfies:

For any Y ⊂ X, µ̃ [Y] = µ̃ [U ∩Y] + µ̃
[

U{ ∩Y
]

(2.4)

Remark: Suppose µ̃[X] is finite; Then another way to to think of this is as follows: for any
U ⊂ X, we define the inner measure of U:

µ[U] = µ̃[X]− µ̃
[

U{
]

we then say that U is measurable if µ[U] = µ̃[U]. Observe that equation (2.4) implies this
when Y = X.

If µ̃[X] is infinite, this obviously doesn’t work. Instead, we ‘approximate’ X with an in-
creasing sequence of finite subsets. Let F = {F ⊂ X ; µ̃[F] <∞}. For any U ⊂ F, say that U
is measurable within F if

µ̃[U] = µ
F

[U] := µ̃[F]− µ̃ [F \U]

If U ⊂ X, then say is measurable if U ∩ F is measurable inside F for all F ∈ F .
Exercise 51 Verify that this is equivalent to equation (2.4). Hint: Let F play the role of Y.

The sets satisfying (2.4) have ‘crisp boundaries’, and the outer measure µ̃ satisfies (2.1) on
them. To be precise, we have:
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Theorem 52 (Carathéodory)

Let µ̃ be an outer measure on X, and let X be the set of µ̃-measurable subsets of X. Then:

1. X is a sigma-algebra.

2. µ̃ : X−→[0,∞] is a complete measure.

Proof: First we will simplify the condition for membership in X :

Claim 1: Let U ⊂ X. Then U ∈ X if and only if:

For any Y ⊂ X, with µ̃ [Y] <∞, µ̃ [Y] ≥ µ̃ [U ∩Y] + µ̃
[

U{ ∩Y
]

.

Proof: Since U = (U ∩Y) ∪
(

U{ ∩Y
)

, we have automatically

µ̃ [Y] ≤ µ̃ [U ∩Y] + µ̃
[

U{ ∩Y
]

by property (OM3) of outer measures. Thus, we need only verify the reverse inequality
in (2.4), which is automatically true whenever µ̃[Y] = ∞. Thus, to get U ∈ X , we need
only test the case when µ[Y] <∞ .................................... 2 [Claim 1]

Claim 2: X is closed under complementation: if U ∈ X , then U{ ∈ X .

Proof: Observe that the condition (2.4) is symmetric in U and U{: it is true for U if and
only if it is true for U{. .............................................. 2 [Claim 2]

Claim 3: X is closed under finite unions: if A,B ∈ X , then A ∪B ∈ X also.

Proof: Observe that

A ∪B = (A ∩B) t
(

A ∩B{
)

t
(

A{ ∩B
)

and (A ∪B){ = A{ ∩B{.

Let Y ⊂ X be arbitrary. It follows that

Y ∩ (A ∪B) = (Y ∩A ∩B) t
(

Y ∩A ∩B{
)

t
(

Y ∩A{ ∩B
)

(2.5)

and Y ∩ (A ∪B){ = Y ∩A{ ∩B{. (2.6)

Thus, µ̃
[

Y ∩ (A ∪B)
]

+ µ̃
[

Y ∩ (A ∪B){
]

=(a) µ̃
[

(Y ∩A ∩B) t
(

Y ∩A ∩B{
)

t
(

Y ∩A{ ∩B
)]

+ µ̃
[

Y ∩A{ ∩B{
]

≤(b) µ̃
[

Y ∩A ∩B
]

+ µ̃
[

Y ∩A ∩B{
]

+ µ̃
[

Y ∩A{ ∩B
]

+ µ̃
[

Y ∩A{ ∩ bB{
]

=(c) µ̃
[

Y ∩A
]

+ µ̃
[

Y ∩A{
]

=(d) µ̃ [Y] .

(a) by (2.5) and (2.6); (b) by (OM3); (c) Since B ∈ X , apply (2.4) to Y ∩A and Y ∩A{;

(d) Since A ∈ X , apply (2.4) to Y.

Hence, by Claim 1, A ∪B is also in X . ............................... 2 [Claim 3]
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Claim 4: X is closed under countable disjoint unions.

Proof: Suppose A1,A2, . . . ∈ X are disjoint and let U =
∞
⊔

n=1

An. We want to show that

U satisfies (2.4). For all N , let UN =
N
⊔

n=1

An, and let Y ⊂ X be arbitrary.

Claim 4.1: µ̃ [Y ∩UN ] =
N
∑

n=1

µ̃ [Y ∩An].

Proof: Observe that UN ∩AN = AN , while UN ∩A{N = UN−1. Since AN ∈ X apply
(2.4) to conclude:

µ̃ [Y ∩UN ] = µ̃ [Y ∩UN ∩AN ] + µ̃
[

Y ∩UN ∩A{N

]

= µ̃ [Y ∩AN ] + µ̃ [Y ∩UN−1] .

Now argue inductively. ........................................... 2 [Claim 4.1]

Claim 4.2: µ̃ [Y] =
∞
∑

n=1

µ̃ [Y ∩An] + µ̃
[

Y ∩U{
]

= µ̃ [Y ∩U] + µ̃
[

Y ∩U{
]

.

Proof: Observe that

µ̃ [Y] =(a) µ̃ [Y ∩UN ] + µ̃
[

Y ∩U{N

]

=(b)

N
∑

n=1

µ̃ [Y ∩An] + µ̃
[

Y ∩U{N

]

≥(c)

N
∑

n=1

µ̃ [Y ∩An] + µ̃
[

Y ∩U{
]

.

(a) UN ∈ X by Claim 3, so apply (2.4). (b) By Claim 4.1.
(c) Because UN ⊂ U, so U{ ⊂ U{N ; apply (OM2).

Thus, letting N→∞,

µ̃ [Y] ≥
∞
∑

n=1

µ̃ [Y ∩An] + µ̃
[

Y ∩U{
]

≥(a) µ̃

[

∞
⋃

n=1

(Y ∩An)

]

+ µ̃
[

Y ∩U{
]

= µ̃

[

Y ∩

(

∞
⋃

n=1

An

)]

+ µ̃
[

Y ∩U{
]

= µ̃ [Y ∩U] + µ̃
[

Y ∩U{
]

≥(b) µ̃
[

(Y ∩U) t
(

Y ∩U{
)]

= µ̃ [Y] . (a,b) By (OM3).

We conclude that these inequalities are equalities. ................. 2 [Claim 4.2]

In particular, Claim 2 implies: µ̃ [Y] = µ̃ [Y ∩U] + µ̃
[

Y ∩U{
]

. This is true for any
Y ⊂ X. Thus, U satisfies (2.4), as desired. ............................ 2 [Claim 4]
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Claim 5: µ̃ is countably additive on elements of X .

Proof: Again, let A1,A2, . . . ∈ X be disjoint and U =
∞
⊔

n=1

An. From Claim 4.2, we

have, for any Y ⊂ X, µ̃ [Y] =
∞
∑

n=1

µ̃ [Y ∩An] + µ̃
[

Y ∩U{
]

. Set Y = U to get:

µ̃ [U] =
∞
∑

n=1

µ̃ [U ∩An] + µ̃
[

U ∩U{
]

=
∞
∑

n=1

µ̃ [An] + µ̃ [∅] =
∞
∑

n=1

µ̃ [An].

2 [Claim 5]

Claim 6: X is a sigma-algebra.

Proof: X is closed under complementation by Claim 2, and under finite unions by Claim
3; thus, it is closed under finite intersections by application of de Morgan’s law.

Suppose A1,A2, . . . are in X ; we want to show that U =
∞
⋃

n=1

A is also in X . Let UN =

N−1
⋃

n=1

An; then UN ∈ X by Claim 3. Thus, U{N ∈ X by Claim 2. Thus, BN = AN∩U{N ∈ X .

But observe that B1,B2, . . . are disjoint, and U =
∞
⊔

n=1

Bn. Thus, U ∈ X by Claim 4.

Finally, apply de Morgan’s law once again to conclude that X is closed under countable
intersection. ......................................................... 2 [Claim 6]

From Claims 5 and 6, it follows that (X,X , µ) is a measure space. It remains only to show:

Claim 7: (X,X , µ) is complete.

Proof: Suppose U ∈ X has measure zero; we want to show that all subsets V ⊂ U are in
X . So, let Y ⊂ X be arbitrary. Then V ∩Y ⊂ V ⊂ U, so that µ̃[V ∩Y] ≤ µ̃[U] = 0, so
that µ̃[V ∩Y] = 0. Thus

µ̃[Y] ≥ µ̃[Y ∩V{] = µ̃[Y ∩V{] + 0 = µ̃[Y ∩V{] + µ̃[V ∩Y].

Apply Claim 1 to conclude that V ∈ X . .................... 2 [Claim 7 & Theorem]

X is sometimes called the Carathéodory sigma-algebra, and the measure µ = µ̃|X is

the Carathéodory measure.

Example 53: The Lebesgue Measure

If X = R and B is the set of all finite left-open intervals, then the Lebesgue outer measure
(Example 51) yields the Lebesgue measure λ, and X is the Lebesgue sigma-algebra of
R. We will show in §2.1(b) that X contains all elements of the Borel sigma algebra of R.
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2.1(a) Covering Outer Measures

Let B ⊂ P(X) be a collection of ‘basic sets’. Assume that ∅ and X are in B. Let ρ : B−→[0,∞]
be function gauging the ‘size’ of the basic subsets, and assume ρ(∅) = 0. The idea of a covering
outer measure is to measure arbitrary subsets of X by covering them with elements of B.

Example 54:

(a) The Lebesgue Gauge: If X = R, let B be the set of all left-open intervals (a, b],
with −∞ ≤ a < b ≤ ∞. Define ρ(a, b] = b− a.

(b) The Stieltjes Gauge: Again, let X = R and let B be the set of all left-open intervals.
Let f : R−→R be a right-continuous, monotone-increasing function. Define ρ(a, b] =
f(b)− f(a).

For example, if f(x) = x, then ρ(a, b] = b − a, so we recover the Lebesgue Gauge of
Example (54a).

(c) Balls in R2: If X = R2, let B be the set of all open balls in X. For any ball B of
radius ε, let ρ(B) = πε2 be its area.

(d) The Hausdorff Gauge: Suppose X is a metric space. Let B be the set of all open balls
in X. For any B ∈ B, define diam [B] = sup

a,b∈B
d(a, b). Fix some α > 0 (the ‘dimension’ of

X) then define ρ(B) = diam [B]α.

When B are open balls in R2 and α = 2, this agrees with Example (54c), modulo multi-
plication by π/4.)

(e) The Product Gauge: Suppose (X1,X1, µ1) and (X2,X2, µ2) are measure spaces. Let
X = X1×X2, and let R be the set of all rectangles of the form U1×U2, where U1 ∈ X1

and U2 ∈ X2. Then define ρ(U1 ×U2) = µ1[U1] · µ2[U2].

(f) The Haar Gauge: Let G be a locally compact topological group with Borel sigma-
algebra G. Let e ∈ G be the identity element, and let E1 ⊃ E2 ⊃ E3 ⊃ . . . ⊃ {e} be a
descending sequence of open neighbourhoods of e (Figure 2.2A).

Since G is locally compact, we can assume E1 is compact. Thus, any covering of E1 by a
collection {gk ·En}∞k=1 of translates of En must have a finite subcover (Figure 2.2B). Say
that a finite cover {gk ·En}Kk=1 of E1 is minimal if no subcollection of {gk ·En}Kk=1 covers
E1. Let

Cn = min
{

K ∈ N ; There is a minimal covering {gk · En}Kk=1 of E1 of cardinality K
}

Thus, Cn measures the ‘relative sizes’ of E1 and En. Loosely speaking, E1 is ‘Cn times
as big’ as En.

Let B = {g · En ; g ∈ G, n ∈ N}, and, for any (g · En) ∈ B, define ρ(g · En) =
1

Cn
.
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Figure 2.2: (A) E1 ⊃ E2 ⊃ E3 ⊃ . . . are neighbourhoods of the identity element e ∈ G.
(B) {gk · E3}14

k=1 is a covering of E1.

For example, suppose that G = RD, and for all n, let En =

(

−1

2n
,

1

2n

)

be the open cube

of sidelength
−1

2n−1
around the origin. Then for all n ∈ N,

2nD ≤ Cn ≤ (1 + c)2nD (c ≥ 0 some constant) (2.7)

so that ρ(En) ≈ C

2nD
for some constant C ≥ 1.

Exercise 52 Verify (2.7). Hint: 2nD copies of En can’t cover all of E1, because they are open cubes.
Push them slightly closer together and shift them slightly to one side to cover all of E1 except for D
faces, which are each (D − 1)-cubes. Now argue inductively.

Let U ⊂ X. A (countable) B-covering of U is a collection {Bn}∞n=1 of elements in B such

that U ⊂
∞
⋃

n=1

Bn. The ‘total size’ of U should therefore be less than
∞
∑

n=1

ρ(Bn). Thus we can

measure U by taking the infimum over all such coverings:

µ̃(U) = inf
{Bn}∞n=1⊂B

covers U

∞
∑

n=1

ρ(Bn) (2.8)

This is the covering outer measure induced by B and ρ.

Proposition 55 The covering outer measure defined by (2.8) is an outer measure.
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Proof: Property (OM1) follows immediately: ∅ ∈ B, and ∅ is a ‘covering’ of itself, so we
have µ̃(∅) ≤ ρ(∅) = 0.

To see property (OM2), suppose that U ⊂ V. Then any B-covering of V is also a B-covering
of U. Thus,

{

{Bn}∞n=1 ⊂ B ; a covering of U
}

⊂
{

{Bn}∞n=1 ⊂ B ; a covering of V
}

so, taking the infimum over both sets in (2.8), we get µ̃(U) ≤ µ̃(V).

To see property (OM3), let Am ⊂ X for all m ∈ N. Fix ε > 0, and for all m ∈ N, find a

B-covering {B(m)
n }∞n=1 of Am such that

∞
∑

n=1

ρ
(

B(m)
n

)

≤ µ̃(Am) +
ε

2m

Then the collection {B(m)
n } ∞

n,m=1 is a B-covering of
∞
⋃

n=1

An, so we conclude:

µ̃

(

∞
⋃

n=1

An

)

≤
∞
∑

m=1

∞
∑

n=1

ρ
(

B(m)
n

)

≤
∞
∑

m=1

(

µ̃(Am) +
ε

2m

)

=

(

∞
∑

m=1

µ̃(Am)

)

+ ε

Since ε > 0 is arbitrarily small, conclude that µ̃

(

∞
⋃

n=1

An

)

≤
∞
∑

m=1

µ̃(Am), as desired. 2

At this point, we can apply Carathéodory’s theorem (page 36) to obtain a measure from µ̃.

Example 56:

(a) The Lebesgue Outer Measure: If X = R and ρ(a, b] = b− a as in Example (54a),
then the covering outer measure

µ̃(U) = inf
{(an,bn]}∞n=1

covers U

∞
∑

n=1

(bn − an)

is called the Lebesgue outer measure, and was already introduced in Example 51 on
page 34. Application of Carathéodory’s theorem (page 36) yields the Lebesgue Measure
(Example 53 on page 38). The Lebesgue sigma algebra contains all Borel sets (see
§2.1(b)).

(b) The Stieltjes Outer Measure: Let X = R and let B be the set of all finite left-
open intervals; let f : R−→R right-continuous and nondecreasing, and define ρ(a, b] =
f(b)− f(a) as in Example (54b). The covering outer measure

µ̃(U) = inf
{(an,bn]}∞n=1

covers U

∞
∑

n=1

(

f(bn)− f(an)
)
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is called the Stieltjes outer measure defined by f . Application of Carathéodory’s
theorem (page 36) yields a Stieltjes Measure, on the Lebesgue sigma algebra.

(c) Product Outer Measure: Suppose (X1,X1, µ1) and (X2,X2, µ2) are measure spaces,
with X = X1 ×X2, and ρ (V1 ×V2) = µ1 [V1] · µ2 [V2] as in Example (54e). Then the
covering outer measure

µ̃(U) = inf
{V1

n×V2
n}∞n=1

covers U

∞
∑

n=1

(

µ1

[

V1
n

]

· µ2

[

V2
n

]

)

is called the product outer measure. Application of Carathéodory’s theorem (page
36) yields the product measure. We will show in §2.1(b) that the Carathéodory sigma-
algebra contains all elements of X1 ⊗X2.

Exercise 53 Construct the product measure on a finite product space X1 ×X2 × . . .×XN .

Exercise 54 Construct the product measure on an infinite product space
∏

λ∈Λ

Xλ. Find

necessary/sufficient conditions for a subset to have a finite but nonzero measure.

Sometimes we construct an outer measure as the supremum of a family of outer measures.

Lemma 57 Suppose {µ̃i}i∈I is a family of outer measures, and define µ̃(U) = sup
i∈I

µ̃i(U)

(for all U ⊂ X). Then µ̃ is also an outer measure.

Proof: Exercise 55 2

Example 58:

(a) The Hausdorff Outer Measures: Let X be a metric space. For any δ > 0, let Bδ the
set of open balls in X of radius less than δ. Fix α > 0, and define ρα(B) = diam [B]α as
in Example (54d). By Proposition 55, we obtain a covering outer measure:

µ̃αδ (U) = inf
{Bn}∞n=1⊂Bδ

covers U

∞
∑

n=1

diam [Bn]α . (2.9)

We call this the Hausdorff δ-outer measure.

Notice that, as δ→0, the set Bδ becomes smaller and smaller. Thus, the infimum in (2.9)
gets larger. For example, if U was an extremely ‘tangled’ curve embedded in R2, then we
could achive a (bad) estimate of its length by simply covering it with a single large ball
(see Figure 1.8(A) on page 9); a better estimate might be achieved by covering it with
many smaller balls. We thus take the limit as δ goes to zero:

µ̃α(U) = lim
δ→0

µ̃αδ (U) = sup
δ>0

µ̃δ(U)
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By Lemma 57, µ̃α is also an outer measure, and is called the Hausdorff outer measure
(of dimension α). Application of Carathéodory’s theorem (page 36) yields the Hausdorff
measure of dimension α. We will show in §2.1(c) that the Carathéodory sigma-algebra
contains the Borel sigma-algebra of X.

(b) The Haar Outer Measures: Let G be a locally compact topological group, and let
{En}∞n=1 and {Cn}∞n=1 be as in Example (54f). For each M ∈ N, let

BM = {g · Em ; m ≥M and g ∈ G}.

By Proposition 55, we obtain a covering outer measure:

µ̃M(U) = inf
{Bn}∞n=1⊂BM

covers U

∞
∑

n=1

ρ(Bn) (2.10)

As with the Hausdorff measure, as M→∞, the set BM becomes smaller and smaller.
Thus, the infimum in (2.10) gets larger. We thus define the (left) Haar outer measure
by taking the limit as M goes to infinity:

µ̃(U) = lim
M→∞

µ̃M(U) = sup
M∈N

µ̃M(U)

By Lemma 57, µ̃ is an outer measure. Application of Carathéodory’s theorem (page 36)
yields the Haar measure η on G.

Exercise 56 Show that η is left-translation invariant, by construction.

Exercise 57 Modify the construction to obtain the right Haar measure.

Exercise 58 If G = RD and En =
(−1

2n ,
1

2n

)

as in Example (54f), show that η agrees with
the D-dimensional Lebesgue measure on RD.

We will show in §2.1(c) that the Carathéodory sigma-algebra contains the Borel sigma-
algebra of G.

2.1(b) Premeasures

Prerequisites: §2.1(a)

Let B ⊂ P(X) and let ρ be a ‘gauge’ as in §2.1 above. It would be nice if the elements of
B were themselves Carathéodory-measurable, and if the Carathéodory measure µ̃ agreed with
the ‘gauge’ ρ on B.

A collection B ⊂ P(X) is called a prealgebra1 if

• ∅ ∈ B.

• B is closed under finite intersections: if A,B ∈ B, then A ∩B ∈ B;
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1
X

X
2

1
U

V
2

1
V

U
2

(A) (B)

Figure 2.3: The product sigma-algebra is a prealgebra

• If B ∈ B, then B{ is a finite disjoint union of elements in B.

Example 59:

(a) Let X = R and let B be the set of left-open intervals, as in Example (54a). Then B is a
pre-algebra. (Exercise 59 )

(b) Let (X1,X1) and (X2,X2) be measurable spaces. Let X = X1×X2, and let R be the set
of all rectangles as in Example (54e). Then R is a prealgebra.

Exercise 60 Verify this. Hint: If U1 × U2 and V1 × V2 are two such rectangles, then
(U1 ×U2) ∩ (V1 ×V2) = (U1 ∩V1)× (U2 ∩V2) (see Figure 2.3A)

We call A ⊂ P(X) an algebra if A is closed under complementation and under finite unions

and intersections. If B ⊂ P(X) is any collection of sets, then let ˜B be the smallest algebra in
P(X) containing all elements of B.

Lemma 60 If B is a prealgebra, then every element of ˜B can be written in a unique way as

a disjoint union of elements in B.

Proof: Exercise 61 Hint:

First observe that A ∪ B =
(

A{ ∩B
)

t (A ∩B) t
(

A ∩B{
)

. Conclude that all finite unions

of B-elements can be rewritten as finite disjoint unions of B-elements. Next, if A =
N
⊔

n=1

An and

1Sometimes this is called an elementary family.
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B =
M
⊔

m=1

Bm are two finite disjoint unions of B-elements, show that A∩B =
N
⊔

n=1

M
⊔

m=1

(

An ∩Bn

)

.

Thus, the intersection of two finite disjoint unions of B-elements is also a finite disjoint union of
B-elements. 2

Example 61:

(a) Let X = R and let B be the set of left-open intervals, as in Example (59a). Then ˜B is
the set of all finite disjoint unions of left-open intervals.

(b) Let X = X1 ×X2, and let R be the set of all rectangles as in Example (59b). Then ˜R
is the set of all finite disjoint unions of rectangles (Figure 2.3B)

We call ρ a premeasure if, for any finite or countable disjoint collection {Bn}∞n=1 ⊂ B,

(

The disjoint union
∞
⊔

n=1

Bn is also in B
)

=⇒

(

ρ

[

∞
⊔

n=1

Bn

]

=
∞
∑

n=1

ρ[Bn]

)

Example 62:

(a) If X = R and B is the set of all finite left-open intervals as in Example (61a), and
ρ(a, b] = b− a as in Example (56a) on page 41, then ρ is a premeasure. (Exercise 62 )

(b) Let X = R and let B be the set of all finite left-open intervals. Let f : R−→R be some
right-continuous, nondecreasing function, and ρ(a, b] = f(b)− f(a) as in Example (56b)
on page 41. Then ρ is a premeasure. (Exercise 63 )

(c) If (X1,X1, µ1) an (X2,X2, µ2) are measure spaces, and R is as in Example (61b), and
ρ[U1 ×U2] = µ1[U1] · µK [U2] as in Example (56c) on page 42, then ρ is a premeasure
(Exercise 64 ).

If ρ is a premeasure, we can extend ρ to a function ρ̃ : ˜B−→[0,∞] as follows: if ˜B ∈ ˜B and

˜B =
N
⊔

n=1

Bn for some B1, . . . ,BN ∈ B, then define

ρ̃
[

˜B
]

=
N
∑

n=1

ρ[Bn] (2.11)

Lemma 63 Suppose B is a prealgebra and ρ is a premeasure.
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1. ρ̃ is well-defined by formula (2.11). That is: if ˜B ∈ ˜B, and
N
⊔

n=1

Bn = ˜B =
M
⊔

m=1

B′m, then

N
∑

n=1

ρ[Bn] =
m
∑

m=1

ρ[B′m].

2. ρ̃ is also a premeasure.

3. The covering outer measure defined by ( ˜B, ρ̃) is identical with that defined by (B, ρ).

Proof: (1) Since B is a prealgebra, Bn ∩ B′m is in B for all m and n. Observe that

Bn =
M
⊔

m=1

(Bn ∩B′m) and B′m =
N
⊔

n=1

(Bn ∩B′m). Since ρ is a premeasure, it follows that

ρ(Bn) =
M
∑

m=1

ρ (Bn ∩B′m) , and ρ(B′m) =
N
∑

n=1

ρ (Bn ∩B′m)

Thus,
N
∑

n=1

ρ(Bn) =
N
∑

n=1

M
∑

m=1

ρ (Bn ∩B′m) , =
M
∑

m=1

ρ(B′m).

(2 & 3) Exercise 65 2

Hence, for the remainder of this section, we can assume without loss of generality that B is
an algebra.

Proposition 64 If B is an algebra and ρ is a premeasure on B, then any A ∈ B is µ̃-

measurable, and µ̃(A) = ρ(A).

Proof: Let A ∈ B; first we will show that µ̃(A) = ρ(A).

Proof that µ̃(A) ≤ ρ(A): This follows immediately from the definition (2.8) on page 40,
because {A} is itself a B-covering of A.

Proof that µ̃(A) ≥ ρ(A): Suppose {Bn}∞n=1 is a B-covering of A. For all N ∈ N, define

AN = A ∩

(

BN \
N−1
⋃

n=1

Bn

)

Observe that:

(1) An ∈ B (because B is an algebra), and An ⊂ Bn.

(2) A1,A2,A3, . . . are disjoint, and A =
∞
⊔

n=1

An.
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Since ρ is a premeasure, it follows from (2) that ρ(A) =
∞
∑

n=1

ρ(An). However, by (1),

ρ(An) ≤ ρ(Bn); hence ρ(A) ≤
∞
∑

n=1

ρ(Bn). Since this is true for any B-covering, we

conclude that ρ(A) ≤ inf
{Bn}∞n=1

a covering of A

∞
∑

n=1

ρ(Bn) = µ̃(A).

Proof that A is measurable: By Claim 1 from the proof of Carathéodory’s theorem on
page 36, it is sufficient to show, for any Y ⊂ X, that µ̃[Y ∩A] + µ̃[Y ∩A{] ≤ µ̃[Y].

For any ε > 0, find a B-covering {Bn}∞n=1 for Y such that

(

∞
∑

n=1

ρ(Bn)

)

≤ µ̃[Y] + ε (2.12)

Since B is an algebra, the elements Bn ∩A and Bn ∩A{ are in B, and, {Bn ∩A}∞n=1 is a
B-covering for Y ∩A, while {Bn ∩A{}∞n=1 is a B-covering for Y ∩A{. Hence, we have:

µ̃[Y ∩A] ≤
∞
∑

n=1

ρ [Bn ∩A] and µ̃[Y ∩A{] ≤
∞
∑

n=1

ρ
[

Bn ∩A{
]

. (2.13)

Also,

∞
∑

n=1

ρ[Bn] =
∞
∑

n=1

ρ
[

(Bn ∩A) t
(

Bn ∩A{
)]

=(∗)

∞
∑

n=1

ρ [Bn ∩A] +
∞
∑

n=1

ρ
[

Bn ∩A{
]

.

(2.14)
where (∗) is because ρ is a premeasure. Thus,

µ̃[Y ∩A] + µ̃[Y ∩A{] ≤by (2.13)

∞
∑

n=1

ρ [Bn ∩A] +
∞
∑

n=1

ρ
[

Bn ∩A{
]

=by (2.14)

∞
∑

n=1

ρ[Bn] ≤by (2.12) µ̃[Y] + ε.

Let ε→0 to conclude µ̃[Y ∩A] + µ̃[Y ∩A{] ≤ µ̃[Y], as desired. 2

Example 65:

(a) In the Lebesgue measure (Example 53 on page 38), all half-open intervals —and therefore
all Borel sets in R —are Lebesgue-measurable. Also, the Lebesgue measure of [a, b) is
b− a, as desired.
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(b) In the Stieltjes measure (Example (56b) on page 41), all half-open intervals —and there-
fore all Borel sets in R —are Lebesgue-measurable. Also, the measure of [a, b) is f(b) −
f(a), as desired.

(c) In the product measure (Example (56c) on page 42), all rectangles —and therefore all
elements of X1 ⊗ X2 —are measurable with respect to the product measure. Also, the
measure of U1 ×U2 is µ1(U1)× µ2(U2), as desired.

2.1(c) Metric Outer Measures

Prerequisites: §2.1(a), particularly Examples (54d), (54f), (58a) and (58b)

Let (X, d) be a metric space. For any U,V ⊂ X, define

d(U,V) = inf
u∈U

inf
v∈V

d(u, v).

Thus, if U∩V 6= ∅, then d(U,V) = 0. Conversely, if d(U,V) > 0, then U and V are disjoint.
Let µ̃ be an outer measure2; we call µ̃ a metric outer measure if:

(

d(U,V) > 0
)

=⇒
(

µ̃(U tV) = µ̃(U) + µ̃(V)
)

Proposition 66 (Examples of Metric Outer Measures)

1. Let (X, d) be a metric space. For any α > 0, the α-dimensional Hausdorff outer measure
(Example (58a) on page 42) is a metric outer measure.

2. Let G be a locally compact Hausdorff topological group. Then G is metrizable3, and the
Haar outer measure (Example (58b) on page 43) is a metric outer measure.

Proof: Proof of (1) Suppose U1,U2 ⊂ X and d(U1,U2) = ε > 0. Fix δ < ε; let Bδ the
set of open balls of radius less than δ, and let {Bn}∞n=1 ⊂ Bδ.
Claim 1: {Bn}∞n=1 covers U1tU2 if and only if we can split {Bn}∞n=1 into two subfamilies:
{Bn}∞n=1 = {B1

n}∞n=1 t {B2
n}∞n=1, where {B1

n}∞n=1 covers U1 and {B2
n}∞n=1 covers U2.

Proof: If {Bj
n}∞n=1 covers Uj for j = 1, 2, then clearly {B1

n}∞n=1t{B2
n}∞n=1 covers U1tU2.

Conversely, suppose that {Bn}∞n=1 covers U1 tU2. Since d(U1,U2) = ε > δ, no element
of {Bn}∞n=1 can simultaneously intersect U1 and U2. Thus, we can split {Bn}∞n=1 into
two disjoint subcollections {B1

n}∞n=1 and {B2
n}∞n=1 which cover U1 and U2 respectively.

2 [Claim 1]

2See page 34.
3That is, there is a metric on G which is compatible with the topology. Note that we do not assume this

metric is G-invariant.
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If {Bn}∞n=1 = {B1
n}∞n=1 t {B2

n}∞n=1 as in Claim 1, then clearly,

∞
∑

n=1

diam [Bn]α =
∞
∑

n=1

diam
[

B1
n

]α
+
∞
∑

n=1

diam
[

B2
n

]α

Then, taking infimums, we get:

µ̃αδ (U) = inf
{Bn}∞n=1⊂Bδ

covers U

∞
∑

n=1

diam [Bn]α

= inf
{B1

n}∞n=1⊂Bδ
covers U1

∞
∑

n=1

diam
[

B1
n

]α
+ inf

{B2
n}∞n=1⊂Bδ

covers U2

∞
∑

n=1

diam
[

B2
n

]α

= µ̃αδ (U1) + µ̃αδ (U2)

This is true for any δ < ε. Thus, taking the limit as δ→0, we conclude:

µ̃α(U) = µ̃α(U1) + µ̃α(U2).

Proof of (2) The metrizability of G is a standard result4. Let E1 ⊃ E2 ⊃ E3 ⊃ . . . be a
descending sequence of open neighbourhoods of the identity element e ∈ G, as in Example
(54f) on page 39. Assume without loss of generality that diam [En] < 1

n
. Now argue exactly

as in (1). 2

Proposition 67 If µ̃ is a metric outer measure, then all Borel subsets of X are µ̃-measurable.

Proof: Since the Borel sigma-algebra is generated by the closed subsets of X, it suffices to
show that all closed subsets of X are µ̃-measurable. So, let C ⊂ X be closed. By Claim 1
from the proof of Caratheodory’s theorem on page 36, C ∈ X if and only if:

For any Y ⊂ X, with µ̃ [Y] <∞, µ̃ [Y] ≥ µ̃ [C ∩Y] + µ̃
[

C{ ∩Y
]

. (2.15)

So, let Y ⊂ X with µ̃ [Y] <∞, and for all n ∈ N, define

Yn =

{

y ∈ Y ∩C{ ; d(y,C) >
1

2n

}

.

Claim 1: For any n ∈ N, µ̃ (Y) ≥ µ̃ (Y ∩C) + µ̃ (Yn).

4See for example [?] Exercise 38C, p. 260.
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Proof: µ̃ (Y) = µ̃
(

(Y ∩C) t
(

Y ∩C{
))

≥(a) µ̃
(

(Y ∩C) t Yn

)

=(b) µ̃ (Y ∩C) + µ̃ (Yn).

(a) Because Yn ⊂ Y ∩C{, and µ̃ is an outer measure (property (OM2) on page 34).

(b) Because d(Y ∩C, Yn) >
1
2n

, and µ̃ is a metric outer measure. ............. 2 [Claim 1]

Claim 2: µ̃
(

Y ∩C{
)

= lim
n→∞

µ̃ (Yn).

Proof:

Claim 2.1: lim
n→∞

µ̃ (Yn) = sup
n∈N

µ̃ (Yn) ≤ µ̃
(

Y ∩C{
)

.

Proof: Y1 ⊂ Y2 ⊂ . . . ⊂ Y ∩C{, so µ̃(Y1) ≤ µ̃(Y2) ≤ . . . ≤ µ̃
(

Y ∩C{
)

. The
claim follows. .................................................... 2 [Claim 2.1]

It remains to show the reverse inequality, namely, that µ̃
(

Y ∩C{
)

≤ sup
n∈N

µ̃ (Yn). For

all n ∈ N, define Un = Yn \Yn−1.

Claim 2.2: For any n ∈ N, d(Un+2,Un) ≥ 1

2n+1
.

Proof: By contradiction, suppose d(Un+2,Un) <
1

2n+1
. Thus, there is some u0 ∈ Un and

u2 ∈ Un+2 so that d(u0, u2) <
1

2n+1
. But u0 ∈ Un ⊂ Yn, so d(u0,C) >

1

2n
. Meanwhile,

u2 ∈ Un+2 = Yn+2 \ Yn+1, so that d(u2,C) ≤ 1

2n+1
. Thus, d(u0,C) ≤ d(u0, u2) +

d(u2,C) <
1

2n+1
+

1

2n+1
=

1

2n
, contradicting that d(u0,C) >

1

2n
. ... 2 [Claim 2.2]

Claim 2.3: µ̃

(

N
⊔

n=1

U2n

)

=
N
∑

n=1

µ̃ (U2n) and µ̃

(

N
⊔

n=0

U2n+1

)

=
N
∑

n=0

µ̃ (U2n+1).

Proof: µ̃ is a metric outer measure, so by Claim 2.2, µ̃ (U2 tU4 t . . . tU2N) =
µ̃ (U2) + µ̃ (U4 t . . . tU2N). Apply induction. Do the same for the U2n+1 equation.
2 [Claim 2.3]

Claim 2.4:
∞
∑

n=1

µ̃ (U2n) and
∞
∑

n=0

µ̃ (U2n+1) are finite.

Proof: By Claim 2.3,
N
∑

n=1

µ̃ (U2n) = µ̃

(

N
⊔

n=1

U2n

)

≤ µ̃

(

∞
⊔

n=1

Un

)

≤ µ̃(Y ∩ C{).

Take the limit as N→∞ to conclude that
∞
∑

n=1

µ̃ (U2n) ≤ µ̃(Y ∩ C{) ≤ µ̃(Y). But

µ̃(Y) is finite by hypothesis. ...................................... 2 [Claim 2.4]

Claim 2.5: µ̃
(

Y ∩C{
)

≤ sup
n∈N

µ̃ (Yn).
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Proof: Let ε > 0. It follows from Claim 2.4 that, for large enough N , we have

∞
∑

n=N

µ̃ (U2n) <
ε

2
, and

∞
∑

n=N

µ̃ (U2n+1) <
ε

2
.

But we also know that Y ∩C{ = Y2N t

(

∞
⊔

n=N

U2n

)

t

(

∞
⊔

n=N

U2n+1

)

, so that,

by property (OM3) of any outer measure (page 34),

µ̃
(

Y ∩C{
)

≤ µ̃ (Y2N) +
∞
∑

n=N

µ̃ (U2n) +
∞
∑

n=N

µ̃ (U2n+1) ≤ sup
n∈N

µ̃ (Yn) + ε

Since ε is arbitrary, we conclude that µ̃
(

Y ∩C{
)

≤ sup
n∈N

µ̃ (Yn), as desired. 2 [Claims 2.5 & 2]

Combining Claim 1 and Claim 2 yields assertion (2.15), as desired. 2

Corollary 68 If X is a metric space, then the Hausdorff measure is a Borel measure.

If G is a locally compact Hausdorff group, then the Haar measure is a Borel measure. 2

2.2 More About Stieltjes Measures

Prerequisites: §2.1(a), particularly Examples (54b) and (56b); §2.1(b), particularly Examples (62b) and
(65b)

Recommended: Example 1.1(c)〈vii〉 on page 10
Stieltjes measures are the simplest class of measures on R besides the Lebesgue measure,

and often arise in probability theory. If µf is the Stieltjes measure determined by f , then f
is called the accumulation function or cumulative distribution function for µf . It will
help to keep the following examples in mind:

Example 69:

(a) The Lebesgue Measure: Let f(x) = x. Then µf is the Lebesgue measure.

(b) Antiderivatives: Let f(x) = arctan(x) (Figure 2.4A) Then, for any interval [a, b],

µf [a, b] = arctan(b)− arctan(a) =

∫ b

a

1

1 + x2
dx, (Figure 2.4B)

because f(x) = arctan(x) is the antiderivative of f ′(x) = 1
1+x2 .
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(A) (B)

f(x)=arctan(x)

f’(x) = 
1

1+x2

Figure 2.4: Antiderivatives: If f(x) = arctan(x), then µf [a, b] =
∫ b

a
1

1+x2 dx.

(A) (B)

Figure 2.5: The Heaviside step function.

(c) The Heaviside Step Function: Let f(x) =

{

1 if x ≥ 0;
0 if x < 0.

(Figure 2.5A). Then

for any measurable U ⊂ R,

µf [U] =

{

1 if 0 ∈ U
0 if 0 6∈ U

(Exercise 66 ; see Figure 2.5B)

Thus, µf possess a single ‘atom’ of mass 1 at zero. µf is sometimes called the point
mass or the Dirac delta function (even though it is not a function), and written as δ0.

In general, if y ∈ R and we want an atom at y, we define f(x) =

{

1 if x ≥ 0;
0 if x < 0.

Thus, for any measurable U ⊂ R, µf [U] =

{

1 if y ∈ U;
0 if y 6∈ U.

We call δy = µf the

point mass at y.

(d) The Floor Function: Let f(x) = bxc. That is, f(x) = max {n ∈ Z ; n ≤ x} (Figure
2.6A). Then for any measurable U ⊂ R,

µf [U] = card [Z ∩U] (Exercise 67 ; see Figure 2.6B)

Thus, µf has an atom of mass 1 at every integer. In other words, µf =
∞
∑

n=−∞

δn.

(e) The Devil’s Staircase: Let K ⊂ R be the Cantor set (Example 16b on page 18), and
define f(x) = sup {k ∈ K ; k ≤ x} (Figure 2.7A). Then f is nondecreasing and right-
continuous (Exercise 68 ). If µf is the corresponding Stieltjes measure (Figure 2.7B),
then µf (K) = 1, and µf (K

{) = 0 (Exercise 69 ).
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(A) (B)

1 2 3 4 5-1-2-3-4-5 1 2 3 4 5-1-2-3-4-5

Figure 2.6: The floor function f(x) = bxc.

12/31/3

1

2/3

1/3

12/31/3

1/3

2/9

1/9

(A) (B)

Figure 2.7: The Devil’s staircase.
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(f) Suppose we enumerate the rational numbers: Q = {q1, q2, q3, . . .}. Define f(x) =
∑

qn≤x

1

2n
. Then f is nondecreasing and right-continuous (Exercise 70 ). If µf is the

corresponding Stieltjes measure, then µf (Q) = 1, and µf ( 6Q) = 0 (Exercise 71 ).

Exercise 72 Suppose we apply the ‘Devil’s staircase’ construction to the rational numbers,
and define f(x) = sup {q ∈ Q ; q ≤ x}. Show that µf is just the Lebesgue measure.

Theorem 70 (Properties of the Stieltjes Measure)

Let f : R−→R be a nondecreasing, right-continuous function, and let µf be the correspond-
ing Stieltjes measure.

1. If −∞ ≤ a ≤ b ≤ ∞, then

µf (a, b] = f(b)− f(a); µf (a, b) = lim
x↗b

f(x)− f(a);

µf [a, b] = f(b)− lim
x↗a

f(x); and µf [a, b) = lim
x↗b

f(x)− lim
x↗a

f(a);

2. Suppose a ∈ R is a point of discontinuity of f , so that lim
x↗a

f(x) < f(a). Then a is an atom

of µf , and µf{a} = f(a)− lim
x↗a

f(x). Furthermore, every atom arises in this manner.

3. µf has at most a countable number of atoms.

Proof: Exercise 73 2

A measure µ on the Borel sigma algebra of R is called locally finite if µ[K] < ∞ for any
compact K ⊂ R.

Theorem 71 (Local Finiteness)

Let µ be a measure on the Borel sigma algebra of R. Then:
(

µ is locally finite
)

⇐⇒
(

µ is the Stieltjes measure for some function f .
)

Proof: ‘⇐=’: Suppose µf is a Stieltjes measure, and K ⊂ R is compact. Then K ⊂ [a, b)
for some −∞ < a < b <∞, and thus, µf [K] ≤ µf (a, b] = f(b)− f(a) <∞.

‘=⇒’: Suppose µ is locally finite, and define f : R−→R by: f(x) =

{

µ(0, x] if x > 0
−µ(x, 0] if x ≤ 0

.

It is Exercise 74 to verify:

1. f is nondecreasing and right-continuous.

2. µ is the Stieltjes measure defined by f . 2
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A measure µ on the Borel sigma algebra of R is called regular if, for any measurable U ⊂ R,
we have:

µ[U] = inf
O open
U⊂O

µ[O] and µ[U] = sup
K compact

K⊂U

µ[K]

Theorem 72 (Regularity)

Let µf be a Stieltjes measure on R. Then µ is regular.

Proof:

Claim 1: If −∞ < a ≤ b < ∞, then for any ε > 0, there is some B > b so that
µf (a,B) < ε+ µf (a, b].

Proof: f is right-continuous, so for any ε, there is some B > b so that f(B) < ε+ f(b).
Thus, lim

x↗B
f(x) ≤ f(B) < f(b)+ε. Thus, µf (a, b) = lim

x↗B
f(x)−f(a) < f(b)−f(a)+ε =

µf (a, b] + ε. ......................................................... 2 [Claim 1]

Claim 2: Let U ⊂ R be measurable. Then µf [U] = inf
O open
U⊂O

µf [O].

Proof: Fix ε > 0, and let {(an, bn]}∞n=1 be a covering of U so that
∞
∑

n=1

µf (an, bn] < ε+µf [U].

By Claim 1, for all n ∈ N, find Bn so that µf (an, Bn) <
ε

2n
+ µf (an, bn]. Now let

V =
∞
⋃

n=1

(an, Bn). Then V is open, U ⊂ V, and

inf
O open
U⊂O

µf [O] ≤ µf [V] ≤
∞
∑

n=1

µf (an, Bn) ≤
∞
∑

n=1

ε

2n
+ µf (an, bn]

= ε+
∞
∑

n=1

µf (an, bn] < 2ε+ µf [U].

Since ε is arbitrary, we conclude that inf
U⊂O

O open

µf [O] ≤ µf [U]. The reverse inequality is

immediate, so we’re done. ............................................ 2 [Claim 2]

Claim 3: If n ∈ N and U ⊂ [−n, n] is measurable, then µ[U] = sup
K⊂U

K compact

µ[K].

Proof: Let I = [−n, n], and let U{ = I \U. By Claim 1, µ[U{] = inf
U{⊂O⊂I
O open

µ[O]. Thus,

µ[U] = µ[I]− µ[U{] = 2n− inf
U{⊂O⊂I
O open

µ[O] = sup
U{⊂O⊂I
O open

(2n− µ[O])
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= sup
U{⊂O⊂I
O open

µ
[

O{
]

, where O{ = I \O.

However, the complements of any open O ⊂ I is compact, and vice versa. Indeed,
{

O{ ; U{ ⊂ O ⊂ I and O open
}

= {K ; U ⊂ K ⊂ I and K compact}

Thus, sup
U{⊂O⊂I
O open

µ
[

O{
]

= sup
K⊂U

K compact

µ[K]. ......................... 2 [Claim 3]

Claim 4: Suppose U ⊂ R is measurable. Then µ[U] = sup
K⊂U

K compact

µ[K].

Proof: Let Un = U∩ [−n, n] for all n ∈ N. By Claim 3, we can find a compact Kn ⊂ Un

so that µ[Un] < 1
n

+ µ[Kn]. Thus,

µ[U] =(a) lim
n→∞

µ[Un] = lim
n→∞

µ[Un]− 1

n
≤ lim

n→∞
µ[Kn] ≤(b) µ[U].

(a) Because U1 ⊂ U2 ⊂ . . . and U =
∞
⋃

n=1

Un. (b) Because Kn ⊂ Un ⊂ U for all n.

We conclude that lim
n→∞

µ[Kn] = µ[U]. ..................... 2 [Claim 4 & Theorem]

This yields the following result, which says that, modulo sets of measure zero, all measurable
subsets of R are quite ‘nice’.

Corollary 73 Let µf be a Stieltjes measure, and let U ⊂ R. The following are equivalent:

1. U is measurable.

2. U = G \ Z where G is Gδ and Z has µf -measure zero.

3. U = F t Z where F is Fσ and Z has µf -measure zero.

Proof: Clearly (2=⇒1) and (3=⇒1)

(1=⇒2): Let O1 ⊃ O2 ⊃ . . . ⊃ U be a sequence of open sets such that µf [U] = lim
n→∞

µf [On].

Let G =
∞
⋂

n=1

On. Then G is Gδ, and U ⊂ G, and µf [G] = lim
n→∞

µf [On] = µf [U]. Thus,

Z = G \U has measure zero.

(1=⇒3) is proved similarly, using compact sets. 2

Example (2.4) is just a special case of the following:
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Theorem 74 (Stieltjes Measures and the Fundamental Theorem of Calculus)

1. Let φ : R−→[0,∞) be continuous. Define µ by µ[U] =
∫

U
φ(x) dλ[x], where λ is the

Lebesgue measure. Then µ is the Stieltjes measure determined by f , where f is any
antiderivative of φ —that is, any function satisfying f ′ = φ.

2. Conversely, suppose f : R−→R is differentiable, and let µf be the corresponding Stieltjes
measure. Then µf [U] =

∫

U
f ′(x) dλ[x].

Proof: Exercise 75 2

Even when f is nondifferentiable —or even discontinuous —we can think of the measure
µf as a kind of generalized ‘derivative’ of f . For example, the Dirac delta function δ0 from
Example (69c) is the ‘derivative’ of the Heaviside step function. These loose ideas are made
precise in the theory of distributions developed by Laurent Schwartz [?].

2.3 Signed and Complex-valued Measures

Measures were invented to endow subsets with a notion of magnitude, but it is useful to allow
measures to take on negative, or even complex, values. This makes set of all measures on a
measurable space (X,X ) into a vector space.

Definition 75 Signed Measure

Let (X,X ) be a measurable space. A signed measure on (X,X ) is a function µ :
X−→[−∞,∞] such that:

1. µ[∅] = 0.

2. µ assumes at most one of the values ∞ or −∞; it cannot assume both.

3. µ countably additive: for disjoint collection U1,U2, . . . ∈ X , we have:

µ

[

∞
⊔

n=1

Un

]

=
∞
∑

n=1

µ [Un] , (2.16)

where the sum on the right hand side of (2.16) converges absolutely, either to a real
number, or to +∞ or −∞.
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Remark:

• It is important that µ cannot contain both +∞ and −∞ in its range. After all, if
µ [A] =∞, and µ [B] = −∞, then what possible value could µ [A tB] have?

• The set
∞
⊔

n=1

Un is the same no matter what ‘order’ in which we perform the disjoint union.

Thus, the value of the summation in (2.16) must also be independent of the ordering; this
is why the sum must converge absolutely.

• One physical interpretation of a (nonnegative) measure is as the density of some distribu-
tion of matter. Hence, the measure of a subset U represents the ‘mass’ contained in U.
Similarly, we can interpret a (signed) measure as a distribution of electric charge. Hence,
the measure of a subset U represents the total charge contained in U. For this reason,
signed measures are sometimes called charges.

Example 76:

(a) Let (X,X , µ) be a measure space, and let f ∈ L1(X, µ). Define measure ν by:

ν[U] =

∫

U

f(x) dµ[x] for any U ∈ X .

If f is nonnegative, then ν is a ‘normal’ measure, but if f assumes negative values, then
ν is a signed measure.

(b) Let (X,X ) be a measurable space, and let µ and ν be two measures on X. Define
λ = µ− ν; that is, for any U ∈ X , λ[U] = µ[U]− ν[U]. Then λ is a signed measure.

We will see that Example(76b) is in fact prototypical.

Definition 77 Positive, Negative & Null sets; Mutually singular

Let (X,X , µ) be a (signed) measure space, and let U ⊂ X. Then:

• U is positive if µ[U] ≥ 0, and µ[V] ≥ 0 for all V ⊂ U.

• U is negative if µ[U] ≤ 0, and µ[V] ≤ 0 for all V ⊂ U.

• U is null if if µ[U] = 0, and µ[V] = 0 for all V ⊂ U.

If µ and ν are two measures on X , we say µ and ν are mutually singular, and write
“µ ⊥ ν”, if there exist disjoint subsets U,V ⊂ X so that:

1. U ∩V = ∅ and U tV = X.

2. U is ν-null, and V is µ-null.
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Heuristically, U contains the ‘support’ of µ, and V contains the ‘support’ of ν, and the two
measures have ‘disjoint support’.

Example 78:

Let (X,X , µ), f , and ν be as in Example (76a). Then:

P = {x ∈ X ; f(x) ≥ 0} is a ν-positive set;
N = {x ∈ X ; f(x) < 0} is a ν-negative set;

and Z = {x ∈ X ; f(x) = 0} is a ν-null set.

Theorem 79 (Hahn-Jordan Decomposition Theorem)

Let (X,X ) be a measurable space, with signed measure µ.

1. There exist disjoint subsets P,N ⊂ X so that

• P tN = X.

• P is µ-positive and N is µ-negative.

2. These sets are ‘almost’ unique: If P′,N′ are another pair satisfying these conditions, then
P4P′ and N4N′ are µ-null.

3. There exist unique nonnegative measures µ+ and µ− on (X,X ) so that µ+ ⊥ µ− and
µ = µ+ − µ−.

Proof: Assume without loss of generality that µ[U] <∞ for all U (otherwise, consider −µ).
Proof of Part 1:

Claim 1: Let ε > 0. If Y ⊂ X, and µ[Y] > −∞, then there is some U ⊂ Y such that
µ[U] ≥ µ[Y], and so that, for all V ⊂ U, µ[V] ≥ −ε.

Proof: Suppose not. Then there is some N0 ⊂ Y with µ[N0] < −ε (otherwise Y itself
could be the U of the claim). Now, let Y1 = Y \N0. Then

µ[Y1] = µ[Y]− µ[N0] > µ[Y] + ε > µ[Y].

Next, there is N1 ⊂ Y1 so that µ[N1] < −ε (otherwise, Y1 could be U since µ[Y1] > µ[Y]).
Let Y2 = Y1 \ N1. Continuing this way, we get an infinite sequence of disjoint sets

Y0,Y1, . . . such that µ[Yn] < −ε for all n. Now let Y∞ =
∞
⊔

n=1

Yn. Then

µ[Y∞] =
∞
∑

n=1

µ[Yn] ≤
∞
∑

n=1

(−ε) = −∞.

But then µ[Y\Y∞] = µ[Y]+∞ =∞, contradicting our starting assumption. 2 [Claim 1]
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Claim 2:

(a) If U1 ⊃ U2 ⊃ U3 ⊃ . . . and U =
∞
⋂

n=1

Un, then µ[U] = lim
n→∞

µ[Un].

(b) If U1 ⊂ U2 ⊂ U3 ⊂ . . . and U =
∞
⋃

n=1

Un, then µ[U] = lim
n→∞

µ[Un].

Proof: Exercise 76 Hint: The proof is similar to the one for nonnegative measures.
2 [Claim 2]

Claim 3: If Y ⊂ X, and µ[Y] > −∞, then there is a µ-positive subset P ⊂ Y with
µ[P] ≥ µ[Y].

Proof: By Claim 1, there is U1 ⊂ Y so that µ[U1] ≥ µ[Y] and µ[V] ≥ −1 for all V ⊂ U1.
Next, by Claim 1, there is U2 ⊂ U1 so that µ[U2] ≥ µ[U1] ≥ µ[Y], and µ[V] ≥ −1

2
for all

V ⊂ U2.

Inductively, we build a sequence U1 ⊃ U2 ⊃ U3 ⊃ . . . such that, for all n ∈ N, µ[Un] ≥

µ[Y], and µ[V] ≥ −1
n

for all V ⊂ Un. Now, let P =
∞
⋂

n=1

Un.

Claim 3.1: P is µ-positive.

Proof: Let V ⊂ P. For every n ∈ N, V ⊂ Un, so that µ[V] ≥ −1
n

. Thus, µ[V] ≥ 0.
2 [Claim 3.1]

Also, by Claim 2(a), µ[P] = lim
n→∞

µ[Un] ≥ µ[Y]. ....................... 2 [Claim 3]

Claim 4: If P1,P2, . . . are all µ-positive sets, then P =
∞
⋃

n=1

Pn is also µ-positive.

Proof: Exercise 77 ................................................. 2 [Claim 4]

Let S = sup
Y∈X

µ[Y], and let Y1,Y2, . . . be a sequence of subsets such that µ[Yn]−−−−n→∞−→S. By

Claim 3, we have µ-positive subsets Pn ⊂ Yn so that µ[Pn] ≥ µ[Yn]; hence µ[Pn]−−−−n→∞−→S

also. By Claim 4, P =
∞
⋃

n=1

Pn is also µ-positive.

Claim 5: µ[P] = S.

Proof: First, note that µ[P] ≤ S, by definition of S. But by Claim 2(b), µ[P] =

lim
N→∞

µ

[

N
⋃

n=1

Pn

]

≥ lim
n→∞

µ [Pn] = S. Thus, µ[P] ≥ S also. ............ 2 [Claim 5]

Now, let N = X \P.

Claim 6: N is µ-negative.
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Proof: Suppose not. Then there is U ⊂ N with µ[U] > 0. But U is disjoint from P, and
thus µ[P tU] > µ[U] = S, contradicting the supremality of S. ......... 2 [Claim 6]

Thus, X = P tN is the decomposition we seek.

Proof of Part 2: Suppose X = P′ tN′ was another such decomposition.

Claim 7: P′ \P is µ-null.

Proof: Suppose not. Then there is some U ⊂ (P′ \P) with µ[U] > 0. But U is disjoint
from P, so that µ[UtP] > µ[P] = S, contradicting the supremality of S. 2 [Claim 7]

Likewise, P\P′ is µ-null, so that P4P′ = (P\P′)t (P′ \P) is µ-null. A similar proof works
for N and N′.

Proof of Part 2: Exercise 78 . 2

We refer to X = PtN as a Hahn-Jordan decomposition of the (signed) measure space
(X,X , µ), and µ = µ+−µ− as a Hahn-Jordan decomposition of the signed measure µ. The
total variation of µ is the (positive) measure |µ| defined |µ| = µ+ + µ−.

Example 80:

(a) Suppose µ, f , and ν are as Example (76a), and define P and N as in Example 78. Then
X = P tN, and this is a Hahn-Jordan decomposition of (X,X , ν). Now, define

f+(x) = 11P(x) · f(x) and f−(x) = 11N(x) · f(x)

and, for any U ∈ X , let

ν+[U] =

∫

U

f+(x) dµ[x] and ν−[U] =

∫

U

f−(x) dµ[x]

Then ν = ν+ − ν− is a Hahn-Jordan decomposition for ν. The total variation of ν is the
measure |ν| defined

|ν|[U] =

∫

U

|f(x)| dµ[x] for all U ∈ X .

(b) λ = µ− ν as Example (76b). If µ ⊥ ν, then the Hahn-Jordan decomposition for λ is:

λ+ = µ and λ− = ν.

However, if µ and ν have overlapping support, then they do not yield the Hahn-Jordan
decomposition

Definition 81 Complex-valued Measure

Let (X,X ) be a measurable space. A complex-valued measure on (X,X ) is a function
µ : X−→C so that re [µ] and im [µ] are both strictly finite signed measures.
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Remark: We need re [µ] and im [µ] to be finite, because otherwise we might end up with
nonsensical results like “µ [A] =∞+ 3 · i”.

Example 82:

(a) Let (X,X , µ) be a measure space, and let f ∈ L1(X, µ; C). Define measure ν by:

ν[U] =

∫

U

f(x) dµ[x] for any U ∈ X .

Then ν is a complex-valued measure.

(b) Let (X,X ) be a measurable space, and let λ, µ, ν, ρ be four finite measures on X. Define
η = (λ− µ) + i(ν − ρ); that is,

η[U] = λ[U] − µ[U] + iν[U] − iρ[U] for any U ∈ X .

Then ν is a complex-valued measure.

In a similar vein, we can define “V-valued measures” where V is any topological vector
space. For example:

• Bochner Integrals are measures taking their values on on a Banach space.

• Spectral Measures are measures whose values range over the set of bounded linear
operators on a Hilbert space.

2.4 The Space of Measures

2.4(a) Introduction

Prerequisites: §2.3

Definition 83 The Space of Measures

Let (X,X ) be a measurable space. The space of measures over (X,X ) is the complex
vector space

M (X,X ) := {µ : X−→C ; µ is a (complex-valued) measure on X}

Exercise 79 Show that this is a vector space.

Example 84: Finite State Space

If X = {x1, . . . , xN} is a finite set, and X := P(X), thenM(X,X ) is canonically isomorphic
to RX = RN . (Exercise 80 )
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Definition 85 Probability Simplex

Let (X,X ) be a measurable space. The probability simplex on (X,X ) is defined:

∆ (X,X ) := {µ ∈M (X,X ) ; µ is non negative and µ[X] = 1. }

Example 86: Finite State Space

If X = {x1, . . . , xN} is a finite set, and X := P(X), then ∆(X,X ) is canonically isomorphic to

the positive simplex ∆N =

{

x ∈ [0, 1]N ;
N
∑

n=1

xn = 1

}

. (Exercise 81 )

Definition 87 The Space of Radon Measures

If X is a topological space, and X is the Borel sigma algebra. The space of Radon
Measures on X is:

MR (X,X ) := {µ : X−→C ; µ is a Radon measure on X}

Exercise 82 Show that MR is a linear subspace of M.

Definition 88 Radon Probability Simplex

Let X be a topological space, and X be the Borel sigma algebra. Then the Radon
probability simplex on (X,X ) is defined:

∆R (X,X ) := {µ ∈MR (X,X ) ; µ is nonnegative and µ[X] = 1.}

2.4(b) The Norm Topology

Prerequisites: §2.4(a),[Banach Space Theory]

Definition 89 Total Variation Norm

Let (X,X ) be a measurable space, and define

B = {f ∈ L(X,X ) ; |f | has constant value 1}

If µ ∈M (X,X ), then the total variation of µ is defined:

‖µ‖ := sup
f∈B

∫

X

f dµ.

Lemma 90 Equivalent Definitions
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1. Other, equivalent definitions of the total variation norm are:

‖µ‖ = sup

{

∑

P∈P

|µ [P ]| ; P is a finite measurable partition of X

}

and ‖µ‖ = sup

{

∑

P∈P

|µ [P ]| ; P is a countable measurable partition of X

}

2. If µ is real-valued, then: ‖µ‖ =

∣

∣

∣

∣

sup
U∈X

µ[U]

∣

∣

∣

∣

+

∣

∣

∣

∣

inf
U∈X

µ[U]

∣

∣

∣

∣

.

3. If µ is nonnegative, then: ‖µ‖ = µ[X].

4. If µ is nonegative, and ν is absolutely continuous with respect to µ, then ‖ν‖ =
∥

∥

∥

∥

dν

dµ

∥

∥

∥

∥

1

· ‖µ‖, where

∥

∥

∥

∥

dν

dµ

∥

∥

∥

∥

1

is the L1-norm of the function
dν

dµ
in the space L1(X,X , µ).

Proof: Exercise 83 2

Example 91:

(a) If X = {x1, . . . , xn} is a finite set, then, for any µ ∈M(X), ‖µ‖ = µ{x1}+ . . .+µ{xn}.

(b) If µ is a probability measure, then ‖µ‖ = 1.

Theorem 92 Under the total variation norm,M (X,X ) is a Banach Space.

Proof: Exercise 84 Hint: First show that ‖•‖ acts as a norm on M(X,X ).

Next, suppose {µn}∞n=1 is a Cauchy sequence; we need to show that it converges to an element of
M(X,X ).

1. Show that, for any U ∈ X , the sequence of complex numbers {µn(U)}∞n=1 is Cauchy.

2. Define µ(U) = lim
n→∞

µn(U). Then µ : X−→C is a complex valued measure.

3. ‖µ‖ = lim
n→∞

‖µn‖. 2

Theorem 93 If (X1,X1) and (X2,X2) are measurable spaces, and f : X1−→X2 is a mea-

surable map, then the push-forward map

f ∗ :M(X1,X1)−→M(X2,X2)

is a linear isometric embedding of the Banach spaceM(X1,X1) into Banach spaceM(X2,X2).

Proof: Exercise 85 2
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2.4(c) The Weak Topology

Prerequisites: §2.4(a),[Weak Topologies and Locally Convex Spaces]

The elements of M (X,X ) act as linear functionals on other spaces; this induces corre-
sponding weak topologies on M (X,X ).

Definition 94 Weak Topology

Let (X,X ) be a measurable space. The weak topology on M (X,X ) is the topology
defined by the following convergence condition. If {µλ}λ∈Λ is some net of measures, then

(

µλ−−−−λ∈Λ−→µ
)

⇐⇒
(

For every U ∈ X , µλ[U]−−−−λ∈Λ−→µ[U]
)

Theorem 95 With respect to the weak topology, M (X,X ) is a locally convex space.

Proof: Exercise 86 2

There is another (slightly stronger) weak topology, defined on the set of Radon measures.
Let X be a topological space; recall from § 4.1(a) on page 95 that C0(X) is the vector space
of continuous functions f : X−→R which vanish at infinity, which is a Banach space when
equipped with the uniform norm ‖f‖u = sup

x∈X
|f(x)|. Let C∗0(X) be the space of continuous

linear functionals on C0(X); that is, linear functions C0(X)−→R which are continuous relative
to ‖•‖u.

Definition 96 Vague Topology

Let X be a topological space, and X the Borel sigma-algebra. The vague topology on
MR (X,X ) is the topology defined by the following convergence condition. If {µλ}λ∈Λ is some
net of Radon measures, then

(

µλ−−−−λ∈Λ−→µ
)

⇐⇒
(

For every f ∈ C0(X),

∫

X

f dµλ −−−−λ∈Λ−→
∫

X

f dµ

)

Theorem 97 With respect to the vague topology, MR (X,X ) is a locally convex space.

Proof: Exercise 87 2

Theorem 98 (Second Riesz Representation Theorem)

Let X is a locally compact Hausdorff space with Borel sigma-algebra X . Define a map

M(X,X )−→C∗0 so that, for any µ ∈M(X,X ) and f ∈ C0, µ[f ] =

∫

X

f dµ.

This map is an isomorphism of M(X,X ) and C∗0 as locally convex vector spaces.

2
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2.5 Disintegrations of Measures

Prerequisites: §5.2(a),§2.4(a)

Integration is process whereby a multitude of separate and distinct quantities are combined
into a unified whole. Disintegration is the opposite: a process whereby a whole is shattered
into many separate components. In measure theory, disintegration is a process whereby we can
decompose a measure into many constituent fibres.

Definition 99 Disintegration of Measures

Let (X,X , ξ) and (Y,Y ,Υ) be measure spaces. A disintegration of ξ with respect to Υ
is a map Y 3 y 7→ ξy ∈M(X,X ) such that:

(D1) The map (y 7→ ξy) is measurable:, for any fixed measurable subset U ⊂ X, the function
Y 3 y 7→ ξy[U] ∈ C is measurable.

(D2) The measure ξ is the integral of the measures {ξy}y∈Y with respect to Υ, in the sense
that, for any measurable subset U ⊂ X, we have:

ξ[U] =

∫

Y

ξy[U] dΥ[y]

Formally, we write this: “ξ =

∫

Y

ξy dΥ[y]”.

Example 100: The Cube

Let X = I3 be the three-dimensional unit cube with Lebesgue measure ξ = λ3; let Y = I2
be the unit square with Lebesgue measure Υ = λ2. Let P : X−→Y be the projection map:
P (x1, x2, x3) = (x1, x2). Fix y ∈ I2, and let Fy = P−1{y} = {y} × I be the fibre over y (see
Figure 2.8A.)

Fibre Fy is just a copy of the unit interval, so let ξx be a ‘copy’ of the Lebesgue measure λ
on Fy. In other words: for any U ⊂ I3, let Uy = {x ∈ I ; (y, x) ∈ U}, and then define:

ξy[U] = λ[Uy] (see Figure 2.8B.)

It then follows that λ3 =

∫

I2
ξy dλ

2[y].

Exercise 88 Verify this, by checking that properties (D1) and (D2) hold.

Example 101: The Fubini-Tonelli Theorem

Let (Y,Y ,Υ) and (Z,Z, ζ) be measure spaces, with product measure space (X,X , ξ). Let
f ∈ L1(X,X , ξ), and define measure Υ on X by:

∀ U ∈ X , Υ [U] :=

∫

U

f dξ.
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Figure 2.8: The fibre measure over a point.

For all y ∈ Y, let Fy = P−1{y} = {y} × Z be the fibre over y. For any U ⊂ X, define
Uy = {z ∈ Z ; (y, z) ∈ U}. Define the fibre measure ξy by:

ξy[U] =

∫

Uz

f(y, z) dζ[z].

Then ξ has disintigration: ξ =

∫

Y

ξy dΥ[y].

This is really just a restatement of the Fubini-Tonelli Theorem.

Exercise 89 Verify this disintegration, by checking that properties (D1) and (D2) hold.

Exercise 90 Verify that this is equivalent to the Fubini-Tonelli theorem.

These examples illustrate the most common disintegrations of measures: decompositions
into ‘fibres’ over some projection map.

Theorem 102 Let (X,X , ξ) and (Y,Y ,Υ) be measure spaces, and p : (X,X , ξ)−→(Y,Y ,Υ)

a measure-preserving map. Then p induces a disintegration of ξ over Υ:

ξ =

∫

Y

ξy dΥ[y],

where, for all y ∈ Y, the fibre measure ξy has its support confined to the fibre Fy = p−1{y}.
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Proof: Let ˜Y := p−1(Y), a sigma-subalgebra of X .

For a fixed subset U ∈ X , consider the conditional measure

ξ
[

U 〈〈 ˜Y
]

:= E
˜Y [11U]

of U with respect to ˜Y . This is a ˜Y-measurable function, therefore constant on each fibre of
the map p. Thus, we can treat it as a measurable function on Y. Specifically, for any fixed
y ∈ Y, define

ξy[U] := ξ
[

U 〈〈 ˜Y
]

(x), where x ∈ p−1{y} is arbitrary.

Claim 1: For fixed y ∈ Y, the map ξy : X 3 U 7→ ξy[U] ∈ R is a measure on X, and
is supported entirely on the fibre Fy. In other words, for any U ∈ X , if U ∩ Fy = ∅, then
ξy[U] = 0.

Proof: Exercise 91 ................................................. 2 [Claim 1]

Claim 2: ξ =

∫

Y

ξy dΥ[y].

Proof: Exercise 92 ................................................. 2 [Claim 2]

2

Definition 103 Fibre Spaces, Fibre Sets

Let (X,X , ξ) and (Y,Y ,Υ) be measure spaces, and p : (X,X , ξ)−→(Y,Y ,Υ) a measure-
preserving map.

Fix y ∈ Y, and let ξy be the fibre measure of Υ over y, so that we have the disintegration

ξ =

∫

Y

ξy dΥ[y],

Let Fy := p−1{y} be the p-fibre over y, and define sigma-algebra

Fy = {U ∩ Fy ; U ∈ X}

Then (Fy,Fy, ξy) is a measure space (Exercise 93 ), and is called the fibre space over the
point y.

For any measurable subset U ⊂ X, let Uy := U ∩ Fy be the corresponding element of Fy;
this is called the fibre of U over y.

If f ∈ Lp(X,X , ξ), then let fy = f
∣

∣

Fy
. Then fy is well-defined for ∀Υ y ∈ Y, and fy ∈

Lp(Fy,Fy, ξy) (Exercise 94 ). We write, formally,

f =

∫

Y

fy dΥ[y]. (see Figure 2.9 on the next page)
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Figure 2.9: The fibre of the function f over the point y.

For example:

• If U ⊂ X, then 11(Uy) = (11U)y. (Exercise 95 )

• If f ∈ Lp(X,X , ξ), then ‖f‖p =

(∫

Y

‖fy‖p
p dΥ[y]

)1/p

. (Exercise 96 )

3 Integration Theory

3.1 Construction of the Lebesgue Integral

Prerequisites: §1.1, §1.3(a)

Let (X,X , µ) be a measure space. If f : X−→C is a measurable function, we might want
to define the integral of f , over X, relative to µ. Our goal is to generalize the classic Riemann
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Figure 3.1: (A) f = f+ − f−; (B) A simple function.

integral to a broader class of domains and functions. Let us denote this (as yet hypothetical)

integral by

∫

X

f dµ. It should have at least three properties:

Compatibility with µ: If f = 11U is an indicator function, then

∫

X

11U dµ = µ[U].

Linearity:

∫

X

(c · f + g) dµ = c ·
∫

X

f dµ +

∫

X

g dµ, for any functions f, g : X−→C and

c ∈ C.

Continuity: If f1, f2, . . . is a sequence of functions converging to f (in some sense), then

lim
n→∞

∫

X

fn dµ =

∫

X

f dµ.

These properties suggest a strategy for defining the integral:

(1) Use ‘Compatibility’ and ‘Linearity’ to define the integral of any sum of characteristic
functions —that is, any simple function.

(2) Use some kind of ‘Continuity’ to define the integral of an arbitrary function by approxi-
mating it with simple functions.

There are two ways to realize this strategy, which we describe in §3.1(b) and §3.1(d). The
reader need only be familiar with §3.1(b); the approach in §3.1(d) is developed only for interest.
For either approach, we need some facts about simple functions, developed in §3.1(a). After
constructing the integral, we will establish some of it’s basic properties in §3.1(c). We will then
develop important limit theorems in §3.2.
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Preliminaries: If f : X−→[−∞,∞], then we can write f as a difference of two nonnegative
functions:

f = f+−f−, where f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0} (see Figure 3.1A)

If f : X−→C then we use the decomposition: f = fre + i · fim.

Lemma 104 If f : X−→[−∞,∞] is measurable, then f+ and f− are measurable and

nonnegative. If f : X−→C is measurable, then f+
re , f−re , f+

im and f−im are measurable and
nonnegative.

Proof: Exercise 97 2

3.1(a) Simple Functions

Definition 105 Simple Function

A simple function is a finite or countable linear combination of characteristic functions.
That is, Φ : X−→C is simple if it has the form:

Φ(x) =
∞
∑

n=1

ϕn · 11Un(x) (see Figure 3.1B)

where ϕn ∈ C are constants and Un ⊂ X are measurable subsets, for n ∈ N. (A finite linear
combination is the special case when Un = ∅ for almost all n ∈ N).

A repartition of Φ(x) is a different collection of subsets {˜Uk}∞k=1 and constants {ϕ̃k}∞k=1

so that Φ(x) =
∞
∑

k=1

ϕ̃k · 11˜Uk
(x) for all x ∈ X (see Figure 3.2A).

If Ψ =
∞
∑

n=1

ψn ·11Vn is another simple function, we say Φ and Ψ are compatible if Un = Vn

for all n.

Lemma 106 Φ and Ψ can always be repartitioned to be compatible; ie. there exists a

collection of subsets {Wk}∞k=1 and constants {ϕ̃k}∞k=1 and { ˜ψk}∞k=1 such that Φ =
∞
∑

k=1

ϕ̃k · 11Wk

and Ψ =
∞
∑

k=1

˜ψk · 11Wk
.
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Figure 3.2: (A) Repartitioning a simple function. (B) Repartitioning two simple functions to
be compatible.

Proof: (see Figure 3.2B) For all n,m ∈ N, define Wn,m = Un ∩Vm (possibly empty), and

define ϕ̃n,m = ϕn and ˜ψn,m = ψm. Now identify N ∼= N× N in some way, thereby reindexing

Wn,m, ϕ̃n,m and ˜ψn,m with respect to k ∈ N. 2

Lemma 107 If Φ and Ψ are simple functions, then so is Φ + Ψ.

Proof: This follows from Lemma 106. 2

Lemma 108 (Approximation by Simple Functions)

Let f : X−→C be measurable. There is a sequence of simple functions {Φn}∞n=1 converging
uniformly to f . That is:

• For all x ∈ X, lim
n→∞

Φn(x) = f(x), and furthermore, lim
n→∞

sup
x∈X

∣

∣

∣Φn(x)− f(x)
∣

∣

∣ = 0.

• Furthermore, if f is real-valued and nonnegative, we can assume that for all x ∈ X,
Φ1(x) ≤ Φ2(x) ≤ . . . ≤ f(x).

Proof: Case 1: (f is is real-valued) The construction is illustrated in Figure 3.3. For

all n ∈ N, and all z ∈ Z, define Uz
n =

{

x ∈ X ; f(x) ∈
[

z

2n
,
z + 1

2n

)}

, and then define

Φn(x) =
∞
∑

z=−∞

z

2n
· 11Uz

n
. Thus, for all x ∈ X,

∣

∣

∣Φn(x)− f(x)
∣

∣

∣ <
1

2n
.
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Figure 3.3: Approximating f with simple functions.

Also, if f is nonnegative, observe that Φ1 ≤ Φ2 ≤ . . . ≤ f .

Case 2: (f is complex-valued) Apply Case 2 to find {Φre
n }∞n=1 and {Φim

n }∞n=1 converging
uniformly to fre and fim. Now define Φn = Φre

n + i · Φim
n ; then Φn is simple by Lemma 107,

and {Φn}∞N=1 converges uniformly to f . 2

3.1(b) Definition of Lebesgue Integral (First Approach)

Prerequisites: §3.1(a)

Definition 109 Lebesgue Integral of a Simple Function

Let Φ =
∞
∑

n=1

ϕn · 11Un be a simple function. We define the (Lebesgue) integral of Φ:

∫

X

Φ dµ =
∞
∑

n=1

ϕn · µ[Un]

if this sum is absolutely convergent. In this case, we say that Φ is integrable.

First, we check that any repartition of Φ yields the same value for
∫

X
Φ dµ in Definition

109.
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Lemma 110 If
N
∑

n=1

ϕn · 11Un = Φ =
K
∑

k=1

ϕ̃n · 11˜Uk
, then

N
∑

n=1

ϕn · µ[Un] =
K
∑

k=1

ϕ̃k · µ[˜Uk].

Proof: Exercise 98 2

Now we extend this definition to arbitrary measurable functions.

Definition 111 Lebesgue Integral

Let f : X−→C be an arbitrary measurable function.

1. If f : X−→[0,∞], then let S = {Φ : X−→[0,∞] ; Φ simple, and Φ ≤ f}, and then

define

∫

X

f dµ = sup
Φ∈S

∫

X

Φ dµ. If this supremum is finite, we say f is integrable.

2. If f : X−→[−∞,∞], then we say f is integrable if f+ and f− are integrable, and then

we define

∫

X

f dµ =

∫

X

f+ dµ −
∫

X

f− dµ

3. If f : X−→C, then we say f is integrable if fre and fim are integrable, and then we

define

∫

X

f dµ =

∫

X

fre dµ + i ·
∫

X

fim dµ.

Remark: Sometimes the notation “

∫

X

f(x) dµ[x]” is used, to emphasise the fact that we are

integrating f as a function of x. Other times, the notation “
∫

X
f” or even just “

∫

f” is used,
when X and µ are understood.

3.1(c) Basic Properties of the Integral

Prerequisites: §3.1(b) or §3.1(d)

Lemma 112
(

f is integrable
)

⇐⇒
(

|f | is integrable
)

⇐⇒
( ∫

X

|f | dµ < ∞
)

.

Proof: Exercise 99 2

The set of all integrable functions is denoted L1(X,X , µ).

Proposition 113 (Properties of the Integral)

The Lebesgue integral has the following properties:
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Linearity: If f, g are integrable, then

∫

X

(f + g) dµ =

∫

X

f dµ +

∫

X

g dµ. If c ∈ C, then
∫

X

c · f(x) dµ[x] = c ·
∫

X

f(x) dµ[x].

Monotonicity: If f and g are real-valued, and f(x) ≤ g(x) for µ-almost every x ∈ X, then
∫

X

f dµ ≤
∫

X

g dµ.

Determines a Density: If f : X−→[0,∞] is nonnegative, then we can define a new measure:

µf : X 3 U 7→
(∫

U

f dµ

)

∈ [0,∞].

Identity: The following are equivalent:

1. f = g almost everywhere.

2.

∫

U

f dµ =

∫

U

g dµ, for every U ∈ X .

3.

∫

X

|f − g| dµ = 0.

We will establish these properties in two stages: first for simple functions, then for arbitrary
functions. To pass from the first stage to the second, we must pause to develop an important
convergence theorem.

Proof of Theorem 113 ‘Monotonicity’:

Case 1: (Simple functions) By Lemma 106, we can repartition Φ and Ψ so that they
are compatible; by Lemma 110, this does not change the values of their integrals. So, let

Φ =
∞
∑

n=1

ϕn · 11Un and Ψ =
∞
∑

n=1

ψn · 11Un If Φ ≤ Ψ, this means that ϕn ≤ ψn for all n. Thus,

∫

X

Φ dµ =
∞
∑

n=1

ϕn · µ[Un] ≤
∞
∑

n=1

ψn · µ[Un] =

∫

X

Ψ dµ.

Case 2: (Nonnegative functions) Let

S(f) = {Φ : X−→[0,∞] ; Φ simple, and Φ ≤ f},
and S(g) = {Γ : X−→[0,∞] ; Γ simple, and Γ ≤ g}.

If f ≤ g, then clearly S(f) ⊂ S(g); hence,
∫

X

f dµ = sup
Φ∈S(f)

∫

X

Φ dµ ≤ sup
Γ∈S(g)

∫

X

Γ dµ =

∫

X

g dµ.
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Figure 3.4: The Monotone Convergence Theorem

Case 3: (Real functions) If f ≤ g, then f+ ≤ g+ and f− ≥ g−. Thus, by Case 2,

∫

X

f+ dµ ≤
∫

X

g+ dµ and

∫

X

f− dµ ≥
∫

X

g− dµ.

Thus

∫

X

f dµ =

∫

X

f+ dµ−
∫

X

f− dµ ≤
∫

X

g+ dµ−
∫

X

g− dµ =

∫

X

g dµ. 2

Proof of Theorem 113 ‘Density’ for simple functions: First suppose that Φ = ϕ · 11U

for some ϕ ∈ C and U ∈ X . Then for any V ∈ X ,

µΦ(V) = ϕ · µ [U ∩V] = ϕ · µ|U [V],

where µ|U is the measure µ restricted to U (see § 1.2(c) on page 20). Thus, µΦ = ϕ · µ|U is

also a measure.

Next, if Φ =
∞
∑

n=1

ϕn ·µ[Un], then µΦ =
∞
∑

n=1

ϕn ·µ|Un
is a linear combination of measures, so

it is also a measure. 2
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Proposition 114 (Monotone Convergence Theorem)

Let fn : X−→[0,∞] be measurable for all n ∈ N, and suppose that, for µ-almost every
x ∈ X, f1(x) ≤ f2(x) ≤ . . . ≤ f(x) and lim

n→∞
fn(x) = f(x), as in Figure 3.4(A).

Then

∫

X

f dµ = lim
n→∞

∫

X

fn dµ = sup
n∈N

∫

X

fn dµ.

Proof: Case 1: ( lim
n→∞

fn(x) = f(x) everywhere on X)

Claim 1: lim
n→∞

∫

X

fn dµ exists and is not greater than

∫

X

f dµ.

Proof: By the ‘Monotonicity’ property from Theorem 113, we know that

∫

X

f1 dµ ≤
∫

X

f2 dµ ≤
∫

X

f3 dµ ≤ . . ., forms an increasing sequence, and also that

∫

X

fn dµ ≤
∫

X

f dµ for all n. Thus, lim
n→∞

∫

X

fn dµ = sup
n∈N

∫

X

fn dµ ≤
∫

X

f dµ. ..... 2 [Claim 1]

Now, let Φ ≤ f be some nonnegative simple function, as in Figure 3.4(B).

Claim 2:

∫

X

Φ dµ ≤ lim
n→∞

∫

X

fn.

Proof: Fix 0 < α < 1, so that α · Φ < Φ (Figure 3.4C). For all n ∈ N, define Vn =
{x ∈ X ; fn(x) ≥ α · Φ(x)}, as in Figure 3.4(D). Thus,

α ·
∫

Vn

Φ dµ =

∫

Vn

α · Φ dµ ≤
∫

Vn

fn dµ ≤
∫

X

fn dµ. (3.1)

Note that V1 ⊂ V2 ⊂ . . ., and X =
∞
⋃

n=1

Vn. The Density property of Theorem 113 says

µΦ is a measure. Thus,

α

∫

X

Φ dµ = α·µΦ[X] =(a) α· lim
n→∞

µΦ[Vn] = α· lim
n→∞

∫

Vn

Φ dµ ≤(b) lim
n→∞

∫

X

fn dµ

(3.2)
(a) by the Lower Continuity property from Proposition 15 on page 17 (b) By formula (3.1).

Let α→1 in (3.2) to conclude that

∫

X

Φ dµ ≤ lim
n→∞

∫

X

fn dµ ........... 2 [Claim 2]

Thus, taking the supremum over all simple functions Φ ≤ f , we conclude from Claim 2 that
∫

X

f dµ = sup
Φ≤f

∫

X

Φ dµ ≤ lim
n→∞

∫

X

fn dµ.

By combining this with Claim 1, we conclude that

∫

X

f dµ = lim
n→∞

∫

X

fn dµ. 2
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Corollary 115 (Levi’s Theorem)

Let 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ f(x) be as in the Monotone Convergence Theorem, and

let M < ∞ be such that

∫

X

fn dµ ≤ M for all n. Then f(x) is finite almost everywhere, and
∫

X

f dµ ≤ M .

Proof: It follows immediately from the Monotone Convergence Theorem that

∫

X

f dµ ≤ M .

To see that f must be almost-everywhere finite, let Y = {x ∈ X ; f(x) =∞}; if µ[Y] > 0,

then

∫

X

f dµ =∞ · µ[Y] =∞. 2

Corollary 116 If f : X−→[0,∞] is measurable, then there is sequence of nonnegative simple

functions {Φn}∞n=1 so that,

• For all x ∈ X, 0 ≤ Φ1(x) ≤ Φ2(x) ≤ . . . ≤ f(x) and lim
n→∞

Φn(x) = f(x).

•
∫

X

f dµ = lim
n→∞

∫

X

Φn dµ.

Proof: Combine Lemma 108 with the Monotone Convergence Theorem. 2

Proof of the rest of Theorem 113:

‘Linearity’ (for simple functions) Suppose Φ and Ψ are simple. By Lemma 106, we can

assume that Φ and Ψ are compatible —that is, Φ =
∞
∑

n=1

ϕn ·11Un and Ψ =
∞
∑

n=1

ψn ·11Un . Thus,

Φ + Ψ =
∞
∑

n=1

(ϕn + ψn) · 11Un , so that

∫

X

Φ+Ψ dµ =
∞
∑

n=1

(ϕn+ψn)·µ [Un] =
∞
∑

n=1

ϕn·µ [Un] +
∞
∑

n=1

ψn·µ [Un] =

∫

X

Φ dµ +

∫

X

Ψ dµ.

‘Linearity’ (for nonnegative functions) By Corollary 116, find sequences of simple func-

tions {Φn}∞n=1 and {Γn}∞n=1 converging pointwise to f and g from below, with

∫

X

f dµ =

lim
n→∞

∫

X

Φn dµ and

∫

X

g dµ = lim
n→∞

∫

X

Γn dµ.
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Let Θn = Φn+Γn. Then {Θn}∞n=1 is a sequence of functions converging pointwise to h = f+g
from below, so by the Monotone Convergence Theorem,

∫

X

h dµ = lim
n→∞

∫

X

Θn dµ = lim
n→∞

∫

X

Φn dµ+

∫

X

Γn dµ =

∫

X

f dµ+

∫

X

g dµ.

‘Linearity’ (for real- or complex-valued functions) Exercise 100 .

‘Density’ (for arbitrary functions) Let {Φn}∞n=1 be a sequence of simple functions con-
verging to f from below. Then, for any U ∈ X , the Monotone Convergence Theorem says
µf [U] = lim

n→∞
µΦn [U]. Now apply Part 2 of Proposition 21 on page 22.

‘Identity’: First suppose f is a nonnegative function.

Claim 1:
(

f =µ 0
)

⇐⇒
( ∫

U

f dµ = 0 for every U ∈ X
)

Proof: (=⇒): Fix U ∈ X . Suppose Φ =
∞
∑

n=1

ϕn · 11Zn is a simple function, with Φ ≤ f ,

and with ϕn > 0 for all n. Then since f =µ 0, we must have µ[Zn] = 0 for all n, and thus,

µ[U ∩ Zn] = 0. Thus,

∫

U

Φ dµ =
∞
∑

n=1

ϕn · µ[U ∩ Zn] = 0. Since this is true for any

Φ ≤ f , take the supremum over all Φ to conclude that

∫

U

f dµ = 0.

(⇐=): For all n ∈ N, let Un =
{

x ∈ X ; f(x) ≥ 1
n

}

, and let fn = 1
n
· 11Un . Then clearly

fn ≤ f , so:

0 ≤ 1

n
· µ [Un] =

∫

Un

fn dµ ≤(∗)

∫

Un

f dµ =(†) 0,

where (∗) is by ‘Monotonicity’ and (†) is by hypothesis. Thus, µ [Un] = 0. Thus is true

for all n; and supp [f ] =
∞
⋃

n=1

Un, so conclude that µ (supp [f ]) = 0. ...... 2 [Claim 1]

The remaining proof of the ‘Identity’ property is Exercise 101 . 2

Proof of Monotone Convergence Theorem for a.e.convergence: Exercise 102 2

3.1(d) Definition of Lebesgue Integral (Second Approach)

Prerequisites: §3.1(a) Recommended: §3.1(b)
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Case 1: (Finite Measure Space) Let (X,X , µ) be a finite measure space. If Φ is a simple
function, we define the integral of Φ exactly as in Definition 109 on page 73, and we say that
Φ is integrable if this integral is finite.

Now, let f : X−→C be an arbitrary measurable function. By Lemma 108, there is a
sequence of simple functions converging uniformly to f . We say that f is integrable if there
is a sequence of integrable simple functions converging uniformly to f .

Definition 117 Lebesgue Integral

Let (X,X , µ) be a finite measure space. Let f : X−→C be integrable, and suppose {Φn}∞n=1

is a sequence of integrable simple functions converging uniformly to f . Then we define the
(Lebesgue) integral of f :

∫ †

X

f dµ = lim
n→∞

∫

X

Φn dµ (3.3)

Also, if U ⊂ X is measurable, then define

∫ †

U

f dµ =

∫

X

11U · f dµ.

We use the notation “
∫ †

X
f dµ” to distinguish this integral from the integral of Defini-

tion 111 on page 74. However, we will soon show that the two are equivalent. We must first
ensure that the expression (3.3) is well-defined:

Lemma 118

1. If {Φn}∞n=1 converges uniformly to f , then the limit in (3.3) exists.

2. The limit in (3.3) is independent of the sequence {Φn}∞n=1. That is: if {Ψn}∞n=1 is an-

other sequence of simple functions converging uniformly to f , then lim
n→∞

∫

X

Φn dµ =

lim
n→∞

∫

X

Ψn dµ.

Proof: (1) By multiplying µ by a scalar if necessary, we can assume µ[X] = 1. Let

In =

∫

X

Φn dµ for all n. Thus, {In}∞n=1 is a sequence of real numbers; we will show it is

Cauchy, and thus, has a limit. Fix ε > 0. Since {Φn}∞n=1 converges uniformly to f , find N so

that sup
x∈X
|f(x)− Φn(x)| < ε

2
for any n > N . Thus,

sup
x∈X
|Φm(x)− Φn(x)| ≤ sup

x∈X
|Φm(x)− Φ(x)| + sup

x∈X
|Φ(x)− Φn(x)| < ε (3.4)

for any n,m > N . By Lemma 106 on page 71, we are free to assume that Φn and Φm are

compatible —in other words, Φn =
∞
∑

k=1

ϕ(k)
n ·11Uk

and Φm =
∞
∑

k=1

ϕ(k)
m ·11Uk

, where U1,U2, . . .
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are disjoint subsets of X. Thus, (3.4) implies that
∣

∣

∣ϕ
(k)
n − ϕ(k)

m

∣

∣

∣ < ε for all k ∈ N. From this,

we conclude

|In − Im| =

∣

∣

∣

∣

∫

X

Φn dµ −
∫

X

Φm dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=1

ϕn · µ[Un] −
∞
∑

n=1

ϕn · µ[Un]

∣

∣

∣

∣

∣

≤
∞
∑

n=1

|ϕn − ϕn| · µ[Un] ≤
∞
∑

n=1

ε · µ[Un] ≤ ε · µ[X] = ε.

Since ε was arbitrary, it follows that {In}∞n=1 is Cauchy, thus, convergent.

(2): Suppose {Φn}∞n=1 and {Ψn}∞n=1 are two sequence of integrable simple functions con-

verging uniformly to f . Let In =

∫

X

Φn dµ and Jn =

∫

X

Φn dµ for all n. We want to

show that lim
n→∞

In = lim
n→∞

Jn. Consider the sequence {Φ1,Ψ1,Φ2,Ψ2,Φ3, . . .}. This is also a

sequence of simple functions converging uniformly to f , so by Part (1), we know that the
sequence {I1, J1, I2, J2, I3, . . .} converges. In particular, this means that the subsequences
{In}∞n=1 and {Jn}∞n=1 must converge to the same value. 2

Lemma 119 (Monotonicity)

If f, g : X−→R are integrable, and f ≤ g , then

∫ †

X

f dµ ≤
∫ †

X

g dµ.

Proof: The case when f and g are simple is exactly as in the proof of Theorem 113 on
page 74. So, suppose f and g are real-valued. Let {Φn}∞n=1 and {Γn}∞n=1 be sequences of simple
functions converging uniformly to f and g, respectively. Define Φn(x) = min{Φn(x),Γn(x)}
and Γn(x) = max{Φn(x),Γn(x)} for all n ∈ N and x ∈ X.

Claim 1: {Φn}∞n=1 and {Γn}∞n=1 are also simple functions, and also converge uniformly to
f and g, respectively.

Proof: Exercise 103 ................................................ 2 [Claim 1]

By construction, Φn ≤ Γn for all n ∈ N. Thus, by Case 1,

∫ †

X

Φn dµ ≤
∫ †

X

Γn dµ. Thus,
∫ †

X

f dµ = lim
n→∞

∫ †

X

Φn dµ ≤ lim
n→∞

∫ †

X

Γn dµ =

∫ †

X

g dµ. 2

Lemma 120 Definition 117 is equivalent to Definition 111.
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Proof: Let
∫

X
f dµ be the integral of Definition 111, and let

∫ †
X
f dµ be the integral of

Definition 117.

Case 1: (f nonnegative) Let S = {Φ : X−→[0,∞] ; Φ simple, and Φ ≤ f}. Recall that
∫

X

f dµ = sup
Φ∈S

∫

X

Φ dµ.

Claim 1:

∫

X

f dµ ≤
∫ †

X

f dµ.

Proof: If Φ ∈ S, then

∫

X

Φ dµ =

∫ †

X

Φ dµ ≤(∗)

∫ †

X

f dµ, where (∗) is by Lemma 119.

We conclude that sup
Φ∈S

∫

X

Φ dµ ≤
∫ †

X

f dµ. .......................... 2 [Claim 1]

Claim 2:

∫ †

X

f dµ ≤
∫

X

f dµ.

Proof: By Lemma 108 on page 72, there exists a sequence of simple functions Φ1 ≤
Φ2 ≤ . . . ≤ f converging uniformly to f . For all n ∈ N, Φn is integrable, because
∫

X

Φn dµ ≤
∫ †

X

f dµ <∞, by Lemma 119. Thus,

∫ †

X

f dµ =(b) lim
n→∞

∫

X

Φn dµ ≤ sup
n∈N

∫

X

Φn dµ ≤ sup
Φ∈S

∫

X

Φ dµ =(b)

∫

X

f dµ.

(a) by Definition 117 (b) by Definition 111. ............................. 2 [Claim 2]

Case 2 (f real or complex-valued) Exercise 104 Hint: Combine Definition 111 with the
various cases of Lemma 108. 2

Exercise 105 Suppose (X,X , µ) is an infinite measure space. Construct a counterexample to
show that the integral from Definition 117 is not well-defined in this case.

Case 2: (Sigma-Finite Measure Space) Let (X,X , µ) be sigma-finite. Thus, there is a count-

able partition P of X so that X =
∞
⊔

P∈P

P, where every atom P of P is measurable, and

µ[P] <∞. If f : X−→R is measurable, we define

∫ †

X

f dµ =
∑

P∈P

∫

P

f dµ, (3.5)

if this sum converges absolutely; in this case, f is called integrable.
First we must check that the definition does not depend upon the choice of partition.
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Lemma 121 Suppose P andQ are countable partitions. Then
∑

P∈P

∫

P

f dµ =
∑

Q∈Q

∫

Q

f dµ.

Proof: Case 1: (Q refines P) Suppose we index P in some arbitrary fashion: P =
{Pn}∞n=1. Since Q refines P, we can write every atom of P as a (countable) disjoint union of

Q-atoms —that is, Pn =
∞
⊔

m=1

Qn
m for some Qn

1 ,Q
n
2 , . . . in Q. Then we can index Q like:

Q = {Qn
m}∞n,m=1. Then clearly,

∑

P∈P

∫

P

f dµ =
∞
∑

n=1

∫

Pn

f dµ =
∞
∑

n,m=1

∫

Qn
m

f dµ =
∑

Q∈Q

∫

Q

f dµ.

Case 2: (Q and P arbitrary) Let R = Q∨P. Then R refines both P and Q. Apply Case

1 to conclude that:
∑

P∈P

∫

P

f dµ =
∑

R∈R

∫

R

f dµ =
∑

Q∈Q

∫

Q

f dµ. 2

Lemma 122

1. The value of

∫ †

X

f dµ in formula (3.5) agrees with the value of

∫

X

f dµ in Definition 111.

2. If (X,X , µ) is finite, then the value of

∫ †

X

f dµ in formula (3.5) agrees with the value

from formula (3.3).

Proof: Exercise 106 2

Case 3: (Arbitrary Measure Space) Suppose (X,X , µ) is an arbitrary measure space. Let
F = {U ∈ X ; µ[U] <∞} be the collection of all subsets with finite measure. If f : X−→R is
measurable, then we define

∫ †

X

f dµ = sup
F∈F

∫ †

F

f dµ − inf
F∈F

∫ †

F

f dµ (3.6)

Lemma 123

1. The value of

∫ †

X

f dµ in formula (3.6) agrees with the value of

∫

X

f dµ in Definition 111.

2. If (X,X , µ) is sigma-finite, then the value of

∫ †

X

f dµ in formula (3.6) agrees with the

value from formula (3.5)

Proof: Exercise 107 2
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3.2 Limit Theorems

Prerequisites: §3.1

Proposition 124 (Fatou’s Lemma)

Let {fn}∞n=1 be a sequence of nonnegative integrable functions.

1. Let f(x) = lim inf
n→∞

fn(x) for all x ∈ X. Then f is also integrable, and

∫

X

f dµ ≤ lim inf
n→∞

∫

X

fn dµ.

2. If f(x) = lim
n→∞

fn(x) exists for µ-almost all x ∈ X, then f is also integrable, and

∫

X

f dµ ≤ lim inf
n→∞

∫

X

fn dµ.

Proof: (1): For all N ∈ N, define FN(x) = inf
n∈[N...∞]

fn(x) for all x ∈ X. Then FN is

measurable, and FN ≤ fn for any n ≥ N . Thus, by ‘Monotonicity’ from Theorem 113 on
page 74,

∫

X

FN dµ ≤
∫

X

fn dµ.

Since this holds for all n ≥ N , it follows:
∫

X

FN dµ ≤ inf
n∈[N...∞]

∫

X

fn dµ. (3.7)

However, F 1 ≤ F 2 ≤ . . . forms an increasing sequence, and f(x) = lim
N→∞

FN(x); Hence,

∫

X

f dµ =(a) lim
N→∞

∫

X

FN dµ ≤(b) lim
N→∞

inf
n∈[N...∞]

∫

X

fn dµ

= lim inf
n→∞

∫

X

fn dµ, as desired.

(a) by Monotone Convergence (Theorem 114 on page 77); (b) by (3.7).

(2): By modifying the functions fn on a set of measure zero, we can assume that f(x) =
lim
n→∞

fn(x) for all x ∈ X; this does not change the value of the integrals because of the

‘Identity’ property Theorem 113. At this point, (2) follows from (1). 2

Theorem 125 (Lebesgue’s Dominated Convergence Theorem)

Let {fn}∞n=1 be a sequence of integrable functions. Suppose:
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Figure 3.5: Lebesgue’s Dominated Convergence Theorem

• f(x) = lim
n→∞

fn(x) exists for µ-almost all x ∈ X (Figure 3.5A).

• There is some integrable F ∈ L1(X, µ) so that |fn(x)| ≤ F (x) for almost all x ∈ X and
all n ∈ N (Figure 3.5B).

Then

∫

X

f dµ = lim
n→∞

∫

X

fn dµ.

Proof: We will prove the theorem when fn are real-valued. If fn are complex-valued, then
simply apply the proof to re [fn] and im [fn] separately.

By modifying the functions fn on a set of measure zero, we can assume that f(x) = lim
n→∞

fn(x)

for all x ∈ X, and that |fn(x)| ≤ F (x) for all x ∈ X. By the ‘Identity’ property, this does
not modify any of the relevant integrals.

Case 1: (f ≡ 0) Since |fn| < F , it follows that F + fn > 0 and F − fn > 0. Since
lim
n→∞

fn = f ≡ 0, we have:

lim inf
n→∞

fn = 0 = lim inf
n→∞

(−fn).

Thus, lim inf
n→∞

(F + fn) = F = lim inf
n→∞

(F − fn). Thus applying Fatou’s Lemma:

∫

X

F dµ ≤ lim inf
n→∞

∫

X

(F + fn) dµ =

∫

X

F dµ + lim inf
n→∞

∫

X

fn dµ,

and

∫

X

F dµ ≤ lim inf
n→∞

∫

X

(F − fn) dµ =

∫

X

F dµ + lim inf
n→∞

(

−
∫

X

fn dµ

)

=

∫

X

F dµ − lim sup
n→∞

∫

X

fn dµ.

Subtract

∫

X

F dµ to conclude:

0 ≤ lim inf
n→∞

∫

X

fn dµ and 0 ≤ − lim sup
n→∞

∫

X

fn dµ.
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Thus,

lim sup
n→∞

∫

X

fn dµ ≤ 0 ≤ lim inf
n→∞

∫

X

fn dµ.

It follows that lim
n→∞

∫

X

fn dµ = 0

Case 2: (f(x) real-valued) Since lim
n→∞

fn = f , and |fn| < F , it follows that |f(x)| ≤ F (x)

for all x ∈ X. Since F is integrable, it follows that f is also integrable, because:

∫

X

|f | dµ ≤
∫

X

F dµ < ∞.

Observe that

∫

X

f dµ −
∫

X

fn dµ =

∫

X

(f − fn) dµ. Thus, it suffices to show that

lim
n→∞

∫

X

(f − fn) dµ = 0. So, let gn = f − fn. Then:

• lim
n→∞

gn = 0 everywhere.

• |gn(x)| < 2 · F (x) for all x, and 2 · F is also integrable.

Hence, applying Case 1, we conclude that lim
n→∞

∫

X

gn dµ = 0, as desired. 2

Remark: The ‘dominating’ function F in the Dominated Convergence Theorem is necessary.
To see this, let X = R, with the Lebesgue measure λ. Let fn(x) = 11[n,n+1]. Then clearly,

lim
n→∞

fn(x) = 0 for all x ∈ R. However,

∫

R
fn dλ = 1 for all n, so that lim

n→∞

∫

R
fn dλ = 1.

The Dominated Convergence Theorem ‘fails’ because there is no integrable function F : R−→R
such that |fn| ≤ F for all n.

3.3 Integration over Product Spaces

Prerequisites: §3.1 Recommended: §2.1(b)

Throughout this section, let (X,X , ξ) and (Y,Y ,Υ) be two sigma-finite measure spaces,
and let (Z,Z, ζ) be their product; ie.:

Z = X×Y, Z = X ⊗ Y, and ζ = ξ ⊗Υ.

A good example to keep in mind: if X = R = Y and ξ and Υ are Lebesgue measure, then
Z = R2, and ζ is the two-dimensional Lebesgue measure.
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Figure 3.6: The fibre of a set.

We know from classical multivariate calculus that a two-dimensional Riemann integral can
be computed via two consecutive one-dimensional integrals:

∫

R2

f(x) dx =

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1 dx2

We want to generalize this formula to an arbitrary product measure. We will need the following
technical lemma.

Lemma 126 Let R ⊂ S ⊂ P(Z) be two collections of subsets such that:

1. S contains the algebra generated by R.

2. S is closed under countable increasing unions: If S1 ⊂ S2 ⊂ . . . is an increasing

sequence of elements in S, then

(

∞
⋃

n=1

Sn

)

∈ S.

3. S is closed under countable decreasing intersections: If S1 ⊃ S2 ⊃ . . . is an

decreasing sequence of elements in S, then

(

∞
⋂

n=1

Sn

)

∈ S.

Then S contains the sigma-algebra generated by R.

Proof: Exercise 108 2

If W ⊂ Z, then for all x ∈ X, the fibre of W over x is the subset of Y defined:

Wx = {y ∈ Y ; (x, y) ∈W} (see Figure 3.6A)

If f : Z−→C, then for all x ∈ X, the fibre of f over x is the function fx : Y−→C defined:

fx(y) = f(x, y) (see Figure 3.7A)
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Theorem 127 (Fubini-Tonelli)

1. Let W ∈ Z. Then:

(a) For all x ∈ X, Wx ∈ Y.

(b) ζ[W] =

∫

X

Υ(Wx) dξ[x].

2. Let f : Z−→C be Z-measurable.

(a) For all x ∈ X, fx : Y−→C is Y-measurable.

(b) For all x ∈ X, let F (x) =

∫

Y

fx(y) dΥ[y]. If f ∈ L1(Z), then F ∈ L1(X), and

∫

Z

f(z) dζ[z] =

∫

X

F (x) dξ[x] =

∫

X

(∫

Y

fx(y) dΥ[y]

)

dξ[x] (3.8)

If f is nonnegative, then (3.8) holds also when

∫

Z

f dζ = ∞.

3. Suppose that (X,X , ξ) and (Y,Y ,Υ) are complete. (Z,Z, ζ) is not necessarily complete,

but let ˜Z be the ζ-completion of Z.

(a) If W ∈ ˜Z, then for ∀ξ x ∈ X, Wx ∈ Y; also, 1(b) holds.

(b) If f : Z−→C is ˜Z-measurable, then for ∀ξ x ∈ X, fx is Y-measurable.

(c) If f ∈ L1(Z, ˜Z, ζ), then for ∀ξ x ∈ X, fx ∈ L1(Y,Y ,Υ); also, 2(b) holds.

Proof:

Proof of 1(a) Let A = {A ⊂ Z ; Ax ∈ Y, for all x ∈ X}. We want to show Z ⊂ A.
Recall that Z = X ⊗ Y is the sigma-algebra generated by the set of measurable rectangles:

R = {U×V ; U ∈ X and V ∈ Y}.

Thus, it suffices to show that R ⊂ A, and that A is a sigma-algebra.

Claim 1: R ⊂ A.

Proof: Suppose R ∈ R, with R = U×V. Then

Rx =

{

V if x ∈ U;
∅ if x 6∈ U.

(see Figure 3.6B) (3.9)

so Rx ∈ Y for all x, so R ∈ A. ....................................... 2 [Claim 1]

Claim 2: A is a sigma-algebra.
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R

R
f: Z R

X

x

X

x

Z
X

x

Y

X

x

X

x

R

R

O

O

f ( ) x
-1
O

(A) (B)

x
f: Y

R

f ( ) 
-1

O

f ( )
x
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Figure 3.7: The fibre of a set.

Proof: It suffices to show that A is closed under complementation and countable union.

Suppose A(n) ∈ A for all n ∈ N, and let A =
∞
⋃

n=1

A(n). Then for any x ∈ X, Ax =
∞
⋃

n=1

A(n)
x

is a union of elements of Y (Figure 3.6C), so Ax ∈ Y. Hence A ∈ A. Likewise, if A ∈ A,

then for any x ∈ X,
(

A{
)

x
= (Ax)

{ ∈ Y (Figure 3.6D). Hence A{ ∈ A. 2 [Claim 2]

Proof of 2(a) Fix x ∈ X; for any open subset O ⊂ C, we want f−1
x (O) ∈ Y. But

f−1
x (O) = {y ∈ Y ; fx(y) ∈ O} = {y ∈ Y ; f(x, y) ∈ O} =

{

y ∈ Y ; (x, y) ∈ f−1(O)
}

=
(

f−1(O)
)

x
(Figure 3.7B), and (f−1(O))x ∈ Y by 1(a).

Proof of 1(b) Case 1: (X and Y are finite) Let B =

{

B ⊂ Z ; ζ[B] =

∫

X

Υ(Bx) dξ[x]

}

.

We want to show that Z ⊂ B. Recall that Z is the sigma-algebra generated by R; we will
use Lemma 126 to show that B contains Z.

Claim 3: R ⊂ A.

Proof: Suppose R ∈ R, with R = U×V. Then ζ[R] = ξ[U] ·Υ[V] =

∫

U

Υ[V] dµ =(∗)
∫

X

Υ[Rx] dµ[x], where (∗) follows from formula (3.9). ................. 2 [Claim 3]
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Claim 4: B is closed under finite disjoint unions.

Proof: If B(1),B(2), . . . ,B(N) ∈ A are disjoint, and B =
N
⊔

n=1

B(n), then for every x ∈ X,

Bx =
N
⊔

n=1

B(n)
x (Figure 3.6C). Then

∫

X

Υ(Bx) dξ[x] =

∫

X

Υ

(

N
⊔

n=1

B(n)
x

)

dξ[x] =
N
∑

n=1

∫

X

Υ
(

B(n)
x

)

dξ[x]

=
N
∑

n=1

ζ
[

B(n)
]

= ζ[B],

so B ∈ B also. ....................................................... 2 [Claim 4]

Claim 5: B contains the algebra generated by R.

Proof: Example (61b)1 says that the algebra generated by R is the set ˜R of all finite

disjoint unions of rectangles. But ˜R ⊂ B by Claims 3 and 4. ........... 2 [Claim 5]

Claim 6: B is closed under countable increasing unions.

Proof: Suppose B(1) ⊂ B(2) ⊂ . . . are in B, and let B =
∞
⋃

n=1

B(n). Define F : X−→R

by F (x) = Υ(Bx), and for all n, define Fn : X−→R by Fn(x) = Υ(B
(n)
x ). Thus,

F1 ≤ F2 ≤ . . . ≤ F , and lim
n→∞

Fn(x) = F (x) for all x ∈ X (by ‘Upper Continuity’ from

Proposition 15 on page 17). Hence:

∫

X

F dµ =(a) lim
n→∞

∫

X

Fn dµ =(b) lim
n→∞

ζ
[

B(n)
]

=(c) ζ

[

∞
⋃

n=1

B(n)

]

= ζ [B]

(a) by Monotone Convergence Theorem (page 77) (b) because B(n) ∈ B. (c) by ‘Upper Continuity’
(Proposition 15 on page 17). ............................................ 2 [Claim 6]

Claim 7: B is closed under countable decreasing intersections.

Proof: Suppose B(1) ⊃ B(2) ⊃ . . . are in B, and let B =
∞
⋂

n=1

B(n). Define F and Fn as in

Claim 6; then F1 ≥ F2 ≥ . . . ≥ F . Proceed as in Claim 6, but now apply the Dominated
Convergence Theorem. ............................................... 2 [Claim 7]
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X

Y

(B)
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X

Y

(C)

W(2,1) W(3,1)

W(2,2) W(3,2)

Figure 3.8: Z(n,m) = X(n) ×Y(m).

By Claims 5, 6 and 7, and Lemma 126, we conclude that Z ⊂ B.

Case 2: (X and Y are sigma-finite) Write X and Y as disjoint unions of finite subspaces:

X =
∞
⊔

n=1

X(n) and Y =
∞
⊔

m=1

Y(m). Then Z =
∞
⊔

n,m=1

Z(n,m) where Z(n,m) = X(n)×Y(m) (Figure

3.8A). If W ⊂ Z (Figure 3.8B), then let W(n,m) = W ∩ Z(n,m) (Figure 3.8C). Thus,

W =
∞
⊔

n,m=1

W(n,m) and thus, Wx =
∞
⊔

n,m=1

W(n,m)
x , for all x ∈ X. (3.10)

Thus,

∫

X

Υ(Wx) dξ[x] =(a)

∫

X

Υ

(

∞
⊔

n,m=1

W(n,m)
x

)

dξ[x] =(b)

∞
∑

n,m=1

∫

Xn

Υ
(

W(n,m)
x

)

dξ[x]

=(c)

∞
∑

n,m=1

ζ
[

W(n,m)
]

= ζ

[

∞
⊔

n,m=1

W(n,m)

]

=(d) ζ[W]

(a) By (3.10). (b) By Monotone Convergence Theorem (page 77) and ‘Upper Continuity’ (Proposi-
tion 15 on page 17). (c) Apply Case 1 to W(n,m) ⊂ Z(n,m) for all n and m. (d) By (3.10).

Proof of 2(b)

Case 1: (f a characteristic function) If f = 11W, then just apply part 1(b) to get (3.8).

Case 2: (f a simple function) This follows immediately from Case 1.

Case 3: (f is nonnegative) By Corollary 116 on page 78, let φ(1) ≤ φ(2) ≤ . . . ≤ f be a
sequence of nonnegative simple functions increasing pointwise to f , such that

lim
n→∞

∫

Z

φ(n)(z) dζ[z] =

∫

Z

f(z) dζ[z]. (3.11)

1on page 45.



92 CHAPTER 3. INTEGRATION THEORY

For all n, define Φ(n) : X−→C by: Φ(n)(x) =

∫

Y

φ(n)
x (y) dΥ[y]. Thus, by Case 2, we know

that, for all n ∈ N,
∫

Z

φ(n)(z) dζ[z] =

∫

X

Φ(n)(x) dµ[x]. (3.12)

Claim 8: For all x ∈ X, Φ(1)(x) ≤ Φ(2)(x) ≤ . . . ≤ F (x). Also, lim
n→∞

Φ(n)(x) = F (x).

Proof: For all x ∈ X and y ∈ Y, clearly, φ
(1)
x (y) ≤ φ

(2)
x (y) ≤ . . . ≤ fx(y). Apply

Monotonicity from Theorem 113 on page 74 and the Monotone Convergence Theorem
(page 77). ........................................................... 2 [Claim 8]

Thus,

∫

Z

f(z) dζ[z] =(a) lim
n→∞

∫

Z

φ(n)(z) dζ[z] =(b) lim
n→∞

∫

X

Φ(n)(x) dµ[x] =(c)

∫

X

F (x) dµ[x]

(a) By formula (3.11). (b) By formula (3.12). (b) By Monotone Convergence Theorem and Claim 8.

Case 4: (f is real-valued) f+ and f− are both nonnegative and have finite integrals. Thus,

∫

Z

f(z) dζ[z] =

∫

Z

f+(z) dζ[z] +

∫

Z

f−(z) dζ[z]

=(a)

∫

X

(∫

Y

f+
x (y) dΥ[y]

)

dξ[x] +

∫

X

(∫

Y

f−x (y) dΥ[y]

)

dξ[x]

=(b)

∫

X

(∫

Y

f+
x (y) Υ[y] +

∫

Y

f−x (y) dΥ[y]

)

dξ[x]

=(c)

∫

X

∫

Y

(

f+
x (y) + f−x (y)

)

dΥ[y] dξ[x]

=

∫

X

∫

Y

fx(y) dΥ[y] dξ[x] =(d)

∫

X

F (x) dξ[x]

(a) Apply Case 3 to f+ and f−. (b,c) By linearity of the integral. (d) By definition of F .

Case 5: (f is complex-valued) Apply Case 4 to fre and fim.

Proof of 3(a)

Claim 9: Suppose N ∈ Z and ζ[N] = 0. Then for ξ-almost all x ∈ X, Υ[Nx] = 0.

Proof: By part 1(b), we have 0 = ζ[N] =

∫

X

Υ[Nx] dµ[x]. Hence, by the Identity

property (Theorem 113 on page 74), conclude that Υ[Nx] = 0 for ∀ξ x. . 2 [Claim 9]

Now, let ˜W ∈ ˜Z. Thus,
˜W = W(0) tW(1), (3.13)
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where W(1) ∈ Z and W(0) is a null set; that is, W(0) ⊂ N where N ∈ Z and ζ[N] = 0. Thus,

For all x ∈ X, ˜Wx = W(0)
x tW(1)

x . (3.14)

Clearly, W
(0)
x ⊂ Nx. By Claim 9, Υ[Nx] = 0, for almost all x ∈ X. Thus, W

(0)
x is a null set for

almost all x ∈ X. Also, by part 1(a), W
(1)
x ∈ Y for all x ∈ X. Thus, ˜Wx = W

(0)
x tW

(1)
x

is Y-measurable for almost all x ∈ X. Furthermore,

˜ζ[˜W] =(a) ζ
[

W(1)
]

=(b)

∫

X

Υ
[

W(1)
x

]

dµ[x] =(c)

∫

X

Υ
[

W(1)
x

]

+ Υ
[

W(0)
x

]

dµ[x]

=

∫

X

Υ
[

W(1)
x tW(0)

x

]

dµ[x] =(d)

∫

X

Υ
[

˜Wx

]

dµ[x].

(a) By formula (3.13) and the definition of ˜ζ. (b) Apply part 1(b) to W(1). (c) For almost all x,
Υ
[

W(0)
x

]

= 0, so apply the Identity property (Theorem 113 on page 74). (d) By formula (3.14)

Proof of 3(b,c):

Claim 10: Suppose f ∈ L1(Z, ˜Z, ζ), and f =ζ 0. If F : X−→C is defined as in 2(b), then
F =ξ 0.

Proof: Exercise 109 .............................................. 2 [Claim 10]

Exercise 110 : Apply Lemma 40 on page 31 to complete the proof. 2

Exercise 111 Let (X,X , ξ) and (Y,Y,Υ) be the unit interval [0, 1] with Lebesgue measure λ
and the (complete) Lebesgue sigma-algebra L. Thus, Z = [0, 1]2, Z = L ⊗ L and ζ = λ × λ. Show
that L⊗L is not complete by constructing an example of a set W ⊂ [0, 1]2 of measure zero which has
nonmeasurable subsets.

Theorem 127 concerns integration in a specific order over a product of two spaces, but this
immediately generalizes to integration in any order, over any number of spaces...

Corollary 128 (Multifactor Fubini-Tonelli)

Let (X1,X1, µ1), (X2,X2, µ2), . . . (XN ,XN , µN) be sigma-finite measure spaces, and let

(X,X , µ) be their product, ie. X =
N
∏

n=1

Xn, X =
N
⊗

n=1

Xn, and µ =
N
⊗

n=1

µn.

Let f ∈ L1(X,X , µ). Then:

1.

∫

X

f(x) dµ[x] =

∫

X1

∫

X2

. . .

∫

XN

f(x1, . . . , xN) dµN [xN ] . . . dµ2[x2] dµ1[x1]

2. If σ : [1..N ]−→[1..N ] is any permutation, then there is a natural isomorphism (X,X , µ) ∼=

(˜X, ˜X , µ̃), where ˜X =
N
∏

n=1

Xσ(n), ˜X =
N
⊗

n=1

Xσ(n), and µ̃ =
N
⊗

n=1

µσ(n).
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(4, 2, 1, 0, -1,-3, 2)

D=7 D=15 D=oo

Figure 4.1: We can think of a function as an “infinite-dimensional vector”

3.

∫

X

f(x) dµ[x] =

∫

Xσ(1)

. . .

∫

Xσ(N)

f(x1, . . . , xN) dµσ(N)[xσ(N)] . . . dµσ(1)[xσ(1)].

Proof: Exercise 112 2

4 Functional Analysis

4.1 Functions and Vectors

Vectors: If v =





2
7
−3



 and w =





−1.5
3
1



, then we can add these two vectors componentwise:

v + w =





2− 1.5
7 + 3
−3 + 1



 =





0.5
10
−2



.

In general, if v,w ∈ R3, then u = v + w is defined by:

un = vn + wn, for n = 1, 2, 3 (4.1)

(see Figure 4.2A)
Think of v as a function v : {1, 2, 3}−→R, where v(1) = 2, v(2) = 7, and v(3) = −3. In a

similar fashion, any D-dimensional vector u = (u1, u2, . . . , uD) can be thought of as a function
u : [1...D]−→R.
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u    =    (4, 2, 1, 0, 1, 3, 2)

4
2

1
2

0
1

3

v   =   (1, 4, 3, 1, 2, 3, 1)

4

1
2

1
3 3

1

w   =   u + v    =    (5, 6, 4, 1, 3, 6, 3)

6

4
3

1
3

6
5

f(x) = x 

g(x)  =  x    - 3x + 2

h(x)  =   f(x) + g(x)   =   x    - 2x +2

2

2

(A) (B)

Figure 4.2: (A) We add vectors componentwise: If u = (4, 2, 1, 0, 1, 3, 2) and v =
(1, 4, 3, 1, 2, 3, 1), then the equation “w = v + w” means that w = (5, 6, 4, 1, 3, 6, 3). (B)
We add two functions pointwise: If f(x) = x, and g(x) = x2 − 3x + 2, then the equation
“h = f + g” means that h(x) = f(x) + g(x) = x2 − 2x+ 2 for every x.

Functions as Vectors: Letting N go to infinity, we can imagine any function f : R−→R as
a sort of “infinite-dimensional vector” (see Figure 4.1). Indeed, if f and g are two functions,
we can add them pointwise, to get a new function h = f + g, where

h(x) = f(x) + g(x), for all x ∈ R (4.2)

(see Figure 4.2B) Notice the similarity between formulae (4.2) and (4.1), and the similarity
between Figures 4.2A and 4.2B.

The basic idea of functional analysis is that functions are infinite-dimensional vectors. Just
as with finite vectors, we can add them together, act on them with linear operators, or represent
them in different coordinate systems on infinite-dimensional space. Also, the vector space RD
has a natural geometric structure; we can identify a similar geometry in infinite dimensions.

Below are some examples of vector spaces of functions.

4.1(a) C, the spaces of continuous functions

Let X be a topological space. We define:

C(X) = {f : X−→R ; f is continuous}
C(X; C) = {f : X−→C ; f is continuous}
C(X; Rn) = {f : X−→Rn ; f is continuous}
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The support of f is the set supp [f ] = {x ∈ X ; f(x) 6= 0}; if f is continuous, then supp [f ] is
a closed subset of X. We say f has compact support if supp [f ] is compact, and define

Cc(X) = {f : X−→R ; f is continuous, with compact support}.

We say that f vanishes at ∞ if, for any ε > 0, the set {x ∈ X ; |f(x)| ≥ ε} is compact. Notice
that this definition makes sense even when the space X has no well-defined “∞” point. We
then define

C0(X) = {f : X−→R ; f is continuous, and vanishes at ∞}.

Finally, say that f is bounded if sup
x∈X
|f(x)| < ∞. Then define

Cb(X) = {f : X−→R ; f is continuous and bounded}.

Of course, we can also define C0(X; C), etc. Observe that

Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂ C(X)

and, when X is compact, all of these spaces are equal (Exercise 113 ).

Exercise 114 Verify that Cc, C0, Cb and C are all vector spaces —ie. that each is closed under
the operations of pointwise addition and scalar multiplication.

4.1(b) Cn, the spaces of differentiable functions

Let X ⊂ Rn be some open subset. Recall that f : X−→R is continuously differentiable if
f is everywhere differentiable and the derivative ∇f : X−→Rn is continuous. More generally,
f : X−→Rm is continuously differentiable if f is differentiable everywhere on X and the
derivative Df : X−→Rn×m is continuous. Finally, recall that f is analytic if it has a power
series that converges everywhere on X. We define:

C1(X) = {f : X−→R ; f is continuously differentiable}.
C1(X;Rm) = {f : X−→Rm ; f is continuously differentiable}.
Ck(X;Rm) = {f : X−→Rm ; f is k times continuously differentiable}.
C∞(X;Rm) = {f : X−→Rm ; f is infinitely often continuously differentiable}.
Cω(X;Rm) = {f : X−→Rm ; f is analytic}.

We say that f : X−→R is a polynomial of degree K if

f(x1, x2, . . . , xn) =
∑

k1+k2+...+kn≤K

ak1k2...kn x
k1
1 x

kn
1 . . . xkn1 ,
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where ak1k2...kn are all real constants. We define

Pk(X) = {f : X−→R ; f is a polynomial of degree at most k}
and P(X) = {f : X−→R ; f is a polynomial of any finite degree}

Observe that Pk(R) is a vector space of dimension k + 1; more generally, if X ⊂ Rn, then Pk
has a dimension that grows of order O(nk). Thus, P(X) is infinite-dimensional. Also, note that

P1 ⊂ P2 ⊂ P3 ⊂ . . . ⊂ P ⊂ Cω ⊂ C∞ ⊂ . . . ⊂ C3 ⊂ C2 ⊂ C1 ⊂ C

and all of these inclusions are proper.

Exercise 115 Verify that each of Pn, P, Cn, C∞ and Cω is a vector space —ie. that it is closed
under the operations of pointwise addition and scalar multiplication.

4.1(c) L, the space of measurable functions

Prerequisites: §1.3(a)

Let (X,X ) be a measurable space. We define

L(X,X ) = {f : X−→R ; f is measurable}
L(X,X ; C) = {f : X−→C ; f is measurable}

etc. Suppose X is a topological space and X is the Borel sigma algebra. Then:

C(X) ⊂ L(X). (Exercise 116 )

Exercise 117 Verify that L(X,X ) is a vector space.

4.1(d) L1, the space of integrable functions

Prerequisites: §4.1(c), §??

If µ is a measure on (X,X ), and f ∈ L(X,X ), then we define the L1-norm of f by:

‖f‖1 =

∫

X

|f |(x) dµ[x] < ∞ (see Figure 4.3)

and then define the space of integrable functions:

L1(X,X , µ) = {f ∈ L(X,X ) ; ‖f‖1 <∞}
L1(X,X , µ; C) = {f ∈ L(X,X ; C) ; ‖f‖1 <∞}

Exercise 118 Verify that L1(X,X , µ) is a vector space.
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|f(x)| dxf   =
1

f(x)

|f(x)|

Figure 4.3: The L1 norm of f is defined: ‖f‖1 =
∫

X |f(x)| dµ[x].

f(x)

f(x)

f
oo

Figure 4.4: The L∞ norm of f is defined: ‖f‖∞ = ess supx∈X |f(x)|.

Suppose that X is a topological space and X is the Borel sigma algebra. If µ is a finite
measure, then

Cb(X) ⊂ L1(X). (Exercise 119 )

If µ is an infinite measure, we say that µ is locally finite if µ(K) <∞ for any compact K ⊂ X.
In this case

Cc(X) ⊂ L1(X). (Exercise 120 )

4.1(e) L∞, the space of essentially bounded functions

Prerequisites: §4.1(c), §1.3(c)

Let (X,X , µ) be a measure space, and f ∈ L(X,X ). For any c ∈ R, let Sc = {x ∈ R ; f(x) > c} =
f−1(c,∞). If µ(Sc) = 0, then f is µ-almost everywhere less than c; we might say that f is
essentially less than c. We define the essential supremum of

ess sup
x∈X

f(x) = min {c ∈ R ; µ[Sc] = 0}
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For example, suppose we define f : R−→R by f(x) =

{

x if x ∈ Q;
0 if x 6∈ Q. Then, with respect

to the Lebesgue measure, ess sup
x∈R

f(x) = 0, because Q has measure zero.

Most of the time, the essential supremum is the same as the supremum. For example, if
X is an open subset of Rn with the Lebesgue measure, and f : X−→R is continuous, then
ess sup

x∈X
f(x) = sup

x∈X
f(x) (Exercise 121 ).

More generally, of X is any measure space, and ess sup
x∈X

f(x) = c, then there is a function ˜f

such that ˜f = f almost everywhere, and sup
x∈X

˜f(x) = c. Thus, in accord with the idea that sets

of measure zero are ‘negligible’, we will often identify f with ˜f , and identify ess sup
x∈X

f(x) as the

‘supremum’ of f .
If f : X−→R or f : X−→C, we define the L∞-norm of f by:

‖f‖∞ = ess sup
x∈X
|f(x)| (see Figure 4.4)

We then define the set of essentially bounded functions:

L∞(X,X , µ) = {f ∈ L(X,X ) ; ‖f‖∞ <∞}
L∞(X,X , µ; C) = {f ∈ L(X,X ; C) ; ‖f‖∞ <∞}

Exercise 122 Verify that L∞(X,X , µ) is a vector space.

When X, X , or µ are clear from context, we may drop one, two, or all three from the
notation, writing, for example “L∞(X)” or “L1(µ)”, depending on what is being emphasised.

Suppose that X is a topological space and X is the Borel sigma algebra. Then

Cb(X) ⊂ L∞(X, µ). (Exercise 123 )

4.2 Inner Products (infinite-dimensional geometry)
If x,y ∈ RD, then the inner product1 of x,y is defined:

〈x,y〉 = x1y1 + x2y2 + . . .+ xDyD.

The inner product describes the geometric relationship between x and y, via the formula:

〈x,y〉 = ‖x‖ · ‖y‖ · cos(θ)

where ‖x‖ and ‖y‖ are the lengths of vectors x and y, and θ is the angle between them.
(Exercise 124 Verify this). In particular, if x and y are perpendicular, then θ = ±π

2
, and then

1This is sometimes this is called the dot product, and denoted “x • y”.
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〈x,y〉 = 0; we then say that x and y are orthogonal. For example, x =
[

1
1

]

and y =
[

1
−1

]

are orthogonal in R2, while

u =









1
0
0
0









, v =









0
0
1√
2

1√
2









, and w =









0
1
0
0









are all orthogonal to one another in R4. Indeed, u, v, and w also have unit norm; we call any
such collection an orthonormal set of vectors. Thus, {u,v,w} is an orthonormal set, but
{x,y} is not.

The norm of a vector satisfies the equation:

‖x‖ =
(

x2
1 + x2

2 + . . .+ x2
D

)1/2
= 〈x,x〉1/2.

If x1, . . . ,xN are a collection of mutually orthogonal vectors, and x = x1 + . . . + xN , then we
have the generalized Pythagorean formula:

‖x‖2 = ‖x1‖2 + ‖x2‖2 + . . .+ ‖xN‖2

(Exercise 125 Verify the Pythagorean formula.)
An orthonormal basis of RD is any collection of mutually orthogonal vectors {v1,v2, . . . ,vD},

all of norm 1, so that, for any w ∈ RD, if we define ωd = 〈w,vd〉 for all d ∈ [1..D], then:

w = ω1v1 + ω2v2 + . . .+ ωDvD

In this case, the Pythagorean Formula becomes Parseval’s Equality:

‖w‖2 = ω2
1 + ω2

2 + . . .+ ω2
D

(Exercise 126 Deduce Parseval’s equality from the Pythagorean formula.)

Example:

1.





























1
0
.
.
.
0











,











0
1
.
.
.
0











, . . .











0
0
.
.
.
1





























is an orthonormal basis for RD.

2. If v1 =

[ √
3/2

1/2

]

and v2 =

[

−1/2√
3/2

]

, then {v1,v2} is an orthonormal basis of R2.

If w =

[

2
4

]

, then ω1 =
√

3 + 2 and ω2 = 1− 2
√

3, so that

[

2
4

]

= ω1v1 + ω2v2 =
(√

3 + 2
)

·
[ √

3/2
1/2

]

+
(

1− 2
√

3
)

·
[

−1/2√
3/2

]

.

Thus, ‖w‖2
2 = 22 + 42 = 20, and also, by Parseval’s equality, 20 = ω2

1 + ω2
2 =

(√
3 + 2

)2

+
(

1− 2
√

3
)2

. (Exercise 127 Verify these claims.)
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f (x) dx
2f   =

2

2

f(x)

f (x)
2

f (x) dx
2f   =

2

Figure 4.5: The L2 norm of f : ‖f‖2 =
√

∫

X
|f(x)|2 dµ[x]

4.3 L2 space
Prerequisites: §4.2, §??

All of this generalizes to spaces of functions. Suppose (X,X , µ) is a measure space, and
f, g ∈ L(X,X ;C), then the inner product of f and g is defined:

〈f, g〉 =
1

M

∫

X

f(x) · g(x) dµ[x]

Here, g(x) is the complex conjugate of g(x). If g(x) ∈ R, then of course g(x) = g(x). Meanwhile,

M =

∫

X

1 dx is the total mass of X.

For example, suppose X = [0, 3] = {x ∈ R ; 0 ≤ x ≤ 3}, with the Lebesgue measure λ.
Thus M = λ[0, 3] = 3. If f(x) = x2 + 1 and g(x) = x for all x ∈ [0, 3], then

〈f, g〉 =
1

3

∫ 3

0

f(x)g(x) dx =
1

3

∫ 3

0

(x3 + x) dx =
27

4
+

3

2
.

The L2-norm of a function f ∈ L(X,X ) is defined

‖f‖2 = 〈f, f〉1/2 =

(

1

M

∫

X

|f |2(x) dµ[x]

)1/2

. (4.3)

(see Figure 4.5).
Note that the definition of L2-norm in (4.3) depends upon the choice of measure µ. Also, note

that the integral in (4.3) may not converge. For example, if f ∈ L[0, 1] is defined: f(x) = 1/x,
then ‖f‖2 =∞ (relative to the Lebesgue measure).

The set of all measurable functions on (X,X ) with finite L2-norm is denoted L2(X,X , µ),
and called L2-space. For example, any bounded, continuous function f : [0, 1]−→R is in
L2([0, 1], λ).
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16
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7/
8

15
/1
6

1

Figure 4.6: Four Haar basis elements: H1,H2,H3,H4

4.4 Orthogonality

Prerequisites: §4.3

Two functions f, g ∈ L2(X,X , µ) are orthogonal if 〈f, g〉 = 0. For example, if X = [−π, π]
with Lebesgue measure, and sin and cos are treated as elements of L2[−π, π], then they are
orthogonal:

〈sin, cos〉 =
1

2π

∫ π

−π
sin(x) cos(x) dx = 0. (4.4)

(Exercise 128) An orthogonal set of functions is a set {f1, f2, f3, . . .} of elements in L2(X,X , µ)
so that 〈fj, fk〉 = 0 whenever j 6= k. If, in addition, ‖fj‖2 = 1 for all j, then we say this is an
orthonormal set of functions.

Example 129:

(a) Let X = [0, 1] with Lebesgue measure. Figure 4.6 portrays the The Haar Basis. We
define H0 ≡ 1, and for any natural number N ∈ N, we define the Nth Haar function
HN : [0, 1]−→R by:

HN(x) =



















1 if
2n

2N
≤ x <

2n+ 1

2N
, for some n ∈

[

0...2N−1
)

;

−1 if
2n+ 1

2N
≤ x <

2n+ 2

2N
, for some n ∈

[

0...2N−1
)

.

Then {H0,H1,H2,H3, . . .} is an orthonormal set in L2[0, 1] (Exercise 129 ).

(b) Let X = [0, 1] with Lebesgue measure. Figure 4.7 portrays a Wavelet Basis. We define
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1/2 13/41/4

1/2 13/41/4 1/2 13/41/4

1/2 13/41/4 1/2 13/41/4

1/2 13/41/4 1/2 13/41/4

1;0W

2;0W 2;1W

3;0W 3;1W

3;2W 3;3W

Figure 4.7: Seven Wavelet basis elements: W1,0; W2,0, W2,1; W3,0, W3,1,W3,2, W3,3

W0 ≡ 1, and for any N ∈ N and n ∈
[

0...2N−1
)

, we define

Wn;N(x) =



























1 if
2n

2N
≤ x <

2n+ 1

2N
;

−1 if
2n+ 1

2N
≤ x <

2n+ 2

2N
;

0 otherwise.

Then

{W0; W1,0; W2,0,W2,1; W3,0,W3,1,W3,2,W3,3; W4,0, . . . ,W4,7; W5,0, . . . ,W5,15; . . .}

is an orthogonal set in L2[0, 1], but is not orthonormal: for any N and n, we have

‖Wn;N‖2 =
1

2(N−1)/2
. (Exercise 130 ).

4.4(a) Trigonometric Orthogonality

Fourier analysis is based on the orthogonality of certain families of trigonometric functions.
Formula (4.4) on page 102 was an example of this; this formula generalizes as follows....

Proposition 130: Trigonometric Orthogonality on [−π, π]
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Figure 4.8: C1, C2, C3, and C4; S1, S2, S3, and S4

Let X = [−π, π] with Lebesgue measure. For every n ∈ N, define Sn(x) = sin (nx) and
Cn(x) = cos (nx). (see Figure 4.8).

The set {C0,C1,C2, . . . ; S1,S2,S3, . . .} is an orthogonal set of functions for L2[−π, π]. In
other words:

• 〈Sn,Sm〉 =
1

2π

∫ π

−π
sin(nx) sin(mx) dx = 0 , whenever n 6= m.

• 〈Cn,Cm〉 =
1

2π

∫ π

−π
cos(nx) cos(mx) dx = 0, whenever n 6= m.

• 〈Sn,Cm〉 =
1

2π

∫ π

−π
sin(nx) cos(mx) dx = 0, for any n and m.

However, these functions are not orthonormal, because they do not have unit norm. Instead,
for any n 6= 0,

‖Cn‖2 =

√

1

2π

∫ π

−π
cos(nx)2 dx =

1√
2
, and ‖Sn‖2 =

√

1

2π

∫ π

−π
sin(nx)2 dx =

1√
2
.
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Proof: Exercise 131 Hint: Use the trigonometric identities: 2 sin(α) cos(β) = sin(α + β) +
sin(α−β), 2 sin(α) sin(β) = cos(α−β)− cos(α+β), and 2 cos(α) cos(β) = cos(α+β) + cos(α−β).
2

Remark: Notice that C0(x) = 1 is just the constant function.

It is important to remember that the statement, “f and g are orthogonal” depends upon
the domain X which we are considering. For example, when L = π in the following theorem,
note that Sn(x) = sin(nx) and Cn(x) = cos(nx) just as in the previous theorem. However, the
orthogonality relations are different, because the domain X is different.

Proposition 131: Trigonometric Orthogonality on [0, L]

Let X = [0, L] with Lebesgue measure. Let L > 0, and, for every n ∈ N, define Sn(x) =

sin
(nπx

L

)

and Cn(x) = cos
(nπx

L

)

.

1. The set {C0,C1,C2, . . .} is an orthogonal set of functions for L2[0, L]. In other words:

〈Cn,Cm〉 =
1

L

∫ L

0

cos
(nπ

L
x
)

cos
(mπ

L
x
)

dx = 0, whenever n 6= m.

However, these functions are not orthonormal, because they do not have unit norm.

Instead, for any n 6= 0, ‖Cn‖2 =

√

1

L

∫ L

0

cos
(nπ

L
x
)2

dx =
1√
2

.

2. The set {S1,S2,S3, . . .} is an orthogonal set of functions for L2[0, L]. In other words:

〈Sn,Sm〉 =
1

L

∫ L

0

sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx = 0, whenever n 6= m.

However, these functions are not orthonormal, because they do not have unit norm.

Instead, for any n 6= 0, ‖Sn‖2 =

√

1

L

∫ L

0

sin
(nπ

L
x
)2

dx =
1√
2

.

3. The functions Cn and Sm are not orthogonal to one another on [0, L]. Instead:

〈Sn,Cm〉 =
1

L

∫ L

0

sin
(nπ

L
x
)

cos
(mπ

L
x
)

dx =















0 if n+m is even

2n

π(n2 −m2)
if n+m is odd.

Proof: Exercise 132 . 2
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For
functions when 
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continuous

full support.
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Convergence Theorem

L  
1

L  
2

a.e.

L  
ooUniform 

convergence

L  
p

(2<p<oo)

L  
p

(1<p<2)

Figure 4.9: The lattice of convergence types. Here, “A=⇒B” means that convergence of type
A implies convergence of type B, under the stipulated conditions.

4.5 Convergence Concepts
New

If {x1, x2, x3, . . .} is a sequence of numbers, we know what it means to say “ lim
n→∞

xn = x”.

{f1, f2, f3, . . .} was a sequence of functions, and f was some other function, then we might want
to say that “ lim

n→∞
fn = f”. Think of convergence as a kind of ‘approximation’. Heuristically

speaking, if the sequence {xn}∞n=1 converges to x, then, for very large n, the number xn is
approximately equal to x. Thus, heuristically speaking, if the sequence {fn}∞n=1 ‘converges’ to
f , then, for very large n, the function fn is a good approximation of f .

However, there are many ways we can interpret ‘good approximation’, and these lead to
different notions of ‘convergence’. Thus, convergence of functions is a much more subtle concept
that convergence of numbers. We will now discuss the many different ‘modes of convergence’
for functions. Figure 4.9 illustrates their logical relationships.

4.5(a) Pointwise Convergence

Let X be any set, and let fn : X−→R be functions for all n ∈ N. We say the sequence
{f1, f2, . . .} converges pointwise to f : X−→R if

lim
n→∞

fn(x) = f(x), for every x ∈ X. (see Figure 4.10)

Example 132: Let X = [0, 1].

(a) For all n ∈ N, let gn(x) =
1

1 + n ·
∣

∣x− 1
2n

∣

∣

. Figure 4.11 on the facing page portrays func-

tions g1, g5, g10, g15, g30, and g50; These picture strongly suggest that the sequence is con-
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w x

y

z

f (w)
1

f (w)

f (w)

2

4

f (w)
3

f (x)1

f (x)

f (x)

2

4

f (x)
3

f (x)
1

f (x)

f (x)

2

4f (x)
3

f (z)
1 f (z)

f (z)

2

4

f (z)3

Figure 4.10: The sequence {f1, f2, f3, . . .} converges pointwise to the constant 0 function.
Thus, if we pick some random points w, x, y, z ∈ X, then we see that lim

n→∞
fn(w) = 0,

lim
n→∞

fn(x) = 0, lim
n→∞

fn(y) = 0, and lim
n→∞

fn(z) = 0.
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Figure 4.11: If gn(x) = 1

1+n·|x− 1
2n |

, then the sequence {g1, g2, g3, . . .} converges pointwise to the

constant 0 function on [0, 1], and also converges to 0 in L1[0, 1], L2[0, 1], and L∞[0, 1] but does
not converge to 0 uniformly.
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Figure 4.12: Example (132b).
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Figure 4.13: Example (132c).

verging pointwise to the constant 0 function on [0, 1]. The proof of this is Exercise 133
.

(b) For each n ∈ N, let fn(x) =







0 if x = 0;
1 if 0 < x < 1/n;
0 otherwise

(Figure 4.12).

This sequence converges pointwise to the constant 0 function on [0, 1] (Exercise 134 ).

(c) For all n ∈ N, let fn(x) =







0 if x = 0;
n if 0 < x < 1/n;
0 otherwise

(Figure 4.13). Then this sequence

converges pointwise to the constant 0 function.

(d) For each n ∈ N, let fn(x) =
1

1 + n ·
∣

∣x− 1
2

∣

∣

(see Figure 4.14). This sequence of does not
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2 |

Figure 4.14: If fn(x) = 1

1+n·|x− 1
2 |

, then the sequence {f1, f2, f3, . . .} converges to the constant 0

function in L2[0, 1].
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f1

f2

f3

f4

Figure 4.15: The sequence {f1, f2, f3, . . .} converges almost everywhere to the constant 0
function.

converge to zero pointwise, because fn(1
2
) = 1 for all n ∈ N.

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N. If

we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f pointwise if gn−−−−n→∞−→0

pointwise. Hence, to understand pointwise convergence in general, it is sufficient to understand
pointwise convergence of nonnegative functions to the constant 0 function.

4.5(b) Almost-Everywhere Convergence

Prerequisites: §1.3(c) Recommended: §4.5(a)

Let (X,X , µ) be a measure-space, and let fn : X−→R be measurable functions for all n ∈ N.
We say the sequence {f1, f2, . . .} converges almost everywhere to f : X−→R if there is a set
X0 ⊂ X such that µ[X \X0] = 0, and

lim
n→∞

fn(x) = f(x), for every x ∈ X0. (see Figure 4.15)

Example 133: Let X = [0, 1] and let µ be the Lebesgue measure.

(a) Let fn : [0, 1]−→R be as in Example (132d) on page 108. Then fn does not converge to 0
pointwise, but fn does converge to 0 almost everywhere (relative to Lebesgue measure).

(b) For all n ∈ N, let fn(x) =

{

1 if x ∈ Q;
1
n

if x 6∈ Q. Then fn does not converge to 0 pointwise,

but fn does converge to 0 almost everywhere (relative to Lebesgue measure).

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N.

If we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f a.e. if gn−−−−n→∞−→0 a.e.

Hence, to understand a.e. convergence in general, it is sufficient to understand a.e. convergence
of nonnegative functions to the constant 0 function.
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f(x)

f(x)

f
oo

Figure 4.16: The uniform norm of f is given: ‖f‖u = supx∈X |f(x)|.

f(x)

g(x)
ε

ε

Figure 4.17: If ‖f − g‖u < ε, then g(x) is confined within an ‘ε-tube’ around f .

4.5(c) Uniform Convergence

Prerequisites: §??

Let X be any set, and let f : X−→R. The uniform norm of a function f is defined:

‖f‖u = sup
x∈X

∣

∣

∣f(x)
∣

∣

∣

This measures the farthest deviation of the function f from zero (see Figure 4.16).

Example: Suppose X = [0, 1], and f(x) = 1
3
x3− 1

4
x (as in Figure 4.18A). This function takes

its minimum at x = 1
2
, where it has the value −1

12
. Thus, |f(x)| takes a maximum of 1

12
at this

point, so that ‖f‖u = sup
0≤x≤1

∣

∣

∣

∣

1

3
x3 − 1

4
x

∣

∣

∣

∣

=
1

12
.

The uniform distance between two functions f and g is then given by:

‖f − g‖u = sup
x∈X

∣

∣

∣f(x)− g(x)
∣

∣

∣
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3
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2

4
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2

5

Figure 4.18: (A) The uniform norm of f(x) = 1
3
x3 − 1

4
x. (B) The uniform distance between

f(x) = x(x+ 1) and g(x) = 2x. (C) gn(x) =
∣

∣x− 1
2

∣

∣

n
, for n = 1, 2, 3, 4, 5.

One way to interpret this is portrayed in Figure 4.17. Define a “tube” of width ε around the
function f . If ‖f − g‖u < ε, this means that g(x) is confined within this tube for all x ∈ X.

Example: Let X = [0, 1], and suppose f(x) = x(x + 1) and g(x) = 2x (as in Figure 4.18B).
For any x ∈ [0, 1], |f(x)− g(x)| = |x2 + x− 2x| = |x2 − x| = x− x2. This expression
takes its maximum at x = 1

2
(to see this, take the derivative), and its value at x = 1

2
is 1

4
. Thus,

we conclude: ‖f − g‖u = sup
x∈X

∣

∣

∣x(x− 1)
∣

∣

∣ =
1

4
.

A sequence of functions {g1, g2, g3, . . .} converges uniformly to f if lim
n→∞

‖gn − f‖u = 0.

This means not only that lim
n→∞

gn(x) = f(x) for every x ∈ X, but furthermore, that the

functions gn converge to f everywhere at the same “speed”. This is portrayed in Figure 4.19.
For any ε > 0, we can define a “tube” of width ε around f , and, no matter how small we make
this tube, the sequence {g1, g2, g3, . . .} will eventually enter this tube and remain there. To be
precise: there is some N so that, for all n > N , the function gn is confined within the ε-tube
around f —ie. ‖f − gn‖u < ε.

Example 134: Let X = [0, 1].

(a) If gn(x) = 1/n for all x ∈ [0, 1], then the sequence {g1, g2, . . .} converges to zero uniformly
on [0, 1] (Exercise 135 ).

(b) If gn(x) =
∣

∣x− 1
2

∣

∣

n
(see Figure 4.18C), then the sequence {g1, g2, . . .} converges to zero

uniformly on [0, 1] (Exercise 136 ).
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g (x)
1

f(x)

g (x)
2

g (x)
3

g (x)
oo

= f(x)

Figure 4.19: The sequence {g1, g2, g3, . . .} converges uniformly to f .

(c) Recall the functions gn(x) = 1

1+n·|x− 1
2n |

. from Example (132a) on page 106. The sequence

{g1, g2, . . .} converges pointwise to the uniform zero function, but does not converge to
zero uniformly on [0, 1]. However, for any δ > 0, the sequence {g1, g2, . . .} does converge
to zero uniformly on [δ, 1] (Exercise 137 Verify these claims.).

(d) Suppose, as in Example (132b) on page 108, that gn(x) =







0 if x = 0;
1 if 0 < x < 1

n
;

0 otherwise.
.

Then the sequence {g1, g2, . . .} converges pointwise to the uniform zero function, but does
not converge to zero uniformly on [0, 1] (Exercise 138 ).

Proposition 135: Suppose fn : R−→R is continuous for all n ∈ N, and f : R−→R. If
fn−−−−n→∞−→f uniformly, then f is also continuous.

Proof: Exercise 139 2

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N. If

we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f uniformly if gn−−−−n→∞−→0

uniformly. Hence, to understand uniform convergence in general, it is sufficient to understand
uniform convergence of nonnegative functions to the constant 0 function. In this context,
Proposition 135 is a special case of:
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Figure 4.20: The sequence {f1, f2, f3, . . .} converges to the constant 0 function in L∞(X).

Proposition 136: Let X be a topological space and let (Y, d) be a metric space. Suppose
fn : X−→Y is continuous for all n ∈ N, and f : X−→Y. If fn−−−−n→∞−→f uniformly, then f is also
continuous.

Proof: Exercise 140 2

4.5(d) L∞ Convergence

Prerequisites: §4.1(e), §1.3(c) Recommended: §4.5(c)

Let (X,X , µ) be a measure space, and let f : X−→R be measurable. Recall that the L∞

norm of a function f is defined:

‖f‖∞ = ess sup
x∈X

∣

∣

∣f(x)
∣

∣

∣ (see Figure 4.4 on page 98)

This measures the farthest ‘essential’ deviation of the function f from zero.
The L∞ distance between two functions f and g is then given by:

‖f − g‖∞ = ess sup
x∈X

∣

∣

∣f(x)− g(x)
∣

∣

∣

Suppose that fn ∈ L∞(X,X , µ) for all n ∈ N. We say that the sequence {fn}∞n=1 converges
in L∞ to f if lim

n→∞
‖fn − f‖∞ = 0. This not only means that lim

n→∞
fn(x) = f(x) for µ-almost

every x ∈ X, but furthermore, that the functions fn converge to f almost everywhere at the
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same “speed”. This is portrayed in Figure 4.20. For any ε > 0, we can define a “tube” of
width ε around f , and, no matter how small we make this tube, the sequence {g1, g2, g3, . . .}
will eventually enter this tube and remain there. To be precise: there is some N so that, for
all n > N , the function gn is confined within the ε-tube around f almost everywhere. —ie.
‖f − gn‖∞ < ε.

Example 137: Let X = [0, 1] and let µ be the Lebesgue measure.

(a) For all n ∈ N, let fn(x) =

{

1 if x ∈ Q;
1
n

if x 6∈ Q. Then fn does not converge to 0 uniformly

(or even pointwise), fn does converge to 0 in L∞[0, 1].

(b) Let fn : [0, 1]−→R be as in Examples (132a) or (132d) on page 108. Then fn does not
converge uniformly to 0, but does converge to 0 in L∞[0, 1].

Remark: Observe that the L∞ norm is not the same as the uniform norm, and L∞ conver-
gence is not the same as uniform convergence. The difference is that, in L∞ convergence, we
allow convergence to fail on a set of measure zero. Thus,

(

uniform convergence
)

=⇒
(

L∞ convergence
)

,

but the opposite is not true, in general. However, we do have:

Proposition 138: Suppose fn : Rn−→R is continuous for all n ∈ N. and f : X−→R. Then
(

fn−−−−n→∞−→f uniformly
)

⇐⇒
(

fn−−−−n→∞−→f in L∞(R, λ)
)

Proof: Exercise 141 2

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N.

If we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f in L∞ if gn−−−−n→∞−→0

in L∞. Hence, to understand L∞ convergence in general, it is sufficient to understand L∞

convergence of nonnegative functions to the constant 0 function. In this context, Proposition
138 is a special case of:

Proposition 139: Let X be a topological space, and let µ be a Borel measure on X with full
support. Let (Y, d) a metric space, and suppose fn : X−→Y is continuous for all n ∈ N, and

f : X−→Y. Then
(

fn−−−−n→∞−→f uniformly
)

⇐⇒
(

fn−−−−n→∞−→f in L∞(X, µ)
)

.

Proof: Exercise 142 2
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Figure 4.21: The sequence {f1, f2, f3, . . .} converges to the constant 0 function in L1(X).

4.5(e) Almost Uniform Convergence

Prerequisites: §4.5(c), §1.3(c)

Let (X,X , µ) be a measure space, and let fn : X−→R be functions for all n ∈ N. We say
the sequence {f1, f2, . . .} converges almost uniformly to f : X−→R if, for every ε > 0, there
is a subset E ⊂ X such that

• µ[X \ E] < ε;

• lim
n→∞

(

sup
e∈E

∣

∣

∣fn(e)− f(e)
∣

∣

∣

)

= 0; in other words fn converges uniformly to f inside E.

Theorem 140: Egoroff

If (X,X , µ) is a finite measure space, then

(

fn−−−−n→∞−→f almost everywhere
)

=⇒
(

fn−−−−n→∞−→f almost uniformly
)

4.5(f) L1 convergence

Prerequisites: §4.1(d),§3.2 Recommended: §4.5(d)
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If f, g ∈ L1(X, µ), then the L1-distance between f and g is just

‖f − g‖1 =

∫

X

∣

∣

∣f(x)− g(x)
∣

∣

∣ dµ[x]

If we think of f as an “approximation” of g, then ‖f − g‖1 measures the average error of this
approximation. If {f1, f2, f3, . . .} is a sequence of successive approximations of f , then we say
the sequence converges to f in L1 if lim

n→∞
‖fn − f‖1 = 0. See Figure 4.21.

Example 141: Let X = R, with the Lebesgue measure.

(a) For each n ∈ N, let fn(x) =

{

1 if 0 < x < 1/n;
0 otherwise

as in Example (132b) on page

108. Then ‖fn‖1 = 1
n
, so fn−−−−n→∞−→0 in L1. Observe, however, that fn does not converge

uniformly to zero.

(b) For all n ∈ N, let fn(x) =

{

n if 0 < x < 1/n;
0 otherwise

, as in Example (132c) on page 108.

This sequence converges pointwise to zero, but ‖fn‖1 = 1 for all n, so the sequence does
not converge to zero in L1.

(c) Perhaps L1-convergence fails in the previous example because the sequence is unbounded?

For all n ∈ N, let fn(x) =

{

1 if n < x < n+ 1;
0 otherwise

. This sequence is bounded, and

converges pointwise to zero, but ‖fn‖1 = 1 for all n, so the sequence does not converge to
zero in L1.

(d) For any n ∈ N, let `(n) = blog2(n)c and find k ∈ [0..2m) so that n = 2`(n) +k (for example,

38 = 25 + 6). Then define Un =

[

k

2`(n)
,
k + 1

2`(n)

]

⊂ [0, 1]. (for example, U38 =
[

6
32
, 7

32

]

),

and define fn = 11Un (Figure 4.22). Thus, ‖fn‖1 =
1

2`(n)
−−−−n→∞−→0, so that fn converges to

zero in L1. However, fn does not converge to zero pointwise.

(e) For all n ∈ N, let fn(x) =

{

1
n

if 0 < x < n;
0 otherwise

. This sequence converges uniformly to

zero, but ‖fn‖1 = 1 for all n, so the sequence does not converge to zero in L1.

(f) For all n ∈ N, let fn(x) =

{

1
n2 if 0 < x < n;
0 otherwise

. Then ‖fn‖1 = 1
n
, so this sequence

does converge to zero in L1.

Example 142: `1(N) vs. `∞(N)

Let RN be the set of all sequences of real numbers; we’ll write such a sequence as a = [an]∞n=1.

Recall that ‖a‖1 =
∞
∑

n=1

|an| and `1(N) =
{

a ∈ RN ; ‖a‖1 <∞
}

. Similarly, ‖a‖∞ = sup
n∈N
|an|
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Figure 4.22: The sequence {f1, f2, f3, . . .} converges to the constant 0 function in L1(X), but
not pointwise.

and `∞(N) =
{

a ∈ RN ; ‖a‖∞ <∞
}

. Clearly, for any sequence, sup
n∈N
|an| ≤

∞
∑

n=1

|an|. It

follows that `1(N) ⊂ `∞(N), and
(

an−−−−n→∞−→a in `1
)

=⇒
(

an−−−−n→∞−→a in `∞
)

.

This is a special case of the following result:

Proposition 143: Let (X,X , µ) be a measure space, and let f : X−→R and fn : X−→R be
integrable for all n ∈ N.

1. If (X,X , µ) is discrete, and m = inf
U∈X
µ[U]>0

µ[U] > 0, then:

(a) ‖f‖∞ ≤
1

m
‖f‖1

(b) L1(X, µ) ⊂ L∞(X, µ).

(c)
(

fn−−−−n→∞−→f in L1
)

=⇒
(

fn−−−−n→∞−→f in L∞
)

.

2. However, if inf
U∈X
µ[U]>0

µ[U] = 0, then L1(X, µ) 6⊂ L∞(X, µ), and 1(c) fails.

Proof: 1(b-c) follows from 1(a); the proofs of 1(a) and 2 are Exercise 143 . 2
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Example 144: L1[0, 1] vs. L∞[0, 1]

Let [0, 1] have the Lebesgue measure. If f : [0, 1]−→C is measurable, then ‖f‖1 =

∫ 1

0

|f(x)| dx,

and ‖f‖∞ = sup
0≤x≤1

|f(x)| . Clealry,

∫ 1

0

|f(x)| ≤ sup
0≤x≤1

|f(x)|. It follows L∞[0, 1] ⊂ L1[0, 1],

and
(

fn−−−−n→∞−→f in L∞
)

=⇒
(

fn−−−−n→∞−→f in L1
)

.

This is a special case of the following result:

Proposition 145: Let (X,X , µ) be a measure space, and let f : X−→R and fn : X−→R be
integrable for all n ∈ N.

1. If (X,X , µ) is finite, and M = µ(X), then:

(a) ‖f‖1 ≤ M · ‖f‖∞.

(b) L∞(X, µ) ⊂ L1(X, µ).

(c)
(

fn−−−−n→∞−→f in L∞
)

=⇒
(

fn−−−−n→∞−→f in L1
)

.

2. If (X,X , µ) is infinite, then L∞(X, µ) 6⊂ L1(X, µ), and 3(c) fails.

3. However, if there is some F ∈ L1(X,X , µ) such that
∣

∣

∣fn(x)− f(x)
∣

∣

∣ ≤ F (x) a.e., for all

n ∈ N, then
(

fn−−−−n→∞−→f in L∞
)

=⇒
(

fn−−−−n→∞−→f in L1
)

.

Proof: 1(b-c) follows from 1(a). The proofs of 1(a) and 2 are Exercise 144 . Part 3 follows
from Lebesgue’s Dominated Convergence Theorem (page 84). 2

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N. If

we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f in L1 if gn−−−−n→∞−→0 in L1.

Hence, to understand L1 convergence in general, it is sufficient to understand L1 convergence
of nonnegative functions to the constant 0 function.

4.5(g) L2 convergence

Prerequisites: §4.3,§3.2 Recommended: §4.5(f),§4.5(d)

If f, g ∈ L2(X, µ), then the L2-distance between f and g is just

‖f − g‖2 =

(∫

X

∣

∣

∣f(x)− g(x)
∣

∣

∣

2

dµ[x]

)1/2
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Figure 4.23: The sequence {f1, f2, f3, . . .} converges to the constant 0 function in L2(X).

If we think of f as an “approximation” of g, then ‖f − g‖2 measures the root-mean-squared
error of this approximation. If {f1, f2, f3, . . .} is a sequence of successive approximations of f ,
then we say the sequence converges to f in L2 if lim

n→∞
‖fn − f‖2 = 0. See Figure 4.23.

Example 146: Let X = R, with the Lebesgue measure.

(a) For each n ∈ N, let fn(x) =

{

1 if 0 < x < 1/n;
0 otherwise

as in Example (141a) on page 116.

Then ‖fn‖2 = 1√
n
, so fn−−−−n→∞−→0 in L2.

(b) For all n ∈ N, let fn(x) =

{

n if 0 < x < 1/n;
0 otherwise

, as in Example (132c) on page 108.

This sequence converges pointwise to zero, but ‖fn‖2 =
√
n for all n, so the sequence does

not converge to zero in L2.

(c) For all n ∈ N, let fn(x) =

{

1
n

if 0 < x < n;
0 otherwise

, as in Example (141e) on page 116.

This sequence does not converge to zero in L1. However, ‖fn‖2 = 1√
n

for all n, so the

sequence does converge to zero in L2.

(d) For all n ∈ N, let fn(x) =

{ 1√
n

if 0 < x < n;

0 otherwise
. This sequence converges uniformly

to zero. However, ‖fn‖2 = 1 for all n, so this sequence does not converge to zero in L2.

Example 147: `1(N) vs. `2(N) vs. `∞(N)



120 CHAPTER 4. FUNCTIONAL ANALYSIS

Let RN be the set of all sequences of real numbers; we’ll write such a sequence as a = [an]∞n=1.

Recall that ‖a‖2 =

√

√

√

√

∞
∑

n=1

|an|2 and `2(N) =
{

a ∈ RNatur ; ‖a‖2 <∞
}

. We next will show

that sup
n∈N
|an| ≤

√

√

√

√

∞
∑

n=1

|an|2 ≤
∞
∑

n=1

|an|. It follows that `1(N) ⊂ `2(N) ⊂ `∞(N).

Proposition 148: Let (X,X , µ) be a measure space, and let f : X−→R and fn : X−→R be
integrable for all n ∈ N.

1. If (X,X , µ) is discrete, and m = inf
U∈X
µ[U]>0

µ[U] > 0, then:

(a) ‖f‖∞ ≤
1√
m
‖f‖2 and ‖f‖2 ≤

1√
m
‖f‖1.

(b) L1(X, µ) ⊂ L2(X, µ) ⊂ L∞(X, µ).

(c)
(

fn−−−−n→∞−→f in L1
)

=⇒
(

fn−−−−n→∞−→f in L2
)

=⇒
(

fn−−−−n→∞−→f in L∞
)

.

2. However, if inf
U∈X
µ[U]>0

µ[U] = 0, then L1(X, µ) 6⊂ L2(X, µ) 6⊂ L∞(X, µ), and 1(c) fails.

Proof: 1(b-c) and follow from 1(a);

Proof of 1(a): The first inequality is Exercise 145 . We will prove the second. Assume
without loss of generality that {x} is measurable and that µ{x} > 0 for all x ∈ X. Thus,

‖f‖2 =

(

∑

x∈X

|f(x)|2 · µ{x}

)1/2

and ‖f‖1 =
∑

x∈X

|f(x)| · µ{x}. Thus

‖f‖1
2 =

(

∑

x∈X

|f(x)| · µ{x}

)2

≥(a)

∑

x∈X

(

|f(x)| · µ{x}
)2

=
∑

x∈X

|f(x)|2 · µ{x}2 =
∑

x∈X

|f(x)|2 · µ{x} · µ{x}

≥

(

∑

x∈X

|f(x)|2 · µ{x}

)

· inf
x∈X

µ{x} =(b) ‖f‖2
2 ·m

(a) Because the function x−→x2 is convex –ie. (x+ y)2 ≥ x2 + y2 if x, y ≥ 0.

(b) By definition, m = inf
x∈X

µ{x}.

Thus, taking the square root on both sides, we get ‖f‖1 ≥ ‖f‖2 ·m
1
2 . Divide both sides

by m
1
2 to get m−

1
2 · ‖f‖1 ≥ ‖f‖2, as desired.

Proof of 2: Exercise 146 Hint: Find examples of functions violating each inclusion. 2
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Example 149: L1[0, 1] vs. L2[0, 1] vs. L∞[0, 1]

Let [0, 1] have the Lebesgue measure. If f : [0, 1]−→C is measurable, then ‖f‖2 =

√

∫ 1

0

|f(x)|2 dx.

We next will show that

∫ 1

0

|f(x)| ≤

√

∫ 1

0

|f(x)|2 dx ≤ sup
0≤x≤1

|f(x)|. It follows L∞[0, 1] ⊂

L2[0, 1] ⊂ L1[0, 1].

Proposition 150: Let (X,X , µ) be a measure space, and let f : X−→R and fn : X−→R be
integrable for all n ∈ N.

1. If (X,X , µ) is finite, and M = µ(X), then:

(a) ‖f‖1 ≤
√
M · ‖f‖2, and ‖f‖2 ≤

√
M · ‖f‖∞.

(b) L∞(X, µ) ⊂ L2(X, µ) ⊂ L1(X, µ).

(c)
(

fn−−−−n→∞−→f in L∞
)

=⇒
(

fn−−−−n→∞−→f in L2
)

=⇒
(

fn−−−−n→∞−→f in L1
)

.

2. If (X,X , µ) is infinite, then L∞(X, µ) 6⊂ L2(X, µ) 6⊂ L1(X, µ), and 3(c) fails.

3. However, if there is some F ∈ L2(X,X , µ) such that
∣

∣

∣fn(x)− f(x)
∣

∣

∣ ≤ F (x) a.e., for all

n ∈ N, then
(

fn−−−−n→∞−→f in L∞
)

=⇒
(

fn−−−−n→∞−→f in L2
)

.

Proof: 1(b-c) follow from 1(a)

Proof of 1(a): Is there a way to do this without Hölder ?

Part 5 follows from Lebesgue’s Dominated Convergence Theorem (page 84).

Proof of 2: Exercise 147 Hint: Find examples of functions violating each inclusion. 2

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N. If

we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f in L2 if gn−−−−n→∞−→0 in L2.

Hence, to understand L2 convergence in general, it is sufficient to understand L2 convergence
of nonnegative functions to the constant 0 function.
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4.5(h) Lp convergence

Prerequisites: §3.2 Recommended: §4.5(f),§4.5(g),§4.5(d)

Let (X,X , µ) be a measure space, and let p ∈ [1,∞). If f : X−→R is measurable, then we
define the Lp-norm of f :

‖f‖p =

(∫

X

∣

∣

∣f(x)
∣

∣

∣

p

dµ[x]

)1/p

Observe that, if p = 2, this is just the L2 norm from §??, while if p = 1, it is the L1 norm from
§??.

If f, g ∈ Lp(X, µ), then the Lp-distance between f and g is just

‖f − g‖p =

(∫

X

|f(x)− g(x)|p dµ[x]

)1/p

Again, if p = 2 or 1, this agrees with the L2 or L1 distances.

If {f1, f2, f3, . . .} is a sequence of elements in Lp, of f , then we say the sequence converges
to f in Lp if lim

n→∞
‖fn − f‖p = 0. See Figure 4.23.

Example 151: Let X = R, with the Lebesgue measure.

(a) For each n ∈ N, let fn(x) =

{

1 if 0 < x < 1/n;
0 otherwise

as in Example (141a) on page 116.

Then ‖fn‖p = 1
n1/p , so fn−−−−n→∞−→0 in Lp.

(b) For all n ∈ N, let fn(x) =

{

n if 0 < x < 1/n;
0 otherwise

, as in Example (132c) on page 108.

This sequence converges pointwise to zero, but ‖fn‖p = n
p−1
p for all n, and p−1

p
> 0, so

the sequence does not converge to zero in Lp.

(c) For all n ∈ N, let fn(x) =

{

1
n

if 0 < x < n;
0 otherwise

, as in Example (141e) on page 116.

This sequence does not converge to zero in L1. However, ‖fn‖p = n
1−p
p for all n, and

1−p
p
< 0, so the sequence does converge to zero in Lp for any p > 1.

(d) For all n ∈ N, let fn(x) =

{

1
n1/p if 0 < x < n;

0 otherwise
. This sequence converges uniformly

to zero. However, ‖fn‖p = 1 for all n, so this sequence does not converge to zero in Lp.
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Proposition 152: Let (X,X , µ) be a measure space, and let f : X−→R and fn : X−→R be
integrable for all n ∈ N. Let 1 < p < q <∞.

1. If (X,X , µ) is discrete, and m = inf
U∈X
µ[U]>0

µ[U] > 0, then:

(a) ‖f‖∞ ≤ m−
1
q · ‖f‖q, ‖f‖q ≤ m

1
q
− 1
p · ‖f‖p, and ‖f‖p ≤ m

1
p
−1 · ‖f‖1.

(b) L1(X, µ) ⊂ Lp(X, µ) ⊂ Lq(X, µ) ⊂ L∞(X, µ).

(c)
(

fn−−−−n→∞−→f in L1
)

=⇒
(

fn−−−−n→∞−→f in Lp
)

=⇒
(

fn−−−−n→∞−→f in Lq
)

=⇒
(

fn−−−−n→∞−→f in L∞
)

.

2. However, if inf
U∈X
µ[U]>0

µ[U] = 0, then L1(X, µ) 6⊂ Lp(X, µ) 6⊂ Lq(X, µ) 6⊂ L∞(X, µ),

and 1(c) fails.

3. If (X,X , µ) is finite, and M = µ(X), then:

(a) ‖f‖1 ≤ M(1− 1
p) · ‖f‖p, ‖f‖p ≤M( 1

p
− 1
q ) · ‖f‖q, and ‖f‖q ≤ M

1
q · ‖f‖∞.

(b) L∞(X, µ) ⊂ Lq(X, µ) ⊂ Lp(X, µ) ⊂ L1(X, µ).

(c)
(

fn−−−−n→∞−→f in L∞
)

=⇒
(

fn−−−−n→∞−→f in Lq
)

=⇒
(

fn−−−−n→∞−→f in Lp
)

=⇒
(

fn−−−−n→∞−→f in L1
)

.

4. However, if (X,X , µ) is infinite, then L∞(X, µ) 6⊂ Lq(X, µ) 6⊂ Lp(X, µ) 6⊂ L1(X, µ),
and 3(c) fails.

5. Let (X,X , µ) be any measure space, and suppose 1 ≤ p < q < r ≤ ∞. Let λ = pr−pq
qr−pq .

(thus λ · 1
p

+ (1− λ) · 1
r

= 1
q
).

(a) ‖f‖q ≤ ‖f‖p
λ · ‖f‖r

1−λ.

(b) Lp(X, µ) ∩ Lr(X, µ) ⊂ Lq(X, µ) ⊂ Lp(X, µ) + Lr(X, µ).

(c)
(

fn−−−−n→∞−→f in both Lp and Lr
)

=⇒
(

fn−−−−n→∞−→f in Lq
)

.

Proof: 1(b,c) and 3(b,c) follow respectively from 1(a) and 3(a).

Proof of 1(a): Assume without loss of generality that X = P(X), and that µ{x} > 0 for

all x ∈ X. Thus, ‖f‖p =

(

∑

x∈X

|f(x)|p · µ{x}

)1/p

and similarly for ‖f‖q. Thus,

‖f‖p
q =

(

∑

x∈X

|f(x)|p · µ{x}

) q
p

≥(a)

∑

x∈X

(

|f(x)|p · µ{x}
) q
p
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=
∑

x∈X

|f(x)|q · µ{x}
q
p =

∑

x∈X

|f(x)|q · µ{x} · µ{x}
q
p
−1

≥

(

∑

x∈X

|f(x)|q · µ{x}

)

· inf
x∈X

µ{x}
q
p
−1 =(b) ‖f‖q

q ·m
q
p
−1

(a) Because q > p, so that q
p > 1, so the function x−→x

q
p is convex –ie. (x+ y)

q
p ≥ x

q
p + y

q
p .

(b) By definition, m = inf
x∈X

µ{x}.

Thus, taking the qth root on both sides, we get ‖f‖p ≥ ‖f‖q ·m
1
p
− 1
q . Divide both sides

by m
1
p
− 1
q to get m

1
q
− 1
p · ‖f‖p ≥ ‖f‖q, as desired.

The case involving ‖f‖p vs. ‖f‖1 is obtained by applying the ‘‖f‖q′ vs. ‖f‖p′ ’ case with
q′ = p and p′ = 1. The case involving ‖f‖∞ vs. ‖f‖q is Exercise 148 .

Proof of 3(a): Is there a way to do this without Hölder ?

Proof of 2,4: Exercise 149 Hint: Find examples of functions violating each inclusion.

Proof of 5(a): Is there a way to do this without Hölder ?

5(c) follows from 5(a).

Proof of 5(b): If f ∈ Lp(X, µ) ∩ Lr(X, µ), it follows immediately from 5(a) that f ∈
Lq(X, µ). To see the other inclusion, suppose f ∈ Lq, and define

fp(x) =

{

f(x) if |f(x)| ≥ 1
0 if |f(x)| < 1

and fr(x) =

{

0 if |f(x)| ≥ 1
f(x) if |f(x)| < 1

Observe that f(x) = fp(x) + fr(x). It is Exercise 150 to verify that fp ∈ Lp(X, µ) and
fr ∈ Lr(X, µ). 2

Let (Y, d) be a metric space, and suppose that f : X−→Y and fn : X−→Y for all n ∈ N. If

we define gn(x) = d
(

f(x), fn(x)
)

for all n ∈ N, then we say fn−−−−n→∞−→f in Lp if gn−−−−n→∞−→0 in Lp.

Hence, to understand Lp convergence in general, it is sufficient to understand Lp convergence
of nonnegative functions to the constant 0 function.
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5 Information

5.1 Sigma Algebras as Information

Prerequisites: §1.1

Consider the following commonplace statements:

• “In retrospect it was a bad idea to buy tech stocks.”

• “Alice knows more about Chinese history than Bob does.”

• “Xander and Yvonne each know things about Zoroastrianism which the other does not.”

• “You learn something new every day.”

• “In 1944, the Germans did not know that the Allies had broken the Enigma cypher.”

Each of these is a statement about knowledge, or the lack thereof. In particular, each
compares the states of knowledge of two people (or the same person at different times). This
idea of a state of knowledge is ubiquitous in everyday parlance. How can we mathematically
model this?

The appropriate mathematical model of a knowledge-state is a sigma-algebra. Imagine we
are curious about some system S, whose (unknown) internal state is an element of a statespace
X. For example, suppose S is a lost treasure; in this case, the location of the treasure is some
point on the Earth’s (spherical) surface, so X = S2.

Let X be a sigma-algebra over X, and suppose x ∈ X is the (unknown) state of S. The
knowledge represented by X is the information about S that one obtains from knowing, for
every U ∈ X , whether or not x ∈ U. Thus, if Y ⊃ X is a larger sigma algebra, then Y contains
‘more’ information than X . The power set P(X) represents a state of total omniscience; the
null algebra {∅,X} represents a state of total ignorance.

Example 153: Dyadic Partitions of the Interval

Let I = [0, 1). Any element α ∈ I has a unique1 binary expansion α = 0.a1a2a3a4 . . . such
that

α =
∞
∑

n=0

an
2n

1Actually the dyadic rationals (numbers of the form a
2n ) are an exception, and have two binary expansions.

However, these form a set of measure zero, so we can ignore them.
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1
1
/
1
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1
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1
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/
1
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α=0....?

α=0.1...?

α=0.10...?

α=0.101...?

α=0.1011...?

α

Figure 5.1: Finer dyadic partitions reveal more binary digits of α

Consider the following sequence of dyadic partitions, illustrated in Figure 5.1:

P0 = {I}

P1 =

{[

0,
1

2

)

,

[

1

2
, 1

)}

P2 =

{[

0,
1

4

)

,

[

1

4
,
1

2

)

,

[

1

2
,
3

4

)

,

[

3

4
, 1

)}

P3 =

{[

0,
1

8

)

,

[

1

8
,
1

4

)

,

[

1

4
,
3

8

)

,

[

3

8
,
1

2

)

,

[

1

2
,
5

8

)

,

[

5

8
,
3

4

)

,

[

3

4
,
7

8

)

,

[

7

8
, 1

)}

...
...

...

Suppose α is unknown. Then note that:
(

knowledge of digits a1, a2, . . . , an

)

⇐⇒
(

knowledge of which element of Pn contains α
)

In other words, Pn ‘contains’ the information about the first n binary digits of α.

Notice that P0 ≺ P1 ≺ P2 . . .. Thus, finer partitions contain more information.

Example: Partitions of a Square
Let I2 be a square, and let P be a partition of I2, with associated sigma-algebra σ(P). The

information contained in σ(P) is the information about x ∈ I2 you obtain from knowing which
atom of P the point x lies in.

Recall that partition Q refines P if every element of P can be written as a union of atoms
in P, as shown in Figure 1.5 on page 4. Thus, σ(Q) contains more information than σ(P),
because it specifies the location of x with greater ‘precision’. For example, suppose P and Q
were grids on I2, as in Figure 5.2. If P ≺ Q, then Q is a higher resolution grid, providing
proportionately better information about spatial position.

Example 154: Projections of the Cube
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Figure 5.2: A higher resolution grid corresponds to a finer partition.

x = (x , x , x )

x
1

2 31

x
2

x
3

Figure 5.3: Our position in the cube is completely specified by three coordinates.



128 CHAPTER 5. INFORMATION

x
1

x

1

Figure 5.4: The sigma algebra X1 consists of “vertical sheets”, and specifies the x1 coordinate.

x
2

x

2

Figure 5.5: The sigma algebra X2 consists of “vertical sheets”, and specifies the x2 coordinate.

Consider the unit cube, I3 := I × I × I, where I := [0, 1] is the unit interval (see Figure
5.3). Let I3 have the Borel sigma-algebra I3. As shown in Figure 5.3, the position of x ∈ I3
is completely specified by three coordinates (x1, x2, x3). The information embodied by each
coordinate corresponds to a certain sigma-algebra.

Consider the projection onto the first coordinate, pr1 : I3−→I. Thus, if x := (x1, x2, x3) ∈ I3,
then pr1(x) = x1 ∈ I. Consider the pulled back sigma algebra X1 := pr1

−1(I), (where I is
the Borel sigma-algebra on I). Roughly speaking, X1 consists of all “vertical sheets” in the
cube (Figure 5.4). That is:

X1 =
{

pr1
−1(U) ; U ∈ I2

}

=
{

U× I2 ; U ∈ I
}

= I ⊗ {I2}

Knowing the coordinate x1 is equivalent to knowing which vertical sheet x lies in.

Next, consider the projection onto the second coordinate, pr2 : I3−→I. Thus, if x :=
(x1, x2, x3) ∈ I3, then pr2(x) = x2 ∈ I. The pulled back sigma algebra X2 := pr2

−1(I)
consists of the ‘vertical sheets’ shown in Figure 5.5:

X2 =
{

pr2
−1(U) ; U ∈ I

}

= {I ×U× I ; U ∈ I} = {I} ⊗ I ⊗ {I}
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x
2

x1

x

12

Figure 5.6: The sigma algebra X12 completely specifies (x1, x2) coordinates of x.

X

1

X

X

2

pr
2

The sigma algebra of "horizontal" fibres
specifies          information.vertical

X

1

X

X

2

pr
1

The sigma algebra of
"vertical" fibres
specifies         
information.

horizontal

Figure 5.7: “Vertical” and “horizontal” sigma algebras in a product space.

Knowing the coordinate x2 is equivalent to knowing which of these sheets x lies in.

Finally, Let I2 be the unit square, and consider the projection onto the first two coordinates,
pr1,2 : I3−→I2; if x := (x1, x2, x3) ∈ I3, then pr1,2(x) = (x1, x2) ∈ I2. Let X12 := pr1,2

−1(I2)
(where I2 is the Borel sigma-algebra on I2). As discussed in Example 28 on page 26, elements
of X12 look like “vertical fibres” in the cube (Figure 5.6). That is: X12 = I2 ⊗ {I}.
Alternately, we could write:

X12 = X1 ⊗X2

Thus, X12-related information specifies exactly which vertical fibre-sets x is in, and exactly
which vertical fibre sets we are not in. From this, we can reconstruct arbitrarily accurate
information about the coordinates x1 and x2. In other words, as illustrated in Figure 5.6:

The information contained in X12 is exactly the same information contained in
the (x1, x2) coordinates of x.

Example: Product Spaces
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Let (X1,X1) and (X2,X2) be measurable spaces, and consider the product space, (X,X ) =
(X1 ×X2,X1⊗ X2). For k = 1 or 2, let prk : X−→Xk be projection onto the kth coordinate,
and consider the pulled-back sigma-algebra

̂Xk := prk
−1(Xk)

Then the sigma algebra ̂Xk contains exactly the same information as the coordinate prk con-

tains. As illustrated in Figure 5.7, one can imagine ̂X1 as the sigma-algebra of all ‘vertical’
fibres, so it contains all ‘horizontal’ information. Conversely, ̂X2 consists of all ‘horizontal’
fibres, and thus, specifies ‘vertical’ information.

Example: A measurement
Imagine that the space X represents the state of some system S, and imagine we perform

a ‘measurement’ on S with an apparatus, which yields output in some set Y. For example, if
the apparatus yields numerical values, then Y = R.

Thus, we can represent the measurement procedure with a function

f : X−→Y

Suppose that Y is a measurable space, with sigma-algebra Y , Then the pulled-back sigma
algebra f−1Y is a sigma algebra on X, and contains the information about S that is provided
by the measurement.

5.1(a) Refinement and Filtration

Prerequisites: §5.1

If the sigma algebra X contains strictly more information than the sigma-algebra Y (in the
sense that we could recover every bit of information about Y by looking at X ), then we say
that X refines Y . In a sense, once we know the information contained in X , the information
contained in Y is redundant. Formally, we have the following definition.

Definition 155 Refinement

Let X be a set, and let X and Y be two sigma-algebras on X. We say that X refines Y if
Y is a subset of X .

In other words, if U ∈ Y, then U ∈ X also. We write this: “Y ⊂ X”.

Example 156:

(a) Partitions: Let P and Q be two partitions of X. Then σ(Q) refines σ(P) if and only if
Q refines P (Exercise 151 ).
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(b) The power set: The sigma-algebra P(X) contains the “most” information about X,
because it refines every sigma-subalgebra Y . Thus, P(X) represents the state of ‘omni-
science’.

(c) The trivial sigma-algebra X∅ := {∅,X} contains the least information, because every
other sigma algebra on the space refines X∅. Thus, X∅ represents the state of ‘total
ignorance’.

(d) The cube: Let I3 be the unit cube, with Borel sigma-algebra I3. Recall that X12 =
pr1,2

−1(I2) contained all information about the (x1, x2) coordinates of an unknown point
x ∈ X. However, the sigma-algebra X1 := pr1

−1(I1) only contained information about
the x1 coordinate.

X1 ⊂ X12 ⊂ I3

X12 contains less information than I3 because X12 tells us nothing about the x3 coordinate.
Further, X1 contains only only half the horizontal information contained in X12, because
X1 contains only information x1 coordinate, but says nothing about the x2 coordinate.

Example 157: Stock market

Imagine you are monitoring the price of a certain stock over a 30 day period. Hence, the
behaviour of the stock will be described by an (as-yet unknown) 30-element sequence of
numbers p = (p1, p2, . . . , p30) ∈ R30. On the first day, you learn the value of p1, on the
second day, that of p2, and so on. Thus, after the first n days, you know the value of
p1, . . . , pn.

Let prn : R30−→Rn be the projection: prn(p) = (p1, . . . , pn). Let Bn be the Borel sigma-
algebra of Rn, and let Xn = prn

−1(Bn). Thus, your knowledge state on day n is contained in
the sigma-algebra Xn, and we have a refining sequence of sigma-algebras:

X∅ ⊂ X1 ⊂ X2 ⊂ . . . ⊂ X30

where X∅ = {∅,R} is the trivial sigma-algebra, and X30 = B30 is the whole Borel sigma-
algebra of R30.

Thus, a progressive revelation of information corresponds to a a refining sequence of sigma-
algebras...

Definition 158 Filtration

Let (X,X ) be a measurable space, and let T be a linearly ordered set. A T-indexed
filtration is a collection {Ft}t∈T of sigma subalgebras of X so that, for any s, t ∈ T.

(

s < t
)

=⇒
(

Fs ⊂ Ft
)
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0 1 2 3

Figure 5.8: F0 ⊂ F1 ⊂ F2 ⊂ F3 is a filtration of the Borel-sigma algebra of the cube.

Normally, T is interpreted as time. Thus, a filtration represents a revelation of information
unfolding in time.

Example 159:

(a) In the stockmarket of Example 157, T = [0..30], and Ft = Xt.

(b) Recall the dyadic partitions of Example 153. Here, T = N, and Fn = σ(Pn) is a sigma-
algebra containing information about the first n binary digits of an unknown real number
α ∈ [0, 1].

(c) Recall the cube projections of Example 154. Let T = {0, 1, 2, 3}, and define

F0 = {∅, I3}; F1 = X1; F2 = X1,2; F3 = I3;

(see Figure 5.8). Then F0 ⊂ F1 ⊂ F2 ⊂ F3 is a four-element filtration.

5.1(b) Conditional Probability and Independence

Prerequisites: §5.1

Opposite to the concept of refinement is the concept of independence. If Y contains no
information about X , and X contains no information about Y , then the information contained
in the two sigma-algebras is complementary; each one tells us things the other one doesn’t tell us.
Heuristically, if we knew about both the X -related information and the Y-related information,
then we would have ‘twice’ as much information as if we knew only one or the other. We say
that X and Y are independent of one another.

To make this concept precise, we must fix a measure upon X, which determines whether or
not two peices of information are probabilistically correlated with each other. Depending upon
the measure we place on X, sigma algebras X and Y may range from being totally independent
of one another, to being ‘effectively identical’.

First, we must introduce the notion of conditional probability. Suppose that, over a historical
period of 10000 days:
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• It rained in Toronto on 4500 days.

• It rained in Montréal on 3500 days.

• It rained in Toronto and Montréal on 3000 days.

Assuming this sample accurately reflects the underlying statistics, we can conclude, for example:

The probability that it will rain in Montréal on any given day is
3500

10000
= 0.35.

This probability estimate is made assuming ‘total ignorance’. Suppose, however, that you
aready knew it was raining in Toronto. This might modify your wager about Montréal. Out of
the 4500 days during which it rained in Toronto, it rained in Montréal on 3500 of those days.
Thus,

Given that it is raining in Toronto, the probability that it will also rain in

Montréal, is
3000

4500
=

2

3
= 0.6666 . . ..

If T is the event “It is raining in Toronto”, and M is the event “It is raining in Montréal”, then
M ∩T is the event “It is raining in Toronto and Montréal”. What we have just concluded is:

Prob [M given T] =
Prob [M ∩T]

Prob [T]

Definition 160 Conditional Probability

Let (X,X , µ) be a measure space, and U,V ∈ X . The conditional probability2 of U,
given V is defined:

µ[U 〈〈 V] =
µ[U ∩V]

µ[V]

In the previous example, meteorological information about Toronto modified our wager
about Montréal. Suppose instead that the statistics were as follows: over 10000 days,

• It rained in Toronto on 5000 days.

• It rained in Montréal on 3000 days.

• It rained in Toronto and Montréal on 1500 days.

Then we conclude:

• The probability that it will rain in Montréal on any given day is
3000

10000
= 0.3.

2This terminology obviously refers to the case when µ is a probability measure, but we will apply it even
when µ is not.
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• Given that it is raining in Toronto, the probability that it will also rain in Montréal, is
1500

5000
= 0.3.

In other words, the rain in Toronto has no influence on the rain in Montréal. Meteorological
information from Toronto is useless to predicting Montréal precipitation. If M and T are as
before, we have:

Prob [M ∩T]

Prob [T]
= Prob [M] .

Another way to write this:

Prob [M ∩T] = Prob [M] · Prob [T] .

Definition 161 Independence of sets

Let (X,X , µ) be a measure space, and U,V ∈ X . We say U and V are independent if

µ [U ∩V] = µ[U] · µ[V]

Instead of examining single sets, however, we might look at an entire sigma-algebra. For
example, suppose T was a sigma-algebra representing all possible weather events in Toronto,
and M was a sigma-algebra representing all possible weather events in Montréal. Suppose we
found that, not only was the precipitation between the two cities unrelated, but in fact, all
weather events were unrelated. For example, if T might contains sets representing statements
like “There is a tornado in Toronto”, and M might contain, “It is freezing in Montréal.” To
say that the weather in the two cities is totally unrelated is to say that every set T ∈ T is
independent of every set M ∈M.

Definition 162 Independence of sigma-algebras

Let (X,X , µ) be a measure space, and and let Y1,Y2 ⊂ X be two sigma subalgebras.
Y1 and Y2 are independent (with respect to µ) if every element of Y1 is independent of

every element of Y2, with respect to the measure µ. That is,

For all U1 ∈ Y1 and U2 ∈ Y2, µ [U1 ∩U2] = µ[U1] · µ[U2].

We write this: “Y1 ⊥ Y2”.

Example 163:

(a) The Square with Lebesgue Measure:

Consider the unit square I2, with sigma-algebra I2, and the Lebesgue probability measure
λ2. Let:

X1 = pr1I (‘horizontal’ information)

X2 = pr2I (‘vertical’ information)

Then X1 and X2 are independent. (Exercise 152 )

(see Figure 5.9 on the facing page)
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Figure 5.9: With respect to the product measure, the horizontal and vertical sigma-algebras
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Figure 5.10: The measure µ is supported only on the diagonal, and thus, “correlates” horizontal
and vertical information.
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(b) The Square with Diagonal Measure: Again consider (I2, I2), but now with the
diagonal measure λ∆ defined:

λ∆(U) = µ{x ∈ I ; (x, x) ∈ U}

(see Figure 1.14 on page 23). Let ∆ = {(x, x) ∈ I2} be the ‘diagonal’ subset of the square.
Then λ∆(U) simply measures the size of U ∩∆. In particular, notice that:

λ∆

[

I2 \∆
]

= 0

In other words, the set of all points (x, y) where x 6= y has probability zero with respect
to λ∆. To put it another way:

With probability one, the first coordinate and second coordinate are equal.

(see Figure 5.10 on the preceding page)

Thus if you have all X1 information, you automatically have all X2 information as well,
because λ∆ tells you that the first coordinate and second coordinate must be equal.

Definition 164 Effective Refinement

Let (X,X , µ) be a measure space, and let Y1,Y2 ⊂ X be two sigma subalgebras.
Y2 effectively refines Y1 (with respect to µ) if every element of Y1 can be “approximated”

by some element of Y2, so that the difference set has measure zero according to µ. That is,

For all U1 ∈ Y1 there exists U2 ∈ Y2, so that µ [U14U2] = 0.

We write this: “Y1 ⊂µ Y2”.

For example, in Example 163b, each of X1 and X2 effectively refines the other (Exercise 153
).

5.2 Conditional Expectation

Prerequisites: §1.1 Recommended: §5.1

5.2(a) Blurred Vision...

Let (X,X , µ) be a measure space, and f : X−→C a X -measurable function. Let Y ⊂ X
be a sigma-subalgebra. In general, f will not be measurable with respect to Y ; we want to
‘approximate’ f as closely as possible with a Y-measurable function, g. We want g to have two
properties:

(CE1) g is Y-measurable.
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(CE2) For any subset U ∈ Y, we have

∫

U

g dµ =

∫

U

f dµ.

To understand property (CE2), recall that µ|Y : Y−→[0,∞] is a measure on Y , so that the
(

X,Y , µ|Y
)

is also a measure space. So, since g is Y-integrable by (CE1), it makes sense to

talk about its integral with respect to µ, as long as we only integrate over subsets U which are
in Y .

If such a function g exists, it is essentially unique...

Claim: If g1 and g2 both satisfy (CE1) and (CE2), then g1 = g2, a.e.[µ]. In other words, if
∆ = {x ∈ X ; g1(x) 6= g2(x)}, then ∆ is a Y-measurable and µ(∆) = 0.

Proof: Exercise 154 2

The function g is a sort of ‘blurring’ of f . It represents the ‘best estimate possible’ of the
value of f , given the limited information provided by Y .

Definition 165 Conditional Expectation

Let (X,X , µ) be a measure space, and let Y be a sigma-subalgebra of X . Let f ∈
L1(X,X , µ). The conditional expectation of f with respect to Y is the unique function
satisfying conditions (CE1) and (CE2) above. This function is denoted “EY [f ]”.

Definition 166 Conditional Measure

If U ⊂ X is measurable, the conditional measure of U with respect to Y is the conditional
expectation of 11U.

If (X,X , µ) is a probability space, we call this the conditional probability of U.
The conditional measure of U is written as “µ [U 〈〈 Y ]” (not as “µY [U]”, since this could

cause confusion). Formally: µ [U 〈〈 Y ] := EY [11U].

The notation for conditional measure is confusing. Do not forget the fact that µ [U 〈〈 Y ]
is a function, not just a number.

5.2(b) Some Examples

Prerequisites: §5.2(a),§1.3

We have not yet shown that a function EY [f ] satisfying (CE1) and (CE2) exists. The
examples in this section prove the existence of EY [f ] in certain special cases, and also provide
intuition about its properties.

Example 167: Conditional Expectation with respect to a Partition
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Figure 5.11: The conditional expectation of f is constant on each atom of the partition P. (A
one-dimensional example)
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Figure 5.12: The conditional expectation of f is constant on each atom of the partition P. (A
two-dimensional example)

Suppose that P is a partition of X, and let σ(P) be the corresponding sigma-algebra. We
then use the notation:

EP [f ] := Eσ(P) [f ] and µ [U 〈〈 P] := µ [U 〈〈 σ(P)]

Consider an atom P ∈ P. It is left as Exercise 155 to prove the following properties:

1. The conditional expectation EY [f ] must be constant on P. (see Figures 5.11 and 5.12)

2. The value of EY [f ] on P is given by: EY [f ] =
1

µ [P]

∫

P

f dµ.

3. For any set U ⊂ X, the value of µ [U 〈〈 P] on P is given by: µ [U 〈〈 P] =
µ [U ∩P]

µ [P]
,

that is, the conditional probability of U on P. This quantity is the answer to the
question:

“Given that you already know you are inside P, what is the probability that
you are also in U?”

If P as defines a grid on the space X, then the function µ [U 〈〈 P] is a ‘pixelated’ version
of the characteristic function of U. (See Figure 5.13)
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Figure 5.13: The conditional measure of the set U, with respect to the “grid” partition P,
looks like a low-resolution “pixelated” version of the characteristic function of U.
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Figure 5.14: The conditional expectation is constant on each fibre.
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Example 168: A Product Space

Let (Y,Y ,Υ) and (Z,Z, ζ) be measure spaces, and consider the product space (X,X , ξ):

X = Y × Z, X = Y ⊗ Z, and ξ = Υ× ζ,

Consider the sigma-algebra of “vertical” subsets of X,

̂Y := Y ⊗ {Z} = {V × Z ; V ∈ Y}

and let f : X−→R. For any y ∈ Y, let Fy := {y}×Z ⊂ X be the fibre over y. It is left as
Exercise 156 to prove the following properties:

1. E
̂Y [f ] is constant on each fibre Fy (see Figure 5.14). Thus, there is a unique function

fY ∈ L1(Y,Y ,Υ) so that:

(a) The value of fY(y) is equal to the (constant) value of E
̂Y [f ] on Fy.

(b) For any V ⊂ Y, if U = V × Z, then

∫

V

fY dΥ =

∫

U

E
̂Y [f ] dξ =

∫

U

f dξ.

2. Suppose U ⊂ X. For any y ∈ Y, we can identify Fy with Z, and endow it with a fibre

measure ζy, identical to ζ. Then the value of µ[U 〈〈 ̂Y ] on Fy is:

ζy [U ∩ Fx] .

Metaphorically speaking,the conditional probability µ[U 〈〈 ̂Y ] measures the ‘shadow’
that U casts down upon Y (see Figure 5.15).

Thus we can identify E
̂Y [f ] with fY, and think of it as a sort of “projection” of the function

f down to the factor space Y.

Example 169: Projection through a morphism

Let (X,X , ξ) and (Y,Y ,Υ) be measure spaces, and let P : (X,X , ξ)−→(Y,Y ,Υ) be a
measure-preserving map. Define

̂Y := P−1(Y) ⊂ X .

If f ∈ L1(X,X , ξ), then we can consider its conditional expectation with respect to ̂Y . This
is just a generalization of the previous example. For any y ∈ Y, let Fy := P−1{y} be the
fibre over y; then it is Exercise 157 to prove the following properties:

1. E
̂Y [f ] is constant on each fibre of P . Thus, there is a unique function fY ∈ L1(Y,Y ,Υ)

so that:

(a) E
̂Y [f ] is constant on Fy, and equal to the value of fY(y).

(b) For any V ⊂ Y, if U = P−1(V), then

∫

V

fY dΥ =

∫

U

E
̂Y [f ] dξ =

∫

U

f dξ.
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Figure 5.15: (A) The conditional probability of U is like a “shadow” cast upon Y. (B) The
shadow of a cloud.
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We call E
̂Y [f ] the conditional expectation onto Y, or, alternately, as the conditional expec-

tation through P , and write “EY [f ]” or “EP [f ]”.

Example 170: The Shadow of a Cloud

Figure 5.15(B) shows a cloud is floating in a clear sky; let f : R3−→[0,∞) be a function
describing the density of the cloud at any point in space. Let P : R3−→R2 be the orthogonal
projection down to the ground (which we assume is flat). Suppose that the sun is directly
overhead, and suppose further that the sunlight passing through the cloud is attenuated at a
rate proportional to the cloud density. Then the shadow cast by the cloud upon the ground
will be the conditional expectation of f through P .

5.2(c) Existence in L2

Prerequisites: §5.2(a),[Hilbert Spaces]

We here establish the existence of EY [f ] for any function f ∈ L2(X,X , µ).
Since (X,Y , µ|Y ) is a measure space in its own right, we can consider the associated Hilbert

space L2(X,Y , µ|Y ), which consists of square-integrable, Y-measurable functions on X.

Lemma 171: L2(X,Y , µ|Y ) is a closed linear subspace of L2(X,X , µ).

Proof: Exercise 158 2

Theorem 172: Let (X,X , µ) be a measure space, and Y a sigma-subalgebra of X . Let
P : L2(X,X , µ)−→L2(X,Y , µ) be the orthogonal projection map.

Then for any f ∈ L2(X,X , µ), we have: EY [f ] = P(f).

Proof: Exercise 159 Hint: It suffices to show that P(f) satisfies (CE1) and (CE2). 2

5.2(d) Existence in L1

Prerequisites: §5.2(a),[Radon-Nikodym theorem]

We here establish the existence of EY [f ] for any function f ∈ L1(X,X , µ).
Recall that f defines a measure µf on X by:

µf [U] :=

∫

U

f dµ.

By construction, µf is absolutely continous with respect to µ, with Radon-Nikodym derivative:

dµf
dµ

= f.

Let µ|Y be the restriction of µ to a measure on Y , and let (µf ) |Y be the restriction of µf .
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Theorem 173: Let (X,X , µ) be a measure space, and Y a sigma-subalgebra of X . Let
f ∈ L1(X,X , µ).

The measure (µf ) |Y is absolutely continuous with respect to µ|Y . The conditional expec-

tation of f is then the Radon-Nikodym derivative of (µf ) |Y relative to µ|Y :

EY [f ] :=
d (µf ) |Y
µ|Y

.

Proof: Exercise 160 Hint: It suffices to show that
d(µf)|Y
µ|Y

satisfies (CE1) and (CE2). 2

5.2(e) Properties of Conditional Expectation

Prerequisites: §5.2(a)

Throughout this section, (X,X , µ) is a measure space, f ∈ L1(X,X , µ), and Y ⊂ X is a
sigma-subalgebra.

Theorem 174:

1. If f is Y -measurable, then EY [f ] = f .

2. In particular, EY
[

EY [f ]
]

= EY [f ].

3. More generally, if Y1 ⊂ Y2, then EY1

[

EY2 [f ]
]

= EY1 [f ].

Proof: Exercise 161 2

Example 175: Fubini-Tonelli Theorem

Consider a product space (X,X , µ), where X = Y×Z, X = Y⊗Z, and µ = Υ×ζ,

as in Example 168. Let ̂Y := Y ⊗ {Z} as in that example.

Set Y2 = ̂Y and Y1 = {∅,X} be the trivial algebra. Observe that part (3) of Theorem 174 is
then equivalent to the Fubini-Tonelli theorem. (Exercise 162 )

Part (3) of the Theorem 174 is one of the most often-used facts about conditional expec-
tation, and comes up constantly in probability theory. It says this: if first you learn fact A,
and then you later learn fact B (which happens to imply fact A as a corollary), then your final
state of knowledge is basically the same as if you had just been told fact B to begin with.
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Theorem 176: Orthogonal Sigma algebras

1. If f is independent of Y then EY [f ] is constant, with value

∫

X

f dµ.

2. In particular, if Y1 ⊥ Y2, then EY1 [EY2 [f ]] is constant, with value

∫

X

f dµ.

Proof: Exercise 163 2

Theorem 177: Algebraic Properties

1. The conditional expectation operator is linear. That is, for all f1, f2 ∈ L1(X,X , µ) and
c1, c2 ∈ C,

EY
[

c1 · f1 + c2 · f2

]

= c1 · EY [f1] + c2 · EY [f2] .

2. If f is Y -measurable, then for any g ∈ L1(X,X , µ),

EY [f · g] = f · EY [g]

Proof: Exercise 164 2

Part (2) of Theorem 177 is one of the other most often used fact about conditional expec-
tation. To appreciate the meaning of this result, think about its implications in some of the
concrete example discussed in §5.2(b). For example, consider the case when Y is generated by
a partition (thus, f is constant on each element of the partition), or when Y is the pulled-back
sigma algebra of some measure-preserving map (so that f is constant on each fibre).

Theorem 178: Banach Space Properties

For every p ∈ [1..∞], the conditional expectation operator induces a bounded linear map

EY : Lp(X,X , µ)−→Lp(X,Y , µ)

of norm 1.

Proof: Exercise 165 2

Definition 179 Convex Function

Let Φ : R−→R. Then Φ is convex if, for all x1, . . . , xN ∈ R, and any λ1, . . . λN ∈ [0, 1] with
N
∑

n=1

λn = 1, we have: Φ

(

N
∑

n=1

λn · xn

)

≤
N
∑

n=1

λn · Φ(xn). (see Figure 5.16)
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Figure 5.16: A convex function.

Theorem 180: Jensen’s Inequality

If Φ : R−→R is any integrable, convex function, then Φ
(

EY [f ]
)

≤ EY [Φ ◦ f ].

Proof: Exercise 166 2
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Chapter 6

Measure Algebras

6.1 Sigma Ideals

Prerequisites: §1.1

Recommended: §1.3(c)
In the algebraic theory of rings, an ideal is the kernel of a ring homomorphism. In other

words, an ideal is something that you mod out by; it is a set of objects which are identified with
zero.

Sometimes a particular construction (or assertion) is not well-defined (or true) everywhere
in a domain X, but only ‘almost’ everywhere. There is perhaps some ‘bad’ set B ⊂ X where
the construction (or assertion) fails. However, if B is ‘small enough’, then this may not matter;
the set B can be considered ‘negligible’. One example of this is in §1.3(c), where we showed
how sets of measure zero can be treated as ‘negligible’.

The mathematical model of this is a sigma-ideal; a collection of subsets of a space deemed
‘negligible’. As in ring theory, an ideal is a set of objects identified with zero, by which we can
‘mod out’.

Definition 181 Sigma-ideal

Let X be a set. A sigma ideal over X is a collection Z of subsets of X with the following
properties:

1. Z is closed under countable unions. In other words, if U1,U2, . . ., are in Z, then their

union
∞
⋃

n=1

Un is also in Z.

2. If U is in Z, and A is any subset of X, then A ∩U is also in Z.

Example 182:

(a) If X is uncountable, then the collection of all finite and countable subsets is a sigma-ideal.

147
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(b) If (X,X , µ) is a measure space, then the collection of all sets of measure zero is a sigma-
ideal.

(c) If X is a topological space, then the collection of all meager sets is a sigma-ideal (Exercise 167

Recall: a subset N ⊂ X is nowhere dense if int
(

cl (N)
)

= ∅, and M ⊂ X is meager if

M =
⋃∞
j=1 Nj where Nj are nowhere dense)

(d) Let M be a collection of measures on X, and define

Z = {U ∈ X ; µ(U) = 0 for some µ ∈M}.

Then Z is a sigma-ideal (Exercise 168 ).

Remark: Example (182b) is prototypical. If Z ⊂ X is any sigma-ideal, then there is a
measure µ so that Z is the ideal of sets of µ-measure zero. To see this, let Y = {X \ Z ; Z ∈ Z}.
ThenW = Z tY is a sigma-algebra (Exercise 169 ). Define the measure µ as follows: for any
W = Z tY in W,

µ[W] =

{

1 if Y 6= ∅
0 if Y = ∅

Then µ is a measure (Exercise 170 ), and Z is the sigma-ideal of sets of µ-measure zero.

6.2 Measure Algebras

Prerequisites: §1.1,§1.3,§6.1

A measure algebra is an abstraction of a measure space; it is what remains if you begin with
a measure space (X,X , µ), and ‘remove’ the base space X. To make sense of this, we need a
way to get rid of the points in a space, but still leave the structure of subsets behind....

6.2(a) Algebraic Structure

A sigma boolean algebra is a set, X , (whose elements can be imagined as the subsets of some
‘imaginary’ space,) equipped with an algebraic structure that mimics the set-theoretic opera-
tions of intersection, union, and complementation....

Definition 183 Sigma Boolean Algebra

A sigma boolean algebra is a set X equipped with three operators:
∨

(‘join’),
∧

(‘meet’), and ¬ (‘complementation’), and two distinguished elements: an identity ele-
ment, 1, and a null element, 0.
∨

and
∧

are both defined for countable collections of elements; in other words, for any

collection X1,X2, . . . in X , we can define
∞
∧

n=1

Xn and
∞
∨

n=1

Xn. These operators satisfy the

following axioms:
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1. Identity: 1 ∨X = 1, 0 ∧X = 0, 0 ∨X = X, and 1 ∧X = X.

2. Associativity:

(a)

(

∞
∧

n=1

X1;n

)

∨

(

∞
∧

n=1

X2;n

)

=
∞
∧

n,m=1

(X1;n ∨X2;m).

(b)

(

∞
∨

n=1

X1;n

)

∧

(

∞
∨

n=1

X2;n

)

=
∞
∨

n,m=1

(X1;n ∧X2;m).

3. de Morgan’s Laws:

(a) ¬

(

∞
∧

n=1

Xn

)

=
∞
∨

n=1

¬Xn.

(b) ¬

(

∞
∨

n=1

Xn

)

=
∞
∧

n=1

¬Xn.

4. Cancellation: X ∨ ¬X = 1 and X ∧ ¬X = 0.

Example 184:

(a) For any set X, the power set of X is a sigma-boolean algebra. In this case,

A ∨B = A ∪B; A ∧B = A ∩B; ¬A = A{; 1 = X, and 0 = ∅.

(b) Any sigma-algebra is a sigma-boolean algebra.

Example 185: Sigma algebra, mod zero

Let (X,X ) be a measurable space, and let Z ⊂ X be a sigma-ideal. We define a new sigma-
Boolean algebra, X/Z, as follows: First. define an equivalence relation ∼ on X , so that, for
all A,B ∈ X ,

(

A ∼ B
)

⇐⇒
(

A4B = Z, for some Z ∈ Z
)

Thus, A and B are “equivalent” if they differ only by a null set. Let ˜A ∈ X/Z denote the
equivalence class of A ∈ X , and define:

1 = ˜X; 0 = ˜∅; ¬˜A := X̃−A

∞
∧

n=1

˜An :=
∞̃
⋂

n=1

An, and
∞
∨

n=1

˜An :=
∞̃
⋃

n=1

An

Exercise 171 Show that these operations are well-defined, and that X/Z is a sigma-Boolean
algebra.
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Example 186:

(a) Let (X,X , µ) be a probability space, and Z the sigma-ideal of sets of measure zero. Then
elements of X/Z are equivalence classes of sets which differ by a subset of measure zero.
The element 0 is the class of all sets of measure zero, and the element 1 is the class of all
sets of measure one.

(b) Let X be a topological space with Borel sigma-algebra B, and let M be the sigma-ideal
of meager sets. The elements of B/M are equivalence classes of sets which differ only by
a meager subset. The element 0 is the class of all meager subsets, and the element 1 is
class of all comeager (or residual) sets.

Definition 187 Measure algebra

A measure algebra is a pair (X , µ), where X is a sigma Boolean algebra, and µ :
X−→[0,∞] is a countably additive function: if X1,X2, . . . are disjoint elements in X

(ie. Xk ∧Xj = 0, for all k 6= j), then µ

[

∞
∨

n=1

Xn

]

=
∞
∑

n=1

µ [Xn].

Example 188:

Let (X,X , µ) be a measure space, and let Z ⊂ X be the ideal of sets of measure zero. Let
˜X = X/Z, and define µ̃ : Y−→[0,∞] by: µ̃

[

˜A
]

= µ[A], where ˜A ∈ ˜X denotes the

equivalence class of A ∈ X .

Exercise 172 Show that µ̃ is well-defined and countably additive

When speaking of the measure algebra associated with a particular measure space, it is
common to tacitly mod out by sets of measure zero; hence “(X , µ)” often denotes the measure

algebra ( ˜X , µ̃).

Suppose (X,X , µ) and (Y,Y , ν) are two measure spaces, whose structures we compare, say,
to establish an isomorphism between them. It may be difficult to establish a precise point-by-
point correspondence between X and Y. It is often easier to establish a correspondence between
elements of X and Y .

Definition 189 Morphism of Measure Algebras

Let (X , µ) and (Y , ν) be two measure algebras. A morphism of measure-algebras is a map
f : X−→Y , so that:

1. The sigma-boolean operations are preserved: for any U1,U2,U3, . . . ∈ X ,

(

∞
∨

k=1

Uk

)

=
∞
∨

k=1

F (Uk); F

(

∞
∧

k=1

Uk

)

=
∞
∧

k=1

F (Uk); and F (¬U) = ¬F (U).
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A

B

F(A)=F(B)

Figure 6.1: F (A) = F (B); thus, F (A) ∩ F (B) 6= ∅ = F (A ∩B).

2. The measure is preserved: for any U ∈ X , µ1[U] = µ2 [F (U)].

Example 190:

Suppose (X1,X1, µ1) and (X2,X2, µ2) are measure spaces, and suppose f : X1−→X2 is a
measurable map, mod zero. Then the map

f−1 : X2 3 U 7→ f−1[U] ∈ X1

is a morphism of sigma-boolean algebras.

If f is also measure-preserving, then f−1 is a morphism of measure algebras (Exercise 173
).

Note: In general, the map
F : X1 3 U 7→ F (U) ∈ X2

is not a measure-algebra homomorphism. For example, if f is not injective, then F fails to
preserve the boolean operations.

For example, let F = pr : I2−→I be the projection from the unit square to the unit
interval. Figure 6.1 shows two disjoint subsets A,B ⊂ I2, such that F (A) = F (B). Thus,
F (A) ∩ F (B) 6= ∅ = F (A ∩B).

Theorem 191: Suppose (X,X , µ) and (Y,Y , ν) are measure spaces, and f : X−→Y is a
measure-preserving map, mod zero.

1. The map f−1 : Y−→X is always injective.

2. f−1 is surjective if and only if f is almost-injective.

Proof: Exercise 174 2
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A B

Α∆Β

Figure 6.2: d∆(A,B) measures the symmetric difference between A and B.

6.2(b) Metric Structure

A measure algebra (X , µ) has a natural metric structure. For any A,B ∈ X , we define

d∆(A,B) := µ [A4B] . (see Figure 6.2)

Proposition 192: Let (X , µ) be a measure algebra, with metric d∆,

1. (X , d∆) is a complete metric space.

2. If µ is a finite measure, then (X , d∆) is bounded.

Proof: Exercise 175 Hint: Let L1
1(X,X , µ) denote the class of all functions in L1 which take

only the values zero or one. Define Φ : (X , µ) 3 A 7→ 11A ∈ L1
1(X,X , µ). Show that:

(1) Φ is a bijection.

(2) Φ is an isometry between the metric d∆ and the L1 -norm. 2

The algebraic operations of a measure algebra are continuous with respect to this metric:

Lemma 193: Let (X , µ) be a measure algebra, with associated metric d∆. Then:

1. The map Φ : (X , µ)× (X , µ) 3 (A,B) 7→ A ∨B ∈ (X , µ) is continuous with respect to
d∆. Furthermore, Φ is a contraction: for any A1,A2,B1,B2 ∈ X , we have:

d∆

[

A1 ∨B1 , A2 ∨B2

]

≤ d∆ [A1,A2] + d∆ [B1,B2] .

2. Similarly, the map Ψ : (X , µ)× (X , µ) 3 (A,B) 7→ A ∧B ∈ (X , µ) is continuous and a
contraction with respect to d∆. For any A1,A2,B1,B2 ∈ X , we have:

d∆

[

A1 ∧B1 , A2 ∧B2

]

≤ d∆ [A1,A2] + d∆ [B1,B2] .

3. If µ is finite, then the map (X 3 A 7→ ¬A ∈ X ) is also continuous with respect to d∆.

Proof: Exercise 176 2
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Theorem 194: Let (X,X , µ) and (Y,Y , ν) be measure spaces, and let f : X−→Y be mea-
surable. Consider the induced map f−1 : Y−→X .

1.
(

f−1 is continuous
)

⇐⇒
(

f ∗(µ) is absolutely continuous with respect to ν.
)

2.
(

f−1 is an isometry
)

⇐⇒
(

f is measure-preserving.
)

In this case, f−1 isometrically embeds Y as a closed subspace of X .

Proof: Exercise 177 2
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