
Jordan Normal Form Via Elementary Transformations
Author(s): A. Bujosa, R. Criado and C. Vega
Source: SIAM Review, Vol. 40, No. 4 (Dec., 1998), pp. 947-956
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2653043 .

Accessed: 07/08/2013 10:27

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to SIAM Review.

http://www.jstor.org

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2653043?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

SIAM REV.
Vol. 40, No. 4, pp. 947-956, December 1998

(a) 1998 Society for Industrial and Applied Mathematics
013

JORDAN NORMAL FORM VIA ELEMENTARY
TRANSFORMATIONS*

A. BUJOSAt, R. CRIADOt, AND C. VEGAt

Abstract. This paper presents a method based on elementary transformations which may be
applied to a matrix A, whose characteristic polynomial has been decomposed into linear factors, in
order to obtain a nonsingular matrix P such that P-1AP is in Jordan normal form. This method
can be used in the classroom, among other problems, to directly solve a linear ODE with constant
coefficients. We also present a symbolic Maple program implementing the method.

Key words. Jordan normal form, elementary transformations

AMS subject classification. 15A21

PII. S0036144597329346

1. Introduction. In the applications of the Jordan matrix to engineering, it is
important to determine the Jordan form of a given matrix A, i.e., to determine a ma-
trix P such that P-1AP is in the Jordan normal form. Nevertheless, in mathematics
books where the Jordan matrix is used, the manner of building the matrix P is not
well described (see [1], [8], or [9]).

This fact is not due to scientific or conceptual difficulties but is due to didactic
difficulties (the complete exposition and its justification is too long). So, if the charac-
teristic polynomial has multiple roots, apparently it is preferable to use the triangular
form of the given matrix (see [2]). Another possible reason is that if the roots are
close, the computer can not distinguish if they are equal or not.

The objective of this article is to give a symbolic algorithm such that from a
matrix A and its eigenvalues, we build a matrix (p) where J is the Jordan matrix of
A and P is the matrix of the change of basis. Furthermore, this algorithm presents
the following advantages:

1. It requires substantially fewer operations than other methods.
2. Its justification, which requires little mathematical framework, constitutes a

constructive proof of the existence of the Jordan normal form.
Also, we give a Maple program that implements this algorithm. It is important to

recall that although the ideas involved in this algorithm are conceptually clear, there
does not exist a similar method presented in text books.

Also, it is important to stress that this method is only useful in terms of symbolic
computing. For a comprehensive discussion of problems related to the numerical
computation of the Jordan normal form (clustering of eigenvalues and extraction of
Jordan structure using the staircase algorithm) see [4], [6], [7], [5], and the standard
text book in matrix computations [3].

2. The method. In this method the Jordan normal matrix is built through
the successive application of elementary operations. To assure that such elementary

*Received by the editors February 17, 1997; accepted for publication (in revised form) October
9, 1997.

http://www.siam.org/journals/sirev/40-4/32934.html
tDepartamento de Matematicas, ETSI Telecomunicaci6n, Ciudad Universitaria, 28040 Madrid,

Spain (abujosa@mat.upm.es, cvega@mat.upm.es).
tDepartamento de Informatica y Matematica, Universitaria Rey Juan Carlos ESCET, M6stoles,

Spain (r.criado@escet.urjc.es).

947

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

948 CLASSROOM NOTES

operations preserve, similarity is necessary to compensate each elementary row op-
eration with its corresponding inverse elementary column operation. We show this
correspondence below.

A P P-1 -A
coli (- coli + aecolj rowj (rowj - crowi

colj a cecolj rowi (- cf_rowi
colj (colj rowi ()rows

Furthermore, elementary column operations allow us to build a matrix of change
of basis, as follows:

Applying the same Applying the elementary
A , elementary column __P row operations only to
(I) operations to both P the top matrix.

matrices.

P- 1. A . P

The algorithm has the following operational plan:

(J Rn-1)s(e Jn Rn

In step n a matrix similar to A is generated in which the first n columns contain
a Jordan matrix. Now, we show how to accomplish this step. Suppose that initially
the algorithm began with a matrix A C Matm(C) whose characteristic polynomial is
(X - Aj)(A1) * ... - (X - Ar)II(Ar) and that the first n - 1 steps have generated the
following matrix similar to A:

An~j .I
B,

where JA, denotes a Jordan matrix associated with the eigenvalue Ai. Also, suppose
A1, A2, .. , A are distinct complex numbers and that the order of JA is k where k <
,u(A). Now, we subtract Al from the matrix An and get the following:

A9-AP~ B-Al

Each step is formed by six stages.

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

CLASSROOM NOTES 949

2.1. Stage 1: To make null the first column of the matrix B - Al.
Since A is a root of the characteristic polynomial of the matrix B, the matrix B - Al
is singular. Therefore, it is possible to make null the first column of the matrix
B - Al accomplishing elementary operations of m - n + 1 last columns, i.e., through
elementary operations of type coli (- coli + oacolj, coli - oacoli, and coli () colj,
where |n i, j <m . Moreover, as the corresponding inverse operations are of type

rowj (-row -oerowi, rowi (oe-rrowi, and rowi +- rowj, where n < i, j <m ,we
will have built a matrix similar to An - Al with the following form:

JA -A
i A>- ka2 TX

Q-1(An-AI)Q=
M'

0 bl,2 ... b,s
where B' =

0 bs,2 bs s

and s Tm [1- n.

stage_1 proc(S,B)
local SO,dim-S,i,pivot,col,coef,inverse;

SO := S;
dim_S := linalg[coldim] (SO);
inverse :=array(identity,l .. linalg[rowdim] (SO),l .. linalg[rowdim] (SO));

for col from B to dim_S do
for pivot from B to dim_S while SO[pivot,col] = 0 do od;
if pivot <= dim_S then

for i from col+1 to dim_S do
if SO[pivot,i] = 0 then next fi;
coef := -SO[pivot,i]/SO[pivot,col];
SO := linalg[addcol] (SO,col,i,coef);
inverse := linalg[addrow] (inverse,i,col,-coef)

od
else

SO := linalg[swapcol](SO,B,col);
inverse := linalg[swaprow] (inverse,B,col);
SO := linalg[multiply] (inverse,SO);
RETURN (evalm(SO))

fi
od;
RETURN('error')
end

2.2. Stage 2: To make null the first column of the matrix T'. Now, as
A1 78 A, A2 #8> A ... it is possible to make null the coefficients of the first column of T'
through elementary transformations of type coin (- coin + acoli, where 1 < i < n- k
(recall that k is the order of JO). Furthermore, as the inverse operations have the
form rowi - rowi - arown, where 1 < i < n- k , we have built a matrix similar to
An- Al with the following form:

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

950 CLASSROOM NOTES

AI)Q| JA1-A B'1"
Q (An- Al) Q =.

J M'

/ tl,2 ... tl,s\

where T" - I
0 tr,2 ... tr,s /

and r n - k.

stage_2 proc(S,T,JO)

local SO,i,coef;
SO := S;
for i from JO-1 by -1 to 1 do

if SO[i,T] = 0 then next fi;
coef -SO[i,T]/SO[i,i];
SO linalg[addcol] (SO,i,T,coef);
SO linalg[addrow] (SO,T,i,-coef)

od;
RETURN(evalm(SO))
end

Now we consider the following submatrix formed by JO and the first column of
M' and the row immediately above:

rOWr 0 1 |mr

0 1 mr+p
eJ, 0 ,ui

0 1 Mr+P

0 1 mr+p//
eJh 0 /Ilh

rown '
0 0 ?0 0 0

where eJ1,..., eJh are elementary Jordan matrices.

2.3. Stage 3: To make null the coefficients m,+i. To annihilate the co-
efficient mr+i it is enough to apply the following elementary operations: Coin <-

COln-mr+i * COlr+i+l and rowr+i+l <- rOWr+i+l+ mr+i * roWn

stage_3 := proc(S,M,JO)

local SO,i,coef;
SO := S;
for i from JO to M-2 do

if SO[i,i+1] = 0 or SO[i,M] = 0 then next fi;
coef := -SO[i,M];
SO linalg[addcol] (SO,i+1,M,coef);
SO linalg[addrow] (SO,M,i+1,-coef)

od;
RETURN(evalm(SO))
end

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

CLASSROOM NOTES 951

2.4. Stage 4: To make units the nonnull coefficients -ti. Suppose that
,Ui #8 0 and that its associated elementary Jordan block starts at the p row and ends
at the q row. Then to make the coefficient ,ui equal to one it is enough to accomplish

-1 the following succession of elementary operations: rowq T- ,uil*rowq, rowq-1
I-L rowq1, . rowp - ji l rowp, and then COlq (- pi colq, colq-1 I-Li COlq-1,
..., colp (Iii colp.

stage_4 := proc(S,M,JO)

local SO,i,coef;
SO := S;
for i from M-1 by -1 to JO do

if SO[i,i+1] = 0 or i = M-1 then coef SO[i,M] fi;
if coef = 0 then next fi;
SO linalg[mulrow] (SO,i,1/coef);
SO linalg[mulcol](SO,i,coef)

od;
RETURN(evalm(SO))
end

2.5. Stage 5: To get at most a single unit. We suppose that pi = ,ij = I
and that their associated elementary Jordan blocks start, respectively, at pi and pj
rows, and end, respectively, at qi and qj rows. We can suppose without loss of
generality that qi - pi < qj - pj. Then to annul psi it is enough to accomplish
the following succession of elementary operations: roWqi roWqi - roWq, roWqi -1
rOWqi -1 rOWqj -1, ..., roWpi (roWpi - rOWqj - (qi -Pi), and then colqj (colqj + colqi,
colqj-1 < COlqj-1 + COlqi-1, ... *, Colqj-(qi-pi) ' colqj (qi-pi) + colPi-

stage_5 := proc(S,M,JO)

local SO, i,k,box,dim_box,coef;
SO := S;
dim-box := 0;
for i from M-1 by -1 to JO do

if SO[i,i+1] = 0 or i = M-1 then
if SO[i,M] = 1 then k i else k := JO fi

fi;
if dim-box < k-i+1 then box k; dim-box := k-i+1 fi

od;
if dim-box = 0 then RETURN(evalm(SO)) fi;
for i from M-1 by -1 to JO do

if SO[i,i+1] = 0 or i = M-1 then
if not i = box and SO[i,M] = 1 then coef -1; k i else coef 0 fi

fi;
if coef <> 0 then

SO linalg[addrow] (SO,box-k+i,i,coef);
SO linalg[addcol] (SO,i,box-k+i,-coef)

fi
od;
RETURN (evalm(SO))
end

2.6. Stage 6: To organize the enlarged Jordan matrix JO. It is enough
to exchange rows such that the Jordan block whose pi = 1 (if it occurs) remains at
the bottom, and then to do the same column exchange.

stage_6 := proc(S,M,JO)

local SO,i,k,box;
SO S;
box M;
for i from M-1 by -1 to JO do if SO[i,M] = 1 then box := i fi od;
if M-1 <= box then RETURN(evalm(SO)) fi;
for i from M by -1 to box+2 do

SO := linalg[swapcol](SO,i,i-1); SO linalg[swaprow] (SO,i,i-1)

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

952 CLASSROOM NOTES

od;
RETURN(evalm(SO))
end

Finally we add Al to the final matrix to obtain the matrix A,+,. Therefore, the
main program which obtains the Jordan matrix of a given matrix A is the following:
Jordan := proc(A,roots)

local root,step,JO,dim_A,AO,Al;
dim_A := linalg[coldim] (A);
AO := linalg[stack](A,array(identity,l .. dim_A,l .. dim_A));

step := 1;
for root in roots do

JO step;
AO evalm(AO-root*array(identity,l 2*dim_A,l dim-A));
Al stage_l(AO,step);
while Al <> 'error' do

AO stage_2(Al,step,JO);
AO stage_3(AO,step,JO);
AO stage_4(AO,step,JO);
AO stage_5(AO,step,JO);
AO stage_6(AO,step,JO);
step := step+1;

Al := stage_1(AO,step)
od;
AO := evalm(AO+root*array(identity,l 2*dim_A,1 dimA))

od;
RETURN(evalm(AO))
end

3. Example. Consider the matrix

O 1 1 -2 0 1
-1 1 3 -4 0 2

A -1 0 4 -5 0 3
-1A0-3 -1 0 3 -5 0 4

-1 0 3 -7 1 5
-1 0 3 -7 -1 7 S

whose characteristic polynomial is (X-_1)4(X -2)2 . Then

'-1 I 1 -2 0 1'
-1 0 3 -4 0 2
-1 0 3 -5 0 3
-1 0 3 -6 0 4
-1 0 3 -7 0 5
-1 0 3 -7 -1 6 Stp1 sag 1

1~~~~~~~Se tg

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

CLASSROOM NOTES 953

P-l(A - I)P
O 0 -1 -1 0 1
O 0 0 2 4 -6
0 1 0 0 0 0
0 0 -1 -2 0 2
0 0 -1 -3 0 3
0 0 -1 - -1 4 Step 2 stage 1

2 1 0 -3 -2 4
1 0 0 0 0 0
0 0 0 1 0 0
00 0 0 1 0
00 0 0 0 1

P-l (A - I)P
0 0 -1 1 -2 0

0 -1 -1 1 0
0 0 2 -2 1
0 0 1 1 0
0 0 0 1 0
0 0 2 0 0

3 -2 1 -6 12 0 Step 3: stage 4
2 -1 0 -3 4 1
1 0 0 0 0 0
0 1 0 1 -2 0
0 1 0 0 1 0
0 1 0 0 0 0

P-l (A - I)P
0 0 1 -1 2 0

0 1 1 -1 0
0 2 -2 1
0 1 1 0
0 0 1 0
0 2 0 0

-3 2 1 -6 12 0 Step 3 stage 5
-2 1 0 -3 4 1
-1 0 0 0 0 0
0 -1 0 1 -2 0
0 -1 0 0 1 0
0 -1 0 0 0 0

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

954 CLASSROOM NOTES

P-l(A - I)P
0 00 -2 3 0 1 0 0 0 0 0

0 1 1 -1 0 1 1 0 0 0
0 2 -2 1 1 1 0 0

1 1 0 1 0 0
0 1 0 2 1
2 0 0 |Steps 4,5,6 + 21 0

-3 -1 1 -6 12 0 Stp4562 -3 -1 1 0 01
2

-2 -1 0 -3 4 1 -2 -1 0 1 -2 6
-1 -1 0 0 0 0 -1 -1 0 0 -3 9

0 -1 0 1 -2 0 0 -1 0 0 -4 12
0 -1 0 0 1 0 0 -1 0 0 -5 15
0 -1 0 0 0 0 0 -1 0 0 -5 14

-I
Stepl Step2 Step3

C3 -C3 + 3C1 C4 C4 - 2C3 C2< -lC2
RI R1 - 3R3 R3< R3 + 2R4 R2 --1R2
C4 C4 - 4C1 C6 C6 + 2C3 C0< -10C

R1 R1 + 4R4 R3 -R3 - 2R6 R1 -1R1
C6 -C6 + 2C1 C5 C5 - 2C4 C2' C20+ C
R1 R1 - 2R6 R4 R4 + 2R5 R1 R1 -1R2
C3 -C3 + 2C2 C6 C6 + 3C4
R2 R2 - 2R3 R4' R4 - 3R6
C4 C4 - 3C2 C6 C6+ 1C5
R2 R2 + 3R4 R5 R5 - 1R6
C5- C5 - 2C2 C2 C6
R2 R2 - 2R5 R2' R6
C6 <C6 + 4C2
R2' R2 - 4R6

Cl C3

R,' R3

+I,-2I
Step4 Step5 Step6

C4 <-C6 C5 0<C6 C6 C6 - 2C4
R4' R6 R5' R6 R4 R4 + 2R6

C5 C5 + 2C4 C6 C6 - 8C3
R4 R4 - 2R5 R3 R3 + 8R6
C5 C5 + 4C3 C6 -C6 - 14C2
R3 -R3 - 4R5 R2R2 + 14R6
C5 C5 + 5C2 C6 C6 + 5C1
R2 R2 - 5R5 R1I R1 - 5R6
C5 C5 - 2C0 +21
R1 R1 + 2R5

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

CLASSROOM NOTES 955

4. Remark on the solution of a linear ODE with constant coefficients.
Now, if A is the matrix of the preceding paragraph, we can use the obtained matrix
P to obtain the solutions of the linear system of ODEs as follows:

dX = AX.
dt

So, if Hj is the jth column of the matrix P, we have

(A - 1)H1 = 0

(A - I)H2 = 0 (A - I)H3 H2 (A - I)H4- H3
(A - 2I)H5=0 (A -21)H6 H5

and we can write the solutions of dx = AX as follows:

X =et(ciHi+c2H2+c3[H3?+ tH2] +C4[H4?+4H3?+ _H2])

+e2t (c5H5+c66[H6?+ H5])

where

Hi=
- H2 -1 H3 o

H4= H5= 4 H64 1.

It is curious to note that we can check the correctness of our calculus by replacing
this solution in the equation dx = AX and verifying that this equality holds.

5. Conclusion. The above method has been used succesfully in the classroom
to demonstrate the solution of a linear ODE with constant coefficients. Further study
for students could include the use of a computer with a system for symbolic or math-
ematical computation (as Maple or Mathematica) in order to create a program which
executes the above method. Such a program could be performed by students work-
ing in groups of two with each computer, since this gives students some experience
working on a project such as they might do in industry.

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

956 CLASSROOM NOTES

REFERENCES

[1] M. BROWN, Differential Equations and their Applications, Springer-Verlag, New York, 1983.
[2] M.V. FEDORUK, Ordinary Differential Equations, Nauka, Moscow, 1980.
[3] G. GOLUB AND C. VAN LOAN, Matrix Computations, 2nd ed., The John Hopkins Press, Balti-

more, MD, 1989.
[4] G. H. GOLUB AND J. H. WILKINSON, Ill-conditioned eigensystems and the computation of the

Jordan canonical form, SIAM Rev., 18 (1976), pp. 578-619.
[5] B. KAGSTROM, How to Compute the Jordan Normal Form-The Choice Between Similarity

Transformations and Methods Using the Chain Relations, Report UMINF-91.81, Depart-
ment of Computing Science, Umea University, S-901 87 Umea, Sweden, 1981.

[6] B. KAGSTROM AND A. RUHE, An algorithm for the numerical computation of the Jordan normal
form of a complex matrix, ACM Trans. Math. Software, 6 (1980), pp. 389-419.

[7] B. KAGSTROM AND A. RUHE, ALGORITHM 560: An algorithm for the numerical computation
of the Jordan normal form of a complex matrix, [F2], ACM Trans. Math. Software, 6 (1980),
pp. 437-443.

[8] S. LANG, Linear Algebra, 2nd ed., Addison-Wesley, Reading, MA, 1973.
[9] G. SHILOV, Linear Algebra, Dover, New York, 1977.

This content downloaded from 177.104.48.2 on Wed, 7 Aug 2013 10:27:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 947
	p. 948
	p. 949
	p. 950
	p. 951
	p. 952
	p. 953
	p. 954
	p. 955
	p. 956

	Issue Table of Contents
	SIAM Review, Vol. 40, No. 4 (Dec., 1998), pp. i-viii+765-1039
	Volume Information [pp. 1033-1039]
	Front Matter [pp. i-viii]
	Generating Quasi-Random Paths for Stochastic Processes [pp. 765-788]
	Finite Element Methods of Least-Squares Type [pp. 789-837]
	Fast Approximate Fourier Transforms for Irregularly Spaced Data [pp. 838-856]
	Some Nonoverlapping Domain Decomposition Methods [pp. 857-914]
	Classroom Notes
	A Simple Derivation of a Result in Electrostatics [pp. 915-917]
	Similarity Solution to a Heat Exchange Problem [pp. 918-921]
	On Deriving the Quasi-Minimal Residual Method [pp. 922-926]
	The Simple Pendulum is not so Simple [pp. 927-930]
	Stability Implications of Bendixson's Criterion [pp. 931-934]
	A Motivational Example for the Numerical Solution of the Algebraic Eigenvalue Problem [pp. 935-940]
	A Dynamical Proof of the Method of Lagrange [pp. 941-944]
	An Elementary Demonstration of the Existence of sℓ(3, R) Symmetry for all Second-Order Linear Ordinary Differential Equations [pp. 945-946]
	Jordan Normal Form Via Elementary Transformations [pp. 947-956]
	Turn Performance of Aircraft, Revisited [pp. 957-958]
	Basis of Eigenvectors and Principal Vectors Associated with Gauss-Seidel Matrix of A = Tridiag [-1 2 -1] [pp. 959-964]
	On the Computation of A^N [pp. 965-971]
	An Integral with Three Parameters [pp. 972-980]

	Problems and Solutions [pp. 981-997]
	Book Reviews
	Review: untitled [pp. 998-999]
	Review: untitled [pp. 999-1002]
	Review: untitled [pp. 1002-1004]
	Review: untitled [pp. 1004-1005]
	Review: untitled [pp. 1005-1007]
	Review: untitled [pp. 1007-1008]
	Review: untitled [pp. 1008-1009]
	Review: untitled [pp. 1009-1011]
	Review: untitled [pp. 1011-1013]
	Review: untitled [pp. 1013-1014]
	Review: untitled [pp. 1014-1015]
	Review: untitled [pp. 1015-1016]
	Review: untitled [pp. 1016-1019]
	Review: untitled [pp. 1019-1021]
	Selected Collections [pp. 1021-1023]
	Later Editions [pp. 1023]

	Notice: Erratum and Comments on "Initialization of the Simplex Algorithm: An Artificial-Free Approach" [pp. 1024]
	Back Matter [pp. 1025-1031]

