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(a) 1998 Society for Industrial and Applied Mathematics 
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JORDAN NORMAL FORM VIA ELEMENTARY 
TRANSFORMATIONS* 

A. BUJOSAt, R. CRIADOt, AND C. VEGAt 

Abstract. This paper presents a method based on elementary transformations which may be 
applied to a matrix A, whose characteristic polynomial has been decomposed into linear factors, in 
order to obtain a nonsingular matrix P such that P-1AP is in Jordan normal form. This method 
can be used in the classroom, among other problems, to directly solve a linear ODE with constant 
coefficients. We also present a symbolic Maple program implementing the method. 

Key words. Jordan normal form, elementary transformations 

AMS subject classification. 15A21 

PII. S0036144597329346 

1. Introduction. In the applications of the Jordan matrix to engineering, it is 
important to determine the Jordan form of a given matrix A, i.e., to determine a ma- 
trix P such that P-1AP is in the Jordan normal form. Nevertheless, in mathematics 
books where the Jordan matrix is used, the manner of building the matrix P is not 
well described (see [1], [8], or [9]). 

This fact is not due to scientific or conceptual difficulties but is due to didactic 
difficulties (the complete exposition and its justification is too long). So, if the charac- 
teristic polynomial has multiple roots, apparently it is preferable to use the triangular 
form of the given matrix (see [2]). Another possible reason is that if the roots are 
close, the computer can not distinguish if they are equal or not. 

The objective of this article is to give a symbolic algorithm such that from a 
matrix A and its eigenvalues, we build a matrix (p) where J is the Jordan matrix of 
A and P is the matrix of the change of basis. Furthermore, this algorithm presents 
the following advantages: 

1. It requires substantially fewer operations than other methods. 
2. Its justification, which requires little mathematical framework, constitutes a 

constructive proof of the existence of the Jordan normal form. 
Also, we give a Maple program that implements this algorithm. It is important to 

recall that although the ideas involved in this algorithm are conceptually clear, there 
does not exist a similar method presented in text books. 

Also, it is important to stress that this method is only useful in terms of symbolic 
computing. For a comprehensive discussion of problems related to the numerical 
computation of the Jordan normal form (clustering of eigenvalues and extraction of 
Jordan structure using the staircase algorithm) see [4], [6], [7], [5], and the standard 
text book in matrix computations [3]. 

2. The method. In this method the Jordan normal matrix is built through 
the successive application of elementary operations. To assure that such elementary 
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948 CLASSROOM NOTES 

operations preserve, similarity is necessary to compensate each elementary row op- 
eration with its corresponding inverse elementary column operation. We show this 
correspondence below. 

A P P-1 -A 
coli (- coli + aecolj rowj ( rowj - crowi 

colj a cecolj rowi (- cf_rowi 
colj ( colj rowi ( )rows 

Furthermore, elementary column operations allow us to build a matrix of change 
of basis, as follows: 

Applying the same Applying the elementary 
A , elementary column __P row operations only to 
(I) operations to both P the top matrix. 

matrices. 

P- 1. A . P 

The algorithm has the following operational plan: 

(J Rn-1 )s(e Jn Rn 

In step n a matrix similar to A is generated in which the first n columns contain 
a Jordan matrix. Now, we show how to accomplish this step. Suppose that initially 
the algorithm began with a matrix A C Matm(C) whose characteristic polynomial is 
(X - Aj)(A1) * ... - (X - Ar)II(Ar) and that the first n - 1 steps have generated the 
following matrix similar to A: 

An~j .I 
B, 

where JA, denotes a Jordan matrix associated with the eigenvalue Ai. Also, suppose 
A1, A2, .. , A are distinct complex numbers and that the order of JA is k where k < 
,u(A). Now, we subtract Al from the matrix An and get the following: 

A9-AP~ B-Al 

Each step is formed by six stages. 
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CLASSROOM NOTES 949 

2.1. Stage 1: To make null the first column of the matrix B - Al. 
Since A is a root of the characteristic polynomial of the matrix B, the matrix B - Al 
is singular. Therefore, it is possible to make null the first column of the matrix 
B - Al accomplishing elementary operations of m - n + 1 last columns, i.e., through 
elementary operations of type coli (- coli + oacolj, coli - oacoli, and coli ( ) colj, 
where |n i, j <m . Moreover, as the corresponding inverse operations are of type 

rowj (-row -oerowi, rowi ( oe-rrowi, and rowi +- rowj, where n < i, j <m ,we 
will have built a matrix similar to An - Al with the following form: 

JA -A 
i A>- ka2 TX 

Q-1(An-AI)Q= 
M' 

0 bl,2 ... b,s 
where B' = 

0 bs,2 bs s 

and s Tm [ 1- n. 

stage_1 proc(S,B) 
local SO,dim-S,i,pivot,col,coef,inverse; 

SO := S; 
dim_S := linalg[coldim] (SO); 
inverse :=array(identity,l .. linalg[rowdim] (SO),l .. linalg[rowdim] (SO)); 

for col from B to dim_S do 
for pivot from B to dim_S while SO[pivot,col] = 0 do od; 
if pivot <= dim_S then 

for i from col+1 to dim_S do 
if SO[pivot,i] = 0 then next fi; 
coef := -SO[pivot,i]/SO[pivot,col]; 
SO := linalg[addcol] (SO,col,i,coef); 
inverse := linalg[addrow] (inverse,i,col,-coef) 

od 
else 

SO := linalg[swapcol](SO,B,col); 
inverse := linalg[swaprow] (inverse,B,col); 
SO := linalg[multiply] (inverse,SO); 
RETURN (evalm(SO)) 

fi 
od; 
RETURN('error') 
end 

2.2. Stage 2: To make null the first column of the matrix T'. Now, as 
A1 78 A, A2 #8> A ... it is possible to make null the coefficients of the first column of T' 
through elementary transformations of type coin (- coin + acoli, where 1 < i < n- k 
(recall that k is the order of JO). Furthermore, as the inverse operations have the 
form rowi - rowi - arown, where 1 < i < n- k , we have built a matrix similar to 
An- Al with the following form: 
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950 CLASSROOM NOTES 

AI)Q| JA1-A B'1" 
Q (An- Al) Q =. 

J M' 

/ tl,2 ... tl,s\ 

where T" - I 
0 tr,2 ... tr,s / 

and r n - k. 

stage_2 proc(S,T,JO) 

local SO,i,coef; 
SO := S; 
for i from JO-1 by -1 to 1 do 

if SO[i,T] = 0 then next fi; 
coef -SO[i,T]/SO[i,i]; 
SO linalg[addcol] (SO,i,T,coef); 
SO linalg[addrow] (SO,T,i,-coef) 

od; 
RETURN(evalm(SO)) 
end 

Now we consider the following submatrix formed by JO and the first column of 
M' and the row immediately above: 

rOWr 0 1 |mr 

0 1 mr+p 
eJ, 0 ,ui 

0 1 Mr+P 

0 1 mr+p// 
eJh 0 /Ilh 

rown ' 
0 0 ?0 0 0 

where eJ1,..., eJh are elementary Jordan matrices. 

2.3. Stage 3: To make null the coefficients m,+i. To annihilate the co- 
efficient mr+i it is enough to apply the following elementary operations: Coin <- 

COln-mr+i * COlr+i+l and rowr+i+l <- rOWr+i+l+ mr+i * roWn 

stage_3 := proc(S,M,JO) 

local SO,i,coef; 
SO := S; 
for i from JO to M-2 do 

if SO[i,i+1] = 0 or SO[i,M] = 0 then next fi; 
coef := -SO[i,M]; 
SO linalg[addcol] (SO,i+1,M,coef); 
SO linalg[addrow] (SO,M,i+1,-coef) 

od; 
RETURN(evalm(SO)) 
end 
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CLASSROOM NOTES 951 

2.4. Stage 4: To make units the nonnull coefficients -ti. Suppose that 
,Ui #8 0 and that its associated elementary Jordan block starts at the p row and ends 
at the q row. Then to make the coefficient ,ui equal to one it is enough to accomplish 

-1 the following succession of elementary operations: rowq T- ,uil*rowq, rowq-1 
I-L rowq1, . rowp - ji l rowp, and then COlq (- pi colq, colq-1 I-Li COlq-1, 
..., colp ( Iii colp. 

stage_4 := proc(S,M,JO) 

local SO,i,coef; 
SO := S; 
for i from M-1 by -1 to JO do 

if SO[i,i+1] = 0 or i = M-1 then coef SO[i,M] fi; 
if coef = 0 then next fi; 
SO linalg[mulrow] (SO,i,1/coef); 
SO linalg[mulcol](SO,i,coef) 

od; 
RETURN(evalm(SO)) 
end 

2.5. Stage 5: To get at most a single unit. We suppose that pi = ,ij = I 
and that their associated elementary Jordan blocks start, respectively, at pi and pj 
rows, and end, respectively, at qi and qj rows. We can suppose without loss of 
generality that qi - pi < qj - pj. Then to annul psi it is enough to accomplish 
the following succession of elementary operations: roWqi roWqi - roWq, roWqi -1 
rOWqi -1 rOWqj -1, ..., roWpi ( roWpi - rOWqj - (qi -Pi), and then colqj ( colqj + colqi, 
colqj-1 < COlqj-1 + COlqi-1, ... *, Colqj-(qi-pi) ' colqj (qi-pi) + colPi- 

stage_5 := proc(S,M,JO) 

local SO, i,k,box,dim_box,coef; 
SO := S; 
dim-box := 0; 
for i from M-1 by -1 to JO do 

if SO[i,i+1] = 0 or i = M-1 then 
if SO[i,M] = 1 then k i else k := JO fi 

fi; 
if dim-box < k-i+1 then box k; dim-box := k-i+1 fi 

od; 
if dim-box = 0 then RETURN(evalm(SO)) fi; 
for i from M-1 by -1 to JO do 

if SO[i,i+1] = 0 or i = M-1 then 
if not i = box and SO[i,M] = 1 then coef -1; k i else coef 0 fi 

fi; 
if coef <> 0 then 

SO linalg[addrow] (SO,box-k+i,i,coef); 
SO linalg[addcol] (SO,i,box-k+i,-coef) 

fi 
od; 
RETURN (evalm(SO)) 
end 

2.6. Stage 6: To organize the enlarged Jordan matrix JO. It is enough 
to exchange rows such that the Jordan block whose pi = 1 (if it occurs) remains at 
the bottom, and then to do the same column exchange. 

stage_6 := proc(S,M,JO) 

local SO,i,k,box; 
SO S; 
box M; 
for i from M-1 by -1 to JO do if SO[i,M] = 1 then box := i fi od; 
if M-1 <= box then RETURN(evalm(SO)) fi; 
for i from M by -1 to box+2 do 

SO := linalg[swapcol](SO,i,i-1); SO linalg[swaprow] (SO,i,i-1) 
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od; 
RETURN(evalm(SO)) 
end 

Finally we add Al to the final matrix to obtain the matrix A,+,. Therefore, the 
main program which obtains the Jordan matrix of a given matrix A is the following: 
Jordan := proc(A,roots) 

local root,step,JO,dim_A,AO,Al; 
dim_A := linalg[coldim] (A); 
AO := linalg[stack](A,array(identity,l .. dim_A,l .. dim_A)); 

step := 1; 
for root in roots do 

JO step; 
AO evalm(AO-root*array(identity,l 2*dim_A,l dim-A)); 
Al stage_l(AO,step); 
while Al <> 'error' do 

AO stage_2(Al,step,JO); 
AO stage_3(AO,step,JO); 
AO stage_4(AO,step,JO); 
AO stage_5(AO,step,JO); 
AO stage_6(AO,step,JO); 
step := step+1; 

Al := stage_1(AO,step) 
od; 
AO := evalm(AO+root*array(identity,l 2*dim_A,1 dimA)) 

od; 
RETURN(evalm(AO)) 
end 

3. Example. Consider the matrix 

O 1 1 -2 0 1 
-1 1 3 -4 0 2 

A -1 0 4 -5 0 3 
-1A0-3 -1 0 3 -5 0 4 

-1 0 3 -7 1 5 
-1 0 3 -7 -1 7 S 

whose characteristic polynomial is (X-_1)4(X -2)2 . Then 

'-1 I 1 -2 0 1' 
-1 0 3 -4 0 2 
-1 0 3 -5 0 3 
-1 0 3 -6 0 4 
-1 0 3 -7 0 5 
-1 0 3 -7 -1 6 Stp1 sag 1 

1~~~~~~~Se tg 
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P-l(A - I)P 
O 0 -1 -1 0 1 
O 0 0 2 4 -6 
0 1 0 0 0 0 
0 0 -1 -2 0 2 
0 0 -1 -3 0 3 
0 0 -1 - -1 4 Step 2 stage 1 

2 1 0 -3 -2 4 
1 0 0 0 0 0 
0 0 0 1 0 0 
00 0 0 1 0 
00 0 0 0 1 

P-l (A - I)P 
0 0 -1 1 -2 0 

0 -1 -1 1 0 
0 0 2 -2 1 
0 0 1 1 0 
0 0 0 1 0 
0 0 2 0 0 

3 -2 1 -6 12 0 Step 3: stage 4 
2 -1 0 -3 4 1 
1 0 0 0 0 0 
0 1 0 1 -2 0 
0 1 0 0 1 0 
0 1 0 0 0 0 

P-l (A - I)P 
0 0 1 -1 2 0 

0 1 1 -1 0 
0 2 -2 1 
0 1 1 0 
0 0 1 0 
0 2 0 0 

-3 2 1 -6 12 0 Step 3 stage 5 
-2 1 0 -3 4 1 
-1 0 0 0 0 0 
0 -1 0 1 -2 0 
0 -1 0 0 1 0 
0 -1 0 0 0 0 
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P-l(A - I)P 
0 00 -2 3 0 1 0 0 0 0 0 

0 1 1 -1 0 1 1 0 0 0 
0 2 -2 1 1 1 0 0 

1 1 0 1 0 0 
0 1 0 2 1 
2 0 0 |Steps 4,5,6 + 21 0 

-3 -1 1 -6 12 0 Stp4562 -3 -1 1 0 01 
2 

-2 -1 0 -3 4 1 -2 -1 0 1 -2 6 
-1 -1 0 0 0 0 -1 -1 0 0 -3 9 

0 -1 0 1 -2 0 0 -1 0 0 -4 12 
0 -1 0 0 1 0 0 -1 0 0 -5 15 
0 -1 0 0 0 0 0 -1 0 0 -5 14 

-I 
Stepl Step2 Step3 

C3 -C3 + 3C1 C4 C4 - 2C3 C2< -lC2 
RI R1 - 3R3 R3< R3 + 2R4 R2 --1R2 
C4 C4 - 4C1 C6 C6 + 2C3 C0< -10C 

R1 R1 + 4R4 R3 -R3 - 2R6 R1 -1R1 
C6 -C6 + 2C1 C5 C5 - 2C4 C2' C20+ C 
R1 R1 - 2R6 R4 R4 + 2R5 R1 R1 -1R2 
C3 -C3 + 2C2 C6 C6 + 3C4 
R2 R2 - 2R3 R4' R4 - 3R6 
C4 C4 - 3C2 C6 C6+ 1C5 
R2 R2 + 3R4 R5 R5 - 1R6 
C5- C5 - 2C2 C2 C6 
R2 R2 - 2R5 R2' R6 
C6 <C6 + 4C2 
R2' R2 - 4R6 

Cl C3 

R,' R3 

+I,-2I 
Step4 Step5 Step6 

C4 <-C6 C5 0<C6 C6 C6 - 2C4 
R4' R6 R5' R6 R4 R4 + 2R6 

C5 C5 + 2C4 C6 C6 - 8C3 
R4 R4 - 2R5 R3 R3 + 8R6 
C5 C5 + 4C3 C6 -C6 - 14C2 
R3 -R3 - 4R5 R2R2 + 14R6 
C5 C5 + 5C2 C6 C6 + 5C1 
R2 R2 - 5R5 R1I R1 - 5R6 
C5 C5 - 2C0 +21 
R1 R1 + 2R5 
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4. Remark on the solution of a linear ODE with constant coefficients. 
Now, if A is the matrix of the preceding paragraph, we can use the obtained matrix 
P to obtain the solutions of the linear system of ODEs as follows: 

dX = AX. 
dt 

So, if Hj is the jth column of the matrix P, we have 

(A - 1)H1 = 0 

(A - I)H2 = 0 (A - I)H3 H2 (A - I)H4- H3 
(A - 2I)H5=0 (A -21)H6 H5 

and we can write the solutions of dx = AX as follows: 

X =et(ciHi+c2H2+c3[H3?+ tH2] +C4[H4?+4H3?+ _H2]) 

+e2t (c5H5+c66[H6?+ H5]) 

where 

Hi= 
- H2 -1 H3 o 

H4= H5= 4 H64 1. 

It is curious to note that we can check the correctness of our calculus by replacing 
this solution in the equation dx = AX and verifying that this equality holds. 

5. Conclusion. The above method has been used succesfully in the classroom 
to demonstrate the solution of a linear ODE with constant coefficients. Further study 
for students could include the use of a computer with a system for symbolic or math- 
ematical computation (as Maple or Mathematica) in order to create a program which 
executes the above method. Such a program could be performed by students work- 
ing in groups of two with each computer, since this gives students some experience 
working on a project such as they might do in industry. 
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