Analytic Geometry - Assignment \#1

Prof. Juliana Pimentel

Exercise 1 Let $\triangle A B C$ be a triangle and let M, N, P be the midpoints of the line segments $A B, B C$ and $C A$, respectively. Write the vectors $\overrightarrow{B P}, \overrightarrow{A N}$ and $\overrightarrow{C M}$ as linear combinations of $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Exercise 2 Let $\vec{u}, \vec{v}, \vec{w}, \vec{z}$ be vectors satisfying
(1) $\vec{w}=\vec{u}+\vec{v}$; and
(2) \vec{u} is parallel to \vec{z}.

Prove that \vec{w} is parallel to \vec{z} if, and only if, \vec{v} is parallel to \vec{z}.
Exercise 3 Suppose that $\overrightarrow{A B}=\lambda \overrightarrow{B C}$. Prove that the vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are LD for any given point O.

Exercise 4 Prove that if the vectors $\vec{u}, \vec{v}, \vec{w}$ are LI then $\vec{u}+\vec{v}, \vec{u}-\vec{v}, \vec{w}-2 \vec{u}$ are also LI.

Exercise 5 Find scalars m, n such that the vectors \vec{u}, \vec{v} are LD, where
(1) $\vec{v}=(1, m, n+1)$ and $\vec{w}=(m, n, 2)$;
(2) $\vec{v}=(1, m-1, m)$ and $\vec{w}=(m, n, 4)$.

Exercise 6 In each of the following prove or disprove that the given subset is a basis for the vector set V.
(1) $B=\{(1,-1,2),(0,-2,1),(-1,0,1)\}$
(2) $B=\{(0,-1,2),(1,2,-4),(-1,0,0)\}$

Exercise 7 Consider the vectors $\vec{u}=(2,-1,2)$ and $\vec{v}=(1,2,-2)$. Find scalars a, b such that $\vec{w}=a \vec{u}+b \vec{v}$ and $\vec{w} \cdot \vec{v}=0$.

Exercise 8 Prove that $(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times(\vec{v} \times \vec{w})$.

