Analytic Geometry - Assignment #1

Prof. Juliana Pimentel

Exercise 1 Let $\triangle ABC$ be a triangle and let M, N, P be the midpoints of the line segments AB, BC and CA, respectively. Write the vectors $\overrightarrow{BP}, \overrightarrow{AN}$ and \overrightarrow{CM} as linear combinations of \overrightarrow{AB} and \overrightarrow{AC} .

Exercise 2 Let $\vec{u}, \vec{v}, \vec{w}, \vec{z}$ be vectors satisfying

- (1) $\vec{w} = \vec{u} + \vec{v}$; and
- (2) \vec{u} is parallel to \vec{z} .

Prove that \vec{w} is parallel to \vec{z} if, and only if, \vec{v} is parallel to \vec{z} .

Exercise 3 Suppose that $\overrightarrow{AB} = \lambda \overrightarrow{BC}$. Prove that the vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} are LD for any given point O.

Exercise 4 Prove that if the vectors $\vec{u}, \vec{v}, \vec{w}$ are LI then $\vec{u} + \vec{v}, \vec{u} - \vec{v}, \vec{w} - 2\vec{u}$ are also LI.

Exercise 5 Find scalars m, n such that the vectors \vec{u}, \vec{v} are LD, where

(1) $\vec{v} = (1, m, n+1)$ and $\vec{w} = (m, n, 2)$; (2) $\vec{v} = (1, m-1, m)$ and $\vec{w} = (m, n, 4)$.

Exercise 6 In each of the following prove or disprove that the given subset is a basis for the vector set V.

(1) $B = \{(1, -1, 2), (0, -2, 1), (-1, 0, 1)\}$

(2) $B = \{(0, -1, 2), (1, 2, -4), (-1, 0, 0)\}$

Exercise 7 Consider the vectors $\vec{u} = (2, -1, 2)$ and $\vec{v} = (1, 2, -2)$. Find scalars a, b such that $\vec{w} = a\vec{u} + b\vec{v}$ and $\vec{w} \cdot \vec{v} = 0$.

Exercise 8 Prove that $(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times (\vec{v} \times \vec{w})$.