Analytic Geometry - Assignment \#3

Prof. Juliana Pimentel

Exercise 1 Let r be the straight line through $A=(1,2,5)$ and $B=(0,1,0)$. Find the coordinates of a point P on r with the length of $\overrightarrow{P B}$ being three times the length of $\overrightarrow{P A}$.

Exercise 2 Prove that the locus of all points that are equidistant from $A=(1,-1,2)$ and $B=(4,3,1)$ is a plane π. Prove that π is perpendicular to line segment AB.

Exercise 3 Let r and s be skew lines through $A=(0,1,0)$ and $B=(1,1,0)$ and through $C=$ $(-3,1,-4)$ and $D=(-1,2,-7)$, respectively. Find the equation of the line t intersecting both r and s, and parallel to the vector $\vec{v}=(1,-5,-1)$.

Exercise 4 Prove that the line r is contained in the plane π, where $r: x=-1+m, y=-1+m, z=3 m$ and $\pi: x+2 y-z+3=0$.

Exercise 5 Find the symmetric point P^{\prime} for the point $P=(2,1,0)$ with respect to the line $r: x=$ $1+t, y=2-t, z=1+t$.

Exercise 6 Find the asymptotes for the hyperbola $4 y^{2}-x^{2}=1$.

