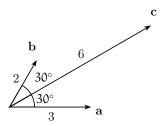
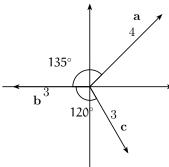
Lista 2 - Geometria Analítica

Dependência e Independência Linear de Vetores

1 — Dados os vetores **a**, **b** e **c** como na figura abaixo. Escreva o vetor **c** como combinação de **a** e **b**.

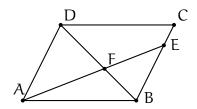


 ${f 2}$ — Dados os vetores ${f a}, {f b}$ e ${f c}$ como na figura abaixo. Escreva o vetor ${f c}$ como combinação de ${f a}$ e ${f b}$.



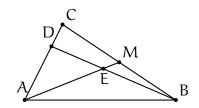
3 — Considere um paralelogramo ABCD. Seja E o ponto sobre o segmento BC tal que a distância de B a E é três vezes a distância de E a C. Seja F a intersecção de AE com a diagonal BD. Se $\overrightarrow{AB} = \mathbf{a}$ e $\overrightarrow{AD} = \mathbf{b}$, escreva o vetor \overrightarrow{AF} em função de \mathbf{a} , \mathbf{b} usando:

- (a) Geometria plana clássica (semelhança de triângulos);
- (b) Geometria analítica (combinações lineares de vetores);

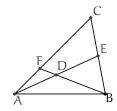


4 — Considere um triângulo ABC. Sejam M o ponto médio de BC e D o ponto sobre o segmento AC tal que a distância de D a A é três vezes a distância de D a C. Seja E a intersecção de AM com BD. Se $\overrightarrow{AB} = \mathbf{a}$ e $\overrightarrow{AC} = \mathbf{b}$, escreva o vetor \overrightarrow{AE} em função de \mathbf{a}, \mathbf{b} .

Cuidado! Não há triângulos semelhantes neste caso...



5 — Seja D o ponto médio da mediana AE do triângulo $\triangle ABC$. Se a reta BD corta o lado \overline{AC} no ponto F, determine a razão que F divide \overline{AC}



 \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{AB} = $\lambda \overrightarrow{BC}$, prove que os vetores \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} são LD para qualquer ponto \overrightarrow{O} .

7 — Os pontos P e Q dividem os lados CA e CB de um triângulo ΔABC nas razões

$$\frac{x}{1-x}, \frac{y}{1-y}$$

respectivamente. Prove que se $\overrightarrow{PQ} = \lambda \overrightarrow{AB}$ então $x = y = \lambda$.

8 — Mostre que os vetores $\mathbf{u}, \mathbf{v}, \mathbf{w}$ são coplanares se, e somente se, um deles é combinação linear dos outros dois.

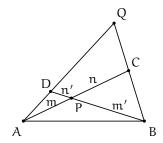
9 — Prove que se o conjunto de vetores $\{\mathbf{u}, \mathbf{v}\}$ é L.I., então o conjunto $\{\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}\}$ também é L.I.

10 — Prove que se o conjunto de vetores $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ é L.I., então o conjunto $\{\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}, \mathbf{w} - 2\mathbf{u}\}$ também é L.I.

11 — Dado um tetraedro \overrightarrow{ABCD} explique por que os vetores $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ formam uma base para o espaço.

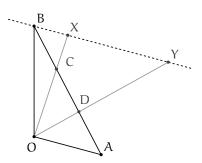
Extras

12 — As diagonais \overline{AC} e \overline{BD} de um quadrilátero ABCD se interceptam no ponto P, que divide o segmento \overline{AC} na razão m:n e o segmento \overline{BD} na razão m':n'. Dado Q o ponto de intersecção das retas contendo os segmentos \overline{BC} e \overline{AD} . Encontre a razão AQ:DQ e BQ:CQ.

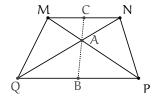


13 — Dado um triângulo ΔOAB, sejam C e D pontos sobre o lado AB dividindo esse segmento em três partes congruentes. Por B traçamos a reta paralela a OA, e sejam X e Y a intersecção dessa reta com as retas ligando OC e OD respectivamente.

- a) Expresse os vetores \overrightarrow{OX} e \overrightarrow{OY} em função de \overrightarrow{OA} e \overrightarrow{OB} .
- b) Determine as razões nas quais X divide
 BY, C divide a OX e D divide a OY.



14 — Dado um paralelogramo MNPQ, seja A o ponto de intersecção das diagonais e sejam B e C os pontos médios dos lados opostos MN e PQ. Prove que se os pontos A, B e C estão sobre a mesma reta então MNPQ é um trapézio (um trapézio é um quadrilátero com dois lados paralelos).



15 — Sejam B um ponto no lado ON do

paralelogramo AMNOe e Cum ponto na diagonal OMtais que

$$\overrightarrow{OB} = \frac{1}{n} \overrightarrow{ON}$$

e
$$\overrightarrow{OC} = \frac{1}{1+n} \overrightarrow{OM}$$
. Prove que os pontos A, B e C estão na mesma reta.

Respostas dos Exercícios

3 (a) ...

(b) Observe que, como **a** e **b** não são paralelos, eles formam uma base para os vetores no plano. Logo todos os demais vetores do problema podem ser escritos em função desses.

O problema de encontrar \overrightarrow{AF} está ligado a determinar onde fica o ponto F. Sobre esse tudo que sabemos é que é a intersecção dos segmentos BD e AE. Desse modo, para localizar F, precisamos inicialmente de duas equações:

• B, F e D são colineares:

$$\overrightarrow{BF} = \theta \overrightarrow{BD}$$
,

para algum θ real.

• A, F e E são colineares:

$$\overrightarrow{AF} = \lambda \overrightarrow{AE}$$

para algum λ real.

(Note que θ e λ não são necessariamente iquais!)

Escrevamos agora \overrightarrow{AF} e \overrightarrow{BF} em função de $\mathbf{a}, \mathbf{b}, \theta \in \lambda$. É fácil (por quê?) ver que:

$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -\mathbf{a} + \mathbf{b}$$
$$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \mathbf{a} + \frac{3}{4}\mathbf{b}$$

Então, relacionando \overrightarrow{AF} e \overrightarrow{BF} temos:

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF}$$

donde segue:

$$\lambda\left(\mathbf{a}+\frac{3}{4}\mathbf{b}\right)=\mathbf{a}+\theta(\mathbf{b}-\mathbf{a})$$

Colocando tudo à esquerda da igualdade e deixando **a** e **b** em evidência:

$$\mathbf{a}\left(\lambda+\theta-1\right)+\mathbf{b}\left(\frac{3}{4}\lambda-\theta\right)=\mathbf{0}$$

Como a e b são LI segue:

$$\begin{cases} \lambda + \theta - 1 = 0 \\ \frac{3}{4}\lambda - \theta = 0 \end{cases}$$

Finalmente, obtemos $\lambda = \frac{4}{7}$ e

$$\overrightarrow{AF} = \frac{4}{7}\mathbf{a} + \frac{3}{7}\mathbf{b}.$$

4

$$\overrightarrow{AE} = \frac{3}{7}(\mathbf{a} + \mathbf{b})$$

5 Considere $\overrightarrow{FC} = \lambda \overrightarrow{AF}$. Queremos determinar λ .

Sejam $\mathbf{b} = \overrightarrow{AB}$ e $\mathbf{c} = \overrightarrow{AC}$, então temos:

$$\overrightarrow{AD} = \frac{\overrightarrow{AE}}{2} e \overrightarrow{AE} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$$

e logo:

$$\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{4}$$

Também temos que:

$$\overrightarrow{AF} = \frac{\overrightarrow{AC}}{1+\lambda}$$

Como F, D e B são colineares então:

$$\overrightarrow{AF} = \alpha \overrightarrow{AD} + (1 - \alpha) \overrightarrow{AD}$$

e assim

$$\overrightarrow{AF} = (1 - \frac{3}{4}\alpha)\overrightarrow{AB} + \frac{1}{4}\alpha\overrightarrow{AC}$$

E consequentemente $1 - \frac{3}{4}\alpha = 0$ e $\frac{1}{4}\alpha = \frac{1}{1+\lambda}$ e assim $\lambda = 2$.

Logo F divide o segmento \overline{AC} na razão 1:2.

6
$$\overrightarrow{OA} = (1 + \lambda)\overrightarrow{OB} - \lambda\overrightarrow{OC}$$
.

12

$$\frac{\|AQ\|}{\|DQ\|} = \frac{(n+m)m'}{(n'+m')n} \quad \frac{\|BQ\|}{\|CQ\|} = \frac{(n'+m')m}{(n+m)n'}$$