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Resumo

Consideramos sistemas dinâmicos gerados por equações escalares de reação-difusão. Em geral,

esperamos que estes sejam dissipativos, rapidamente não-dissipativos ou lentamente não-dissipativos.

Isto significa, respetivamente, que as soluções são todas eventualmente limitadas, os sistemas exibem

blow-up em tempo finito ou existem soluções cujas normas crescem ao infinito com o tempo. Apesar de

haver substancial quantidade de informações acerca das duas primeiras classes de sistemas, apenas

recentemente a última classe tem sido considerada. Nesta tese estudamos sistemas lentamente não-

dissipativos gerados por equações escalares de reação-difusão com não-linearidade dependendo da

variável espacial e a depender de um termo de advecção.

Ao se considerarem sistemas lentamente não-dissipativos, a existência de soluções não limitadas

- às quais nos referimos como soluções do tipo grow-up - é necessária a introdução de certos ob-

jectos no infinito, interpretados como equilı́brios no infinito. Mais ainda, a existência destas soluções

introduz uma estrutura de órbitas mais complexa no atrator do que aquela gerada por sistema dissi-

pativos. As soluções do tipo grow-up nas variedades instáveis dos equilı́brios limitados são definidas

como conexões heteroclı́nicas com os equilı́brios no infinito e, a partir da teoria de variedades inerciais,

determinamos os limites exatos das soluções do tipo grow-up. Então, estendendo resultados anteri-

ores, obtemos a existência de um atrator global não compacto, composto pela reunião do conjunto dos

equilı́brios limitados, o conjunto dos equilı́brios no infinito e as conexões heteroclı́nicas entre eles.

É sabido que existe uma permutação associada a sistemas dissipativos que determina grande parte

da geometria do atrator global. Para sistemas não-dissipativos, a existência de equilı́brios no infinito

engendra dificuldades substanciais na obtenção de uma permutação semelhante determinando as

conexões heteroclı́nicas no atrator não compacto. Neste contexto, ainda conseguimos determinar as

conexões heteroclı́nicas com base no método da permutação de Sturm. Esta técnica oferece um critério

mais simples para descrever o atrator não compacto e generaliza resultados anteriormente obtidos para

equações dissipativas.

Palavras-chave: sistemas lentamente não dissipativos, soluções do tipo grow-up, número

de zeros, propriedades nodais, y-map, atrator global, conexões heteroclı́nicas, variedade inercial, sus-

pensão, permutação Sturm.
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Abstract

We consider dynamical systems generated by scalar reaction-diffusion equations. Generally speak-

ing we expect it to be dissipative, fast non-dissipative or slowly non-dissipative. This means, respectively,

that the solutions are all ultimately bounded, the system exhibits finite-time blow-up or there exists solu-

tions whose norms grow-up to infinity with time. Although there is a great deal of information regarding

the first two classes of dynamical systems, only recently the latter class has been approached. In this

thesis we address slowly non-dissipative systems generated by scalar reaction-diffusion equations with

the nonlinearity depending on the space variable and possessing an advection term.

When dealing with slowly non-dissipative systems, the existence of unbounded solutions, which are

referred to as grow-up solutions, requires the introduction of some objects at infinity interpreted as

equilibria at infinity. Moreover, the existence of these solutions yields a more complex orbit structure on

the attractor than that appearing on dissipative systems. The grow-up solutions in the unstable manifolds

of bounded equilibria are defined to be heteroclinic connections with the equilibria at infinity and, by

recurring to the theory of inertial manifolds, we are able to determine the exact limits of the grow-up

solutions. Then, by extending known results, we obtain the existence of a non-compact global attractor

which is composed of the set of bounded equilibria, the set of equilibria at infinity and the heteroclinic

connections between them.

It is well known that there exists a permutation associated with dissipative systems that determines

many of the main geometric features of the global attractor. For non-dissipative systems, the existence

of equilibria at infinity adds some significant challenges to obtain a similar permutation determining

the heteroclinic connections on the non-compact global attractor. Under this setting, we still manage

to determine the heteroclinic connections based on the Sturm permutation method. This provides a

simple criterion for describing the non-compact global attractor and generalize the results obtained for

dissipative equation.

Keywords: slowly non-dissipative systems, grow-up solutions, zero number, nodal properties,

y-map, global attractor, heteroclinic connections, inertial manifold, suspension, Sturm permutation.
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Chapter 1

Introduction

A better understanding of longtime dynamical properties of infinite dynamical systems generated by

scalar parabolic PDE’s is of paramount relevance. A primary case approached in the last decades in-

volves a crucial assumption of existence of a bounded set in the state space into which every solution

eventually enters and remains. Such a set is known as the global attractor. Dynamical systems pos-

sessing this property are known as dissipative and a well established theory concerning their asymptotic

behavior is composed of a large number of results derived, for instance, in [Hal88], [BV92] and [Lad91].

Meanwhile, motivated by numerous applications, a different class of equations has been approached. It

comprises equations which generate a dynamical system not containing an uniformly bounded attract-

ing set, see [Sch07, BG11b, BG11c]. Particular attention has been paid to systems with a subset of

solutions blowing-up at infinite time, [BG10]. The dissipativity property of those systems is obviously no

longer verified.

Generally speaking, we expect the solutions of a scalar reaction-diffusion equation to present one of

the following possible behaviors: the induced dynamical system will be ultimately bounded, for at least

one initial condition the solution will experience a finite-time blow-up or finite-time blow-up does not take

place but a subset of solutions present infinite-time blow-up. The usual denomination referring to any

of these types of equations is dissipative, fast non-dissipative and slowly non-dissipative, respectively.

Despite the fact that a devoted attention has already been paid to the first two categories, just recently

the latter case has been approached, [BG10], and it is precisely our object of study.

Consider a general scalar parabolic partial differential equation of the form ut = uxx + f(x, u, ux)

u(0, .) = u0,
(1.1)

with x defined on a bounded interval and satisfying separated boundary conditions. An example of an

explicit condition to impose on f for the equation to generate a dissipative system is

f(x, u, 0).u < 0, (1.2)
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for |u| large enough, and moreover requiring

|f(x, u, p)| ≤ c(1 + |p|γ)

with c > 0 and 0 ≤ γ < 2, uniformly for x and u in compact sets, [Ama85]. These conditions motivate us

to consider a specific nonlinearity in order to obtain systems which are not dissipative. We can take for

instance a function of the form

f(x, u, ux) = bu+ g(x, u, ux), (1.3)

with b > 0, to jeopardize the dissipativity of equation (1). Furthermore, for g bounded we can guarantee

that the solutions of equation (1) exist for all forward time and the equation that we are considering will,

in fact, produce the behavior arising in slowly non-dissipative equations. But notice that if g is bounded

and b < 0 we are still provided with a dissipative system.

In the study of dynamical systems generated by equation (1), for a class of nonlinearities f , the

global attractors have been proven to be of paramount relevance. For dissipative equations such attrac-

tors are non-empty, compact, invariant attracting sets in some appropriate underlying space X. Their

characterization turned out to be a crucial tool for describing the asymptotic behavior of such systems,

as we can see in [BF88, BF89, FR96, Bru90, Roc91]. However, when dealing with slowly non-dissipative

systems, we are no longer provided with the existence of a bounded set in X attracting each bounded

subset of X. In this way, for the case where all solutions are guaranteed to exist for all forward time,

although we still have a minimal invariant set attracting all solutions, we cannot ensure compactness.

Such an invariant set still provides us with relevant information concerning the asymptotic behavior of

solutions for equation (1). This object will be the center of our investigation and we shall designate it as

non-compact global attractor.

In this thesis we aim to address the characterization of the non-compact global attractor for the

equation (1) in the interval [0, π] under Neumann boundary conditions, that is,

ut = uxx + f(x, u, ux), x ∈ (0, π)

ux(t, 0) = ux(t, π) = 0,

(1.4)

with f(x, u, ux) = bu + g(x, u, ux). The objective is the extension of certain results that hold when the

nonlinearity is dissipative to the slowly non-dissipative case. In addition, we consider a more general

nonlinearity than that addressed in [BG11b, BG11c], in the sense that we allow it to exhibit dependence

on the space variable and to possess an advection term.

Despite the non-dissipativity of equation (1.4) we obtain a Lyapunov functional for the generated

dynamical system and we obtain as a consequence that the solutions that do not converge to any

bounded equilibria can not remain bounded. Moreover, we refer to these unbounded solutions as grow-

up solutions. From the techniques obtained in [Hel11], related to a Poincaré projection, one derives the

existence of some objects at infinity interpreted as equilibria at infinity. In order to determine the exact

limit of the grow-up solutions, we recur to the theory of inertial manifold since the L2-norm alone does not

2



prevent the zero number to decay at t =∞. We are then able to obtain the transfinite heteroclinics by In-

finite Blocking and Infinite Liberalism notion as in the dissipative realm. More precisely, given a bounded

equilibrium and an equilibrium at infinity, the Infinite Blocking Lemma provides sufficient conditions for

a connection between the given equilibria to be blocked and the Infinite Liberalism Lemma states that

connections between the equilibria exist whenever they are not blocked. The intra-infinite heteroclinics

are derived as in [Hel11].

When dealing with dissipative equations, we have an associated permutation that determines many

of the main geometric features of the global attractor, as we can see in [FR91, FR96, Wol02]. One

of our main goals is to obtain a permutation related to the slowly non-dissipative equation (1.4) that

determines the heteroclinic connections on the non-compact global attractor. In this way we obtain a

simple criterion for describing the non-compact global attractor and generalize the results obtained for

dissipative equation.

To obtain such a permutation we proceed as follows. We obtain that the non-compact global attractor

Af is composed of a bounded subset Acf ⊂ B, for some large ball B ⊂ Xα, and an unbounded subset

A∞f . We define the permutation σf associated to the slowly non-dissipative equation (1.4) as in the

dissipative case, by labeling the equilibria ordered firstly by their values at x = 0 and then at x = π. We

then consider the k-th suspension of σf , where k = [
√
b] + 1. The obtained permutation σ̂1

f is proved to

be Sturm, which implies that it is realizable. It is then obtained a dissipative problem of the form

ut = uxx + h(x, u, ux), x ∈ (0, π)

ux(t, 0) = ux(t, π) = 0,

(1.5)

with the associated permutation σh defined in the usual way for dissipative equations coinciding with

σ̂1
f . Since equation (1.5) is dissipative, we have a decomposition of the global attractor in terms of the

adjacency notion, as obtained in [Wol02]. Moreover, we construct the function h in such a way that it

coincides with f in the large ball B ⊂ Xα and is dissipative, that is, h(x, u, ux) = cu for some c < 0,

outside a larger ball B̂. Given that, the equilibria of equation (1.5) that are contained in B coincide with

the bounded equilibria of the non-dissipative equation (1.4). We then make a correspondence between

the remaining equilibria of equation (1.5) with the equilibria at infinity. The correspondence preserves the

heteroclinic connections between the equilibria and, as a result, we obtain a simple criterion to determine

the connecting orbit structure on the non-compact global attractor using the idea of adjacency.

This thesis is organized as follows. In Chapter 2 we focus on the asymptotic behavior of the grow-up

solutions. We recall a crucial tool developed in [Hel11] to get a better understanding of the behavior of

the grow-up solutions at infinity. Then the concept of equilibria at infinity is introduced.

In Chapter 3 we discuss some standard tools which are frequently used in the study of the connecting

orbit structure of attractors. We recall the definition and some crucial properties of the zero number. We

also recall the definition of the functional known as y-map which provides information on the zero number

of solutions converging in backwards to an equilibrium. We also reproduce the discussion in [BG11c],

where an extended form of the y-map is obtained to include applications to non-dissipative equations

3



and it is proved that the extended y-map is surjective.

In Chapter 4 we draw our attention to the decomposition of the non-compact global attractor. We first

obtain the existence of an unbounded inertial manifold containing the non-compact global attractor, from

the results obtained in [Mik91]. We then present a discussion on the grow-up solutions in the unstable

manifold of the equilibria, since these are interpreted as a connection from a bounded equilibrium to

an equilibrium at infinity. We obtain the Infinite Blocking Liberalism Lemma and the Infinite Liberalism

Lemma, and therefore, the transfinite heteroclinics. A description of the heteroclinics within infinity is

also presented. We then derive some results for the bounded equilibria in order to obtain a description

of the bounded heteroclinics in the next chapter. Let Ecf = {v1, ..., vn} be the set of bounded equilibria

ordered by their values at x = 0. We obtain the non-emptiness of the set Ecf and calculate the Morse

indices of the equilibria v1 and vn.

In Chapter 5 we describe the bounded heteroclinics and obtain a simple criterion to describe the

heteroclinic connections on the non-compact global attractor in terms of the adjacency notion. We define

a suspension of any given meander permutation and by considering suspensions of the permutation σf

related to equation (1.4), we obtain a dissipative system that is associated to the original non-dissipative

equation (1.4). We then present our main result, Theorem 5.4.1, describing the heteroclinic connections

in terms of the adjacency notion. The obtained Theorem generalizes the main result in [BG10] and also

provides a simple criterion for describing the connections.

4



Chapter 2

Non-dissipativity

2.1 Reaction-diffusion equation

We consider the following scalar reaction-diffusion equation

ut = uxx + f(x, u, ux), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.

(2.1)

where f(x, u, ux) = bu + g(x, u, ux), b > 0 and g : [0, π] × R2 → R is a bounded C2 function. We also

assume that g(x, u, p) is globally Lipschitz in (u, p). This implies, from standard theory (see, for instance,

[Ama85, Hal88, Hen81]) that we are provided with a local solution semigroup defined by u(t, .) = S(t)u0

for t ≥ 0 and the initial condition u0 in the underlying space. We take, in the case of equation (2.1), the

Hilbert space

X = L2([0, π]).

We denote the norm in X by ‖ · ‖. Moreover, we denote by A the operator −∂xx − bI. We know that A

is a sectorial operator in X and −A generates the analytic semigroup e−tA, [Hen81, Paz83]. In fact, for

b < 0, A is a positive definite selfadjoint operator. In any case, for

A1 = A+ (b+ 1)I,

the fractional power spaces

Xα := D((A1)α),

for each α ≥ 0, are well defined with the graph norm ‖x‖α := ‖(A1)αx‖, x ∈ Xα. It is worth notice that, if

b < 0 then we can choose A1 := A, as the eigenvalues of A with Neumann boundary conditions in this

case are all positive. On Xα, with α > 3
4 , the Nemitskii operator of g defined by

G(u)(x) = g(x, u, ux),

5



takes values in X and is globally Lipschitz in u. We chose α > 3
4 due to the fact that, in this case,

Xα ⊂ C1. The solution semigroup S(t) is defined in the underlying space Xα for t ≥ 0,

S(t) : Xα −→ Xα.

Before we proceed it is important to make precise the definitions of dissipative, fast non-dissipative and

slowly non-dissipative dynamical systems.

The equation (2.1) generates a dissipative dynamical system if there exists a fixed large ball B in the

underlying space Xα such that any solution

u(t, .) = S(t)u0,

with initial condition u0, will enter and remain within B for all time t ≥ T (u0). A dynamical system is

referred to as fast non-dissipative if there exists an initial condition u0 such that the maximal time t(u0)

of existence and uniqueness of the corresponding solution is finite, that is, t(u0) < ∞. Closing the

gap between the former classes of systems are those which were recently introduced and are called

slowly non-dissipative systems. It comprises all of those such that global existence and uniqueness are

guaranteed for every solution, that is, for all initial condition u0 ∈ Xα the maximal time t(u0) such that

S(t)u0 exists is t(u0) = ∞, but for at least one initial condition u0 there does not exist any time T (u0)

such that the solution can be bounded for all t ≥ T (u0), in Xα.

We now introduce some usual terminology which will be useful for a better understanding of the con-

trast between the dynamical systems just defined. We say that a fast non-dissipative system presents

finite-time blow-up, when we want to refer to the occurrence of a solution whose maximal time of exis-

tence and uniqueness is finite. Similarly, one uses the term infinite-time blow-up for the behavior arising

in a slowly non-dissipative system when a solution is defined for all forward time but whose norm is

unbounded. Such an unbounded solution will be referred to as a grow-up solution.

Under the above terminology, one should notice for instance that the existence of one solution ex-

periencing finite-time blow-up is enough to make a dynamical system fast non-dissipative. Moreover,

although slowly non-dissipative systems must exhibit blow-up, finite time blow-up cannot occur in such

systems. Obviously, a dynamical system with the dissipativity property is not allowed to carry either a

finite-time or an infinite-time blow-up.

Once we assume boundedness of g, the dynamical system generated by (2.1) is either dissipative

or slowly non-dissipative. Indeed, for each u0 ∈ Xα there is a unique solution defined on some maximal

interval 0 ≤ t < t(u0), and we further know from [Hen81] that either t(u0) = +∞ or

lim
t→t(u0)

‖S(t)u0‖α =∞.

6



But, if ‖G(u)‖ ≤ Γ for all u ∈ Xα, then

‖S(t)u0‖α = ‖e−Atu0 +

t∫
0

e−A(t−s)G(u)ds‖α

≤ ‖e−Atu0‖α + Γ

t∫
0

‖(A1)αe−A(t−s)‖ds

≤ Cebt‖u0‖α + Γ

t∫
0

(t− s)−αeb(t−s)ds,

which is bounded for each 0 < t < ∞, for α ∈ (3/4, 1). One thus concludes that t(u0) = +∞ for all

u0 ∈ Xα. Then, since all solutions of (2.1) exist for all forward time, a finite-time blow-up does not take

place and the dynamical system obtained is either dissipative or slowly non-dissipative.

The following lemma derived in [BG11b] ensures that a sufficient condition on equation (2.1) so that

it generates a slowly non-dissipative system is that b > 0. We consider a basis {ϕj(x)}j∈N0
that is

orthonormal in L2([0, π]), comprised of the eigenfunctions of the operator A with Neumann boundary

conditions, i.e., ϕj(x) =
√

2
π cos jx for j = 1, 2, ... and ϕ0(x) =

√
1
π . We further denote by λj the

corresponding eigenvalues and we observe that they are given by λj = j2 − b, for each j ∈ N0.

Lemma 2.1.1. If b > 0 then the dynamical system generated by equation (2.1) is non-dissipative.

Proof. The solutions of (2.1) are defined for all t ≥ 0, which implies that a finite-time blow-up can not

occur. It remains then to prove the existence of at least one solution with infinite-time blow-up. For that

we consider the eigenspaces Ej of A associated with each eigenvalue λj . We notice that any solution

u(t, x) of (2.1) can written as

u(t, x) =

∞∑
j=0

ûj(t)ϕj(x),

where ûj(t) = 〈u(t, .), ϕj(.)〉L2 and 〈., .〉L2 denotes the inner product in L2([0, π]). We then project equa-

tion (2.1) onto Ej and notice that if b > 0 then

λj = j2 − b < 0

at least for j = 0:
d

dt
ûj(t) =

d

dt
〈u(t, .), ϕj(.)〉L2 = 〈ut(t, .), ϕj(.)〉L2

= 〈uxx + bu, ϕj(.)〉L2 + 〈g(x, u, ux), ϕj(.)〉L2 ,

which, by selfadjointness of A, implies

d

dt
ûj(t) = −λj ûj(t) + 〈g(x, u, ux), ϕj(x)〉L2 . (2.2)

If we write

〈g(x, u, ux), ϕj(x)〉L2 = 〈G(u)(x), ϕj(x)〉L2 ,
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where G(u) is the Nemitskii operator for the function g(u), and denote

ĝj(t) := 〈G(u(t, x))(x), ϕj(x)〉L2 ,

we finally get the following equation by rewriting (2.2)

d

dt
ûj(t) = −λj ûj(t) + ĝj(t). (2.3)

We then have a linear non-homogeneous first order ODE and from standard theory we know that a

general solution of (2.3) has the form

ûj(t) = ûpj (t) + ûhj (t),

where ûpj (t) is a particular solution for (2.3) and ûhj (t) is the solution of the corresponding homogeneous

equation. As a particular solution we take

ûpj (t) =

t∫
∞

e−λj(t−s)ĝj(s)ds

and we obtain the solution of (2.3) with the condition

ûj(0) =

0∫
∞

eλjsĝj(s)ds+ ûhj (0),

which is given by

ûj(t) = ûhj (0)e−λjt +

t∫
∞

e−λj(t−s)ĝj(s)ds.

At this point one should notice that G(u) being bounded in L2 implies that ĝj(t) is uniformly bounded

for all j ∈ N0. Consequently, the particular solution ûpj (t) is uniformly bounded for all j ∈ N0 such that

λj < 0. On the other hand, whenever λj is strictly negative, if ûhj (0) 6= 0, then

ûhj (t) = ûhj (0)e−λjt

grows exponentially fast as t goes to infinity.

From the Fourier decomposition obtained from the projections onto the eigenspaces Ej , we conclude

that the L2-norm of a solution u(t, x) for (2.3) is ‖u(t, x)‖ =

√
∞∑
i=0

(ûi(t))2. Thus, since we have λj < 0 at

least for j = 0, if we take an initial condition u0 such that ûh0 (0) 6= 0, then

û0(t) −→∞ as t −→∞.

The corresponding solution u(t, x) for such an initial condition exhibits infinite-time blow-up since its
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L2-norm grows to infinite with time. This concludes the proof.

Motivated by the proof of the above lemma, or specifically by the existence of at least one solution for

equation (2.1) whose appropriate norm grows to infinity with time, we aim to investigate such a behavior.

Recall that an unbounded solution in this way is a grow-up solution, and we shall henceforward use this

term. We are concerned, in particular, with the initial conditions leading to a grow-up solution, as well as

with the limit of those solutions. We shall start considering these matters in the next subsection.

2.2 Non-compact global attractor

When dealing with dynamical systems which are provided with the existence of a Lyapunov func-

tional, one possesses a huge advantage in terms of describing the generated flow in the global attractor.

Fortunately, despite the fact of equation (2.1) being slowly non-dissipative, we can still guarantee the

existence of a Lyapunov functional and it is given in the form

V (u) =

π∫
0

H(x, u, ux)dx

where H(x, u, p) is a smooth function on [0, π]×R×R with Hpp > 0 (see [Zel68, Mat88]). The functional

V satisfies
d

dt
V (u) = −

π∫
0

Hpp (x, u, ux)u2
tdx ≤ 0.

In order to begin the discussion regarding the existence of unbounded solutions for equation (2.1),

we present the next lemma derived in [BG11b].

Lemma 2.2.1. Consider the equation (2.1) with b > 0 and an initial condition u0 ∈ Xα. Then the

corresponding solution u(t, .) either converges to some bounded equilibrium as t goes to infinity or

u(t, .) cannot stay bounded in any subset of Xα for all time t, that is, given any ball B in Xα and T > 0

the solution will leave B at some time t∗ > T .

Proof. Suppose neither of the above settings is verified, which is equivalent to say that the solution does

not converge to any bounded equilibrium and that it does exist a ball B and some time T > 0 such that

the solution enters at t = T and remains within B whenever t > T . If this is the case, there exists a

sufficiently large ball B∗ in Xα, depending on B and T , such that

u(t, .) ⊂ B∗, for all t ≥ 0.

Since the semigroup S(t) obtained from equation (2.1) is compact and it is guaranteed the existence of a

Lyapunov functional with the above mentioned properties, the LaSalle invariance principle, [Hal69], can

be applied. From that we conclude that the orbit u(t, .) through u0 must converge to some equilibrium of

(2.1) contained in B∗, which contradicts our assumption.
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We must recall that a global attractor for equation (1.1) is a nonempty maximal compact invariant

set attracting each bounded set in the appropriate state space. We have then noticed that the system

induced by (2.1) possesses solutions which are not allowed to remain bounded for all time. One of the

immediate consequences is that we are no longer provided with a maximal compact invariant set, and

therefore it does not exist a global attractor for the generated semigroup S(t).

In the meantime, we know that the existence of a global attractor plays a crucial role regarding a

better understanding of the long-time dynamics of equation (1.1). Taking this into account, it makes

sense to overcome the non-boundedness induced by (2.1), and define a global attractor which is not

compact. The following definition was introduced in [BG11b].

Definition 2.2.1. A non-compact global attractor for the equation (2.1) is a non-empty minimal set in Xα

attracting all bounded sets of Xα.

When considering the set of all solutions with initial condition u0 that remain bounded for all time t,

then we are guaranteed the existence of a large ball B in Xα containing all of such solutions. In this

way, as we have observed before, we are allowed to apply the theory used for the dissipative case, in

particular taking advantage of the existence of a Lyapunov functional, and consequently distinguishing

between the bounded subset of the non-compact global attractor and non-bounded one. We shall later

confirm that this is in fact the case, since we do not have all the required machinery yet. It remains then

to characterize the unbounded subset of the non-compact global attractor. In order to do that we shall

consider the grow-up solutions and their respective limits. It should be stressed at this point that the

reason why we call the equilibria of (2.1) bounded equilibria is that we are anticipating the existence

of objects at infinity referred to as limits of the grow-up solutions. Such objects will be referred to as

unbounded equilibria. It is convenient to pass now to an investigation of these objects.

2.3 Unbounded equilibria

We proceed as in [BG11b] and consider the basis {ϕj}j∈N0
which is orthonormal in L2([0, π]). When

we assume boundedness of g by some scalar Γ, i.e.,

|g(x, u, ux)| ≤ Γ,

we get in particular that for any grow-up solution only the eigenmodes with j ≤
√
b can contribute to the

limit at infinity. We make this statement precise in the next lemma, derived in [BG11b].

Lemma 2.3.1. Consider any trajectory u(t, .) of equation (2.1) and the same trajectory in terms of the

basis {ϕj}j∈N0
, which is given by

u(t, x) =

∞∑
j=0

ûj(t)ϕj(x),

with ûj(t) = 〈u(t, .), ϕj(.)〉L2 . Then all the modes ûj(t) with j >
√
b remain bounded for all time.
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Proof. We consider the linear non-homogeneous ODE obtained by taking the projection of equation

(2.1) onto the eigenspaces Ej of A associated with λj . The obtained equation has the form

d

dt
ûj(t) = −λj ûj(t) + ĝj(t), (2.4)

and we recall that the eigenvalues λj for the operator A are given by j2− b. We get as a general solution

for (2.4) the following

ûj(t) = ûj(0)e−λjt +

t∫
0

e−λj(t−s)ĝj(s)ds, (2.5)

where ûj(0) = 〈u0(.), ϕj(.)〉L2 .

If λj > 0, that is, j >
√
b, then we can get a bound for

t∫
0

e−λj(t−s)ĝj(s)ds, as we can see below:

∣∣∣∣∣∣
t∫

0

e−λj(t−s)ĝj(s)ds

∣∣∣∣∣∣ ≤
t∫

0

e−λj(t−s)Γds ≤ Γ

λj
(1− e−λjt) ≤ Γ

λj
.

To obtain a bound for the first term ûj(0)e−λjt, we just have to notice that for λj > 0

|ûj(0)e−λjt| ≤ |ûj(0)|, for all t ≥ 0,

as long as ûj(0) is finite.

The above result leads us to an important conclusion. If we consider a grow-up solution u(t, .), since

its norm grows to infinity with time, the modes ûj with j >
√
b will not affect the shape profile of u(t, .) in

the limit. Therefore, once we are interested in the limiting objects at infinity, we are particularly concerned

with the modes with j ≤
√
b.

In the next lemma, obtained in [BG11b], it will be considered a grow-up solution and its normalized

trajectory. We are interested in a better description of the explicit behavior of grow-up solutions. This will

lead us to a crucial result concerning the limit objects of the unbounded solutions, which are the next

topic we intend to focus on.

Lemma 2.3.2. Consider a grow-up solution u(t, .) of (2.1) and its normalized trajectory u(t,.)
‖u(t,.)‖ . A nec-

essary and sufficient condition for the rescaled trajectory to converge to ϕιj in L2 is that

lim
t→∞

û2
j (t)

∞∑
l=0

û2
l (t)

= 1,

and the sign of ϕιj(0) should be the same as u(t, 0) for all t ∈ (T,∞), for some T > 0, where ϕιj = ιϕj

and ι ∈ {+1,−1}.
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Proof. We first calculate the following

‖ u(t, .)

‖u(t, .)‖
− ϕ±j (.)‖2 = 1− 2〈 u(t, .)

‖u(t, .)‖
,±ϕj(.)〉+ 1

= 2∓ 2

‖u(t, .)‖
〈u(t, .), ϕj(.)〉

= 2∓ 2ûj(t)

(
∞∑
l=0

û2
l (t))

1
2

.

Then

lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕ±j (.)‖2 = 2∓ 2 lim

t→∞

ûj(t)

(
∞∑
l=0

û2
l (t))

1
2

. (2.6)

We denote by T the largest finite dropping time of the zero number of u. It means that u(t, 0) has the

same sign for all T < t <∞.

We next prove that the sign of ϕ±j (0) should be the same as u(t, 0) for all t > T . Suppose that

u(t, 0) > 0 for all t > T and u(t,.)
‖u(t,.)‖ converges in L2 to ϕ−j (.). Since u(t, .) and ϕ−j (.) are continuous at

x = 0, there exists ε > 0 such that

u(t, x) > 0 and ϕ−j (x) < 0, for x ∈ [0, ε] and t > T.

But the L2-convergence implies that ε = 0, which contradicts the continuity assumptions. The same

argument proves that u(t,.)
‖u(t,.)‖ cannot converge in L2 to ϕ+

j (.) if u(t, 0) < 0 for all t > T .

We have learned from the previous lemma that, for any grow-up solution u(t, .), all the modes ûl(t)

with l >
√
b must necessarily remain bounded for all time. Therefore, at least one mode ûj for some

j <
√
b will grow to infinity with t. Suppose ûj is the only infinitely growing mode, i.e., all ûm remain

bounded if m 6= j. If this is the case, then

lim
t→∞

û2
j (t)

∞∑
l=0

û2
l (t)

= lim
t→∞

û2
j (t)

û2
j (t)

= 1,

and

lim
t→∞

ûm(t)

(
∞∑
l=0

û2
l (t))

1
2

= lim
t→∞

ûm(t)

ûj(t)
= 0,

for all m 6= j.

Suppose now that the grow-up solution u(t, .) has more than one infinitely growing mode and denote

by ûi the one with the lowest subscript. Also suppose that b 6= l2 for any integer l. From equation (2.3)

we obtained that, for each integer l

ûl(t) = ûhl (t) + ûpl (t),
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where ûhl (t) = ûhl (0)e(b−l2)t, ûpl (t) =
t∫
∞
e(b−l2)(t−s)ĝl(s)ds and

ûhl (0) = ûl(0) +

∞∫
0

e(l2−b)sĝl(s)ds.

Moreover, since g is bounded by Γ, we obtain as in the previous lemma that |ûpl (t)| <
Γ

b−l2 . It is then

clear that the growth to infinity of ûl(t) is determined by the term ûhl (t).

If we then consider any other infinitely growing mode ûj , we must have j > i. From the discussion

above on the arbitrary mode ûl, we conclude that ûi(t) grows exponentially faster than ûj . Therefore,

lim
t→∞

ûj(t)

ûi(t)
= 0

and we have the limits

lim
t→∞

ûj(t)

(
∞∑
l=0

û2
l (t))

1
2

= lim
t→∞

ûj(t)

ûi(t)
= 0,

and

lim
t→∞

û2
i (t)

∞∑
l=0

û2
l (t)

= lim
t→∞

û2
i (t)

û2
i (t)

= 1.

Considering instead ûj as any bounded mode, the above limits follow immediately.

It remains to consider b = l2 for some integer l. Returning to equation (2.3), it follows that

−Γt+ ûl(0) ≤ ûl(t) ≤ Γt+ ûl(0),

that is, the unbounded mode ûl(t) grows at most linearly in t. If ûi is an unbounded mode with i < l,

then we clearly have the limit

lim
t→∞

ûl(t)

ûi(t)
= 0,

and then the above calculations apply to all other growing modes.

We conclude that u(t,.)
‖u(t,.)‖ will converge to ϕ±j where j denotes the lowest subscript for which ûj is an

infinitely growing mode, and this is equivalent to lim
t→∞

û2
j (t)

∞∑
l=0

û2
l (t)

= 1.

It was established in [Hel11] that the projections of the equilibria of the linear equation

ut = uxx + bu

to infinite norm play the role of equilibria at infinity. We will next discuss this fact in detail. From the

above result we know that the normalized orbit of a grow-up solution converges in L2 to ϕιj , for some j.

The original orbit corresponding to the solution u(t, .) grows up in the direction of ϕιj , as the normalized

solution converges to ϕιj .

We take advantage of some recently developed techniques in order to better understand the behav-
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ior of u(t, .) at infinity. The essential tool we want to introduce is derived in [Hel11] and consists of a

“compactification” of a Hilbert space contained in X, in such a way that it is mapped into an infinite-

dimensional manifold. From that we get a huge advantage resulting from the fact that the infinity is

mapped onto the boundary of the obtained manifold and we are then able to get a better picture of the

behavior at infinity.

We reproduce the discussion in [Hel11] and [BG11c] for the context of our equation (2.1). The objec-

tive is to project the Hilbert space

Xα := D((A1)α),

where α > 3
4 , onto the upper hemisphere of an infinite-dimensional sphere so that the infinity is projected

onto the equator. We shall next project our equation (2.1) and obtain the Poincaré compactified version of

it. The study of the obtained equation will certainly provide us with accurate information on the dynamics

at infinity.

The space Xα is a Hilbert space with the inner product given by

〈u, v〉α = 〈(A1)αu, (A1)αv〉L2

(see [Rob01]). Moreover, the inner product 〈·, ·〉α induces the norm ‖ · ‖α. We firstly make the natural

identification of Xα with the hyperplane Xα×{1} in Xα×R. The upper hemisphere we intend to project

Xα × {1} onto is

H = {(χ, z) ∈ Xα × R|〈χ, χ〉2α + z2 = 1, z ≥ 0}.

Notice that the hyperplane Xα × {1} is tangent to the unit sphere in Xα × R. The projection we shall

consider is defined in the following way: for a given point M on the hyperplane, the straight line through

M and the center of the unit sphere (0, 0) intersects the sphere at two antipodal points, one on the upper

hemisphere and one in the lower. The projection of M , which will be denoted by P(M), is defined as

the intersection point on the upper hemisphere. In this way, the projection P(M) has the form (χ, z) with

z ≥ 0. Moreover, as M goes to infinity on Xα × {1}, the Poincaré projection of M goes to the boundary

of H, that is, the equator of the unit sphere

He := {(χ, 0) ∈ Xα × R|〈χ, χ〉α = 1}.

We refer to He as the “sphere at infinity”.

We are actually able to give an explicit formula for the projection P(M), since the center of unit

sphere, the point M and P(M) are all collinear. For M = (u, 1) ∈ Xα × {1}, the Poincaré projection of

M is given by

P(M) = (χ, z) =

(
u

(1 + 〈u, u〉α)1/2
,

1

(1 + 〈u, u〉α)1/2

)
. (2.7)

We next project M onto several tangent hyperplanes of Xα × R.

The Hilbert space Xα is provided with the countable orthonormal basis {ϕαn}n∈N0
with ϕαn := A−α1 ϕn.

The next step is to fix a basis vector ±ϕαj and project P(M) onto the vertical hyperplane Cj which is
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tangent to the equator He at (±ϕαj , 0). The projection of P(M) will be defined as the point in Cj which

is colinear with M and P(M). The sufficient condition for such a projection to be well-defined is that the

line through P(M), M and the origin of the unit sphere intersects Cj . If we denote the projected point by

M ′ = (ξ, ζ) ∈ Cj the projection is given explicitly by

(ξ, ζ) =
1

〈u,±ϕαj 〉α
(u, 1) =

1

〈χ,±ϕαj 〉α
(χ, z) (2.8)

and the condition for the projection to be well-defined is

〈u,±ϕαj 〉α > 0 or equivalently 〈χ,±ϕαj 〉α > 0.

The hyperplane corresponding to ±ϕαj is

{(ξ, ζ) ∈ Xα × R|ξj = 〈ξ, ϕαj 〉α = ±1}

and (2.8) is then equivalently given by

ξn = ± ûn
ûj
, for all n ∈ N, ζ = ± 1

ûj
(2.9)

for all u ∈ Xα with jth coordinate nonzero. As pointed out by [BG10], the collection of projections defined

in this way for each j ∈ N0 builds an atlas of H \ {(0, 1)}.

After describing the geometric aspects of the Poincaré projection, we now pass to our differential

equation and study how an equation of the form

ut = N (u) = uxx + bu+ g(x, u, ux) (2.10)

on Xα is transformed by the projection P. The objective is to examine the obtained equation on the

equator. We begin by recalling that λj = j2 − b is the jth eigenvalue of the operator A = −∂xx − bI.

Furthermore, we use the notation

Nζ := ζN (ζ−1), gζ(x, u, ux) := ζg(x, ζ−1u, ζ−1ux),

where Nζ denotes the homothety of N with factor ζ 6= 0. Taking the derivatives of (2.8) with respect to

time, it leads to the following:

ξt = N (u)ζ ∓ uζ〈N (u)ζ, ϕαj 〉α = Nζ(ξ)∓ 〈Nζ(ξ), ϕαj 〉αξ

ζt = ∓〈N (u)ζ, ϕαj 〉αζ = ∓〈Nζ(ξ), ϕαj 〉αζ.

By writing the above equations in spectral projection coordinates, ξn = 〈ξ, ϕαn〉α, and taking advan-
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tage of the eigenvalues λj we get, for each j, the equations below in the half-hyperplanes

{(ξ, ζ) ∈ X1 × R|ξj = 〈ξ, ϕαj 〉α = ±1 and ζ ≥ 0} ⊂ Cj :

(ξn)t = ±(j2 − n2)ξn ∓ 〈gζ(x, ξ, ξx), ϕαj 〉αξn + 〈gζ(x, ξ, ξx), ϕαn〉α (2.11)

ζt = ±(j2 − b)ζ ∓ 〈gζ(x, ξ, ξx), ϕαj 〉αζ.

In the following we want to obtain the projected version of the above equations on the equator of the unit

sphere. For that we aim to examine the equations as ζ goes to zero. Notice that gζ and 〈gζ(x, ξ, ξx), ϕαj 〉α
converge to zero as ζ converges to zero, from the definition of gζ and from the bound we imposed on

g. Then, we get in particular that the equator is in fact invariant, since ζt converges to zero as ζ → 0.

Therefore, (2.11) on the equator has the form

(ξn)t = (j2 − n2)ξn, (2.12)

for all j 6= n. We are finally able to get the equilibrium points on the equator. They are given on Cj by

{(ξ, ζ)|ξj = ±1, ζ = 0 and ξn = 0 ∀n 6= j}.

Or equivalently, with coordinates in the Poincaré hemisphere H, we have

Φ±j = {(χ, z)|χj = ±1, z = 0 and χn = 0 ∀n 6= j}. (2.13)

Because the infinity of Xα is projected onto the equator He and Φ±j are equilibrium points on He, we

define objects Φ∞,±j at infinity as

P(Φ∞,±j ) = Φ±j ,

and refer to these as equilibria at infinity. We also say that the equilibrium at infinity Φ∞,±j is hyperbolic

if the corresponding equilibria at the equator Φ±j is hyperbolic. It is then clear that the restriction b 6= n2

ensures hyperbolicity for all the equilibria at infinity.

As we have noticed when considering the Poincaré projection, the equation ut = uxx+bu+g(x, u, ux)

is transformed in such a way that in spectral projection coordinates it becomes (2.11). The obtained

system, on its turn, converges to (2.12) as ζ → 0, i.e., as the norm of the corresponding function u grows

to infinity. On the other hand, the linear equation ut = uxx + bu with Neumann boundary conditions has

lines of equilibria through the vectors {±ϕj}j∈N. Then, the equilibria at infinity of the linear equation

are projected onto {Φ±j }j∈N. In this way, given a grow-up solution, we know that its normalized orbit

converges in L2 to some equilibria ϕ±j . Then the original orbit grows up to infinity in the direction of ϕ±j
and its Poincaré projection converges to Φ±j .

We can certainly affirm now that the objects Φ∞,±j play the role of equilibria at infinity for the equation

(2.1). We are even able to get a better understanding of such objects, as well as to examine the existence
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of orbits connecting them. But before we pass to a detailed discussion concerning connections between

both bounded and unbounded equilibria, we introduce in the next section some geometric methods

which have already proved to be of paramount relevance regarding the analysis of parabolic PDE’s (see,

for instance, [Ang88, BF88, Mat82]).

17



Chapter 3

Nodal properties and Y-map

We utilize nodal properties functionals, as the zero number and the intersection number, to study the

heteroclinic connections between the equilibria. These functionals of solutions for equation (2.1) possess

important properties which are extremely useful in significantly restricting the possible limits for any tra-

jectory. Another relevant functional, firstly introduced in [BF88] for dissipative semilinear parabolic PDEs,

is called y-map and it provides information on the nodal properties of solutions converging in backwards

to an equilibrium. In this section we shall define and discuss some properties of such functionals.

Given a continuous function u(x) defined on an interval I, the zero number of u, z(u), denotes the

number of strict sign changes of x 7→ u(x). We set the zero number of a constant function to be zero. If

u is a function of t ∈ R and x ∈ I, then the zero number is defined for each t ∈ R as z(u(t, .)). Moreover,

if u and v are continuous functions defined on an interval I, we define the intersection number of the two

functions as the zero number of their difference, z(u− v).

As Xα embeds into C1 for α > 3
4 , the zero number z is well defined on Xα. We thus have the

following result from [Ang88].

Proposition 3.0.1. Let ũ(t, .) ∈ Xα be a non-trivial solution of the linear equation

ũt = ũxx + c(t, x)ũx + d(t, x)ũ,

with Neumann boundary conditions at x = 0, π. Assume c and d are continuously differentiable. Then

(i) z(ũ(t, .)) is finite for any t > 0,

(ii) if (t0, x0), for some t0 > 0 and 0 ≤ x0 ≤ π, is a multiple zero of u, i.e., ũ(t0, x0) = ũx(t0, x0) = 0, then

z(ũ(t1, .)) > z(ũ(t2, .)) for all t1 < t0 < t2.

Although the y-map was firstly introduced for dissipative semilinear parabolic equations with Dirichlet

or mixed boundary conditions, in [BG11b] an extended form of the y-map was designed to deal with

a class of non dissipative equations with Neumann boundary conditions. Throughout this section, we

reproduce the discussion in [BG11b] concerning the y-map with a slight adjustment to include the case

where the nonlinearity also depends on ux.
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Consider the equation

ut = uxx + bu+ g(x, u, ux), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

, (3.1)

where g ∈ G and

G =
{
g(x, u, ux) ∈ C2|g(x, u, ux) is bounded uniformly

}
. (3.2)

We also denote by

F = {f(x, u, ux)|f(x, u, ux) = bu+ g(x, u, ux) and g ∈ G} . (3.3)

Moreover, F and G are both endowed with the weak Whitney topology, [Hir76].

Before we introduce the y-map, we shall first restrict F and G. We impose on f ∈ F and g ∈ G the

following

f(x, 0, 0) = g(x, 0, 0) = 0, for all x ∈ [0, π]

and denote by F0 and G0 the obtained restricted sets. We further notice that, with such a restriction, the

zero number of any solution of equation (3.1) satisfies the crucial property of being nonincreasing as

described in Proposition 3.0.1.

Timely to remark that any equation in the form (3.1) with bounded equilibria can be written in such a

way that the obtained equation in ũ possesses nonlinearities f̃ and g̃ in F0 and G0, respectively. In fact,

given any bounded equilibrium v of equation (3.1), if we introduce the change of variables

ũ = u− v,

then equation (3.1) can be rewritten as

ũt = ũxx + bũ+ g̃(x, ũ, ũx), x ∈ [0, π]

ũx(t, 0) = ũx(t, π) = 0

, (3.4)

where g̃(x, ũ, ũx) = g(x, v + ũ, vx + ũx)− g(x, v, vx) ∈ G0.

In what follows we define the y-map assuming that an eventually necessary change of variables was

already made and we had replaced ũ with u. The y-map is constructed as a continuous mapping

y : {u0 ∈ Xα|z(u0) ≤ n, u0 6= 0} → Sn ⊂ Rn+1,

where Sn denotes the n-dimensional sphere.

Let u0 ∈ Xα \ {0} such that z(u0) ≤ n and let u(t, .) denote the corresponding trajectory. We define

the dropping times tk ∈ [0,∞] as the first time that the zero number z(u(t, .)) drops to or below the value
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k:

tk := inf{t ≥ 0|z(u(t, .)) ≤ k}.

Since the zero number z(u(t, .)) is nonincreasing with t, then

0 = tn ≤ tn−1 ≤ ... ≤ t0.

Also notice that, if we define τk := tanh(tk) ∈ [0, 1] then

0 = τn ≤ τn−1 ≤ ... ≤ τ0.

We further define the sign of each element of the y-map by

ιk :=

signu(t, 0) for some t ∈ (tk, tk−1), if tk < tk−1

0, otherwise.
(3.5)

The coordinates y1, ..., yn of the y-map are defined by

y0 := ι0(1− τ0)
1
2

yk := ιk(τk−1 − τk)
1
2 , 1 ≤ k ≤ n.

It follows that the ιk are well-defined by the next lemma, derived in [BG11b], which states in particular

that u(t, 0) 6= 0 for t ∈ (tk, tk+1). At this point, we should notice that y in fact maps to Sn.

Lemma 3.0.3. Suppose f ∈ F0 and z(u(0, .)) < ∞. Then the set of times t > 0 such that x 7→ u(t, x)

has only simple zeros is open and dense in R+. Further, if we define the dropping times as above and

tk < tk−1, then

u(t, 0) 6= 0 ∀t ∈ (tk, tk−1).

Proof. Throughout this proof we use the previous notation wherein u(t, x) solves equation (3.1) and

ũ(t, x) is a solution of the shifted equation (3.4). We can rewrite the shifted equation (3.4) in the form

ũt = ũxx + c(t, x)ũx + d(t, x)ũ, (3.6)

where

c(t, x) =

1∫
0

gp(x, θu+ (1− θ)v, θux + (1− θ)vx)dθ

and

d(t, x) = b+

1∫
0

gu(x, θu+ (1− θ)v, θux + (1− θ)vx)dθ,

with gu and gp denoting the partial derivative of g(x, u, p) with respect to second and third variable

respectively.
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By Proposition 3.0.1, if u(t, .) is a solution of (3.6) and u(t0, x0) = ux(t0, x0) = 0 for some t0 > 0

and x0 ∈ [0, π], then t0 is a dropping time. If x0 = 0, then for all t ∈ (tk, tk−1) with tk 6= tk−1 we must

have u(t, 0) 6= 0. In fact, if that was not the case then by the Neumann boundary conditions u(t, .) would

have x0 = 0 as a multiple zero and then t would be a dropping time, which is a contradiction since

tk < t < tk−1. Moreover, notice that z(ũ(t, .)) being finite implies that the number of dropping times is

also finite. Therefore, the set of times t > 0 such that x 7→ u(t, x) has only simple zeros is open and

dense in R+.

The y-map provides crucial information on the zero number of solutions in the unstable manifold of

equilibria. It is then important to recover from y(u0), for any given u0, the dropping times tk and signs ιk.

When, for instance, y(u0) = ιek, where ek denotes the k-th unit vector and ι ∈ {1,−1}, we shall have

0 = tn = ... = tk and∞ = tk−1 = ... = t0. From the definition of the y-map, it implies that

z(u0) = k, z(u(t, .)) = k ∀0 < t <∞.

Moreover, ιi = 0 for all i ∈ {1, ..., n} \ {k} and ιk = signu(t, 0) for some t ∈ (0,∞), but we know from

Proposition 3.0.1 that the sign of u(t, 0) cannot change for any non-dropping time and hence

ιk · u(t, 0) > 0

for all 0 < t <∞. With this in mind, our next step is to prove the surjectivity of the y-map.

As one can easily notice, it is significantly simpler to consider f linear when approaching the surjec-

tivity of y. Then one can use a homotopy deforming f from linear to nonlinear. It is appropriate to mention

that the y-map has continuous dependence on f ∈ F0 and u0 ∈ Xα \ {0} with z(u0) ≤ n. The proof of

this result in the slowly non-dissipative case and under Neumann boundary conditions is in [BG10]. A

continuous map is said to be essential if it is not homotopic to a constant map. As a result, if the y-map

y : Σn −→ Sn,

restricted to the n-dimensional sphere Σn in the unstable manifold of the trivial solution, is an essential

mapping then it must be surjective. In fact, if the image of y skips one point in Sn, it will imply a contraction

to a single point which will lead to an homotopy from y to the constant map, contradicting the fact that

y is essential. Also notice that, y being essential implies that y remains surjective under an homotopy,

since the property of being essential is invariant under homotopies to nonlinear f .

Firstly, we take f linear, i.e., f(x, u, ux) = b(x)u where b ∈ C2. We consider the Sturm-Liouville

problem associated to equation (3.1)

uxx + b(x)u = λu

ux(0) = ux(π) = 0

(3.7)

and we denote by λ0 > λ1 > ... and ϕ0, ϕ1, ... the corresponding eigenvalues and eigenfunctions. We
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assume that the ϕi(x) are renormalized to unit length in the X-norm and we also choose the sign

convention ϕi(0) > 0. Assume that λn > 0, i.e., u ≡ 0 has Morse index i(u ≡ 0) ≥ n+ 1. Denoting

Wn = span{ϕ0, ..., ϕn},

it follows from Sturm Liouville theory that z(w) ≤ n for w ∈Wn, [BR78].

Taking into account the above notation and assumption, we have the following result for f linear (see

[BF88] and [BG11b]).

Lemma 3.0.4. The y-map restricted to Σn possesses the property of being essential and, in particular

surjective.

The following result, established in [BF88] and [BG11b], and restated here, proves the surjectivity of

the y-map for general nonlinear f . We obtained Lemma 3.0.4 for the linear case and the next result for

the nonlinear case is obtained by standard homotopy.

Lemma 3.0.5. Consider equation (3.1) with g ∈ G0. Let v be a hyperbolic equilibrium and let Wu denote

the unstable manifold of v with dimension i(v) = n+ 1 > 0. Let Σ ⊂Wu \ {v} be homotopic in Wu \ {v}

to a small sphere in Wu centered in at v of dimension n. Then for any finite sequence

0 = δn ≤ δn−1 ≤ ... ≤ δ0 ≤ ∞

sk ∈ {1,−1}, 0 ≤ k ≤ n,

there exists a point u0 ∈ Σ corresponding to an initial condition u(0, .) ∈ Xα such that the graph t 7→

z(u(t, .)− v(.)) is determined by (δk). More precisely, for any 0 ≤ t <∞,

t ≥ δk ⇔ z(u(t, .)− v(.)) ≤ k

δk < t < δk−1 ⇒ sign(u(t, 0)− v(0)) = sk.

Proof. We first prove that the restricted y-map is essential. We then homotopically deform f from the

corresponding linear form, defining

fϑ(x, u, ux) := bu+ gϑ(x, u, ux) := bu+ ϑg(x, u, ux)+

+(1− ϑ)[gu(x, 0, 0) · u+ gp(x, 0, 0) · ux]

with homotopy parameter 0 ≤ ϑ ≤ 1. As we deform f , the unstable manifold of the equilibrium v ≡ 0

of (3.1) with a specific nonlinearity fϑ is simultaneously deformed. Also notice that the linearization at

v ≡ 0 in the homotopically deformed system is unchanged, as we can see in the following

0 = uxx + bu+ ϑgu(x, 0, 0)u+ (1− ϑ)gu(x, 0, 0)u+
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+ϑgp(x, 0, 0)ux + (1− ϑ)gp(x, 0, 0)ux

= uxx + bu+ gu(x, 0, 0)u+ gp(x, 0, 0)ux.

Moreover, fϑ ∈ F0 depends continuously on ϑ since F0 carries the weak Whitney topology.

Let

Wu
loc(f0) := span{ϕ0, ..., ϕn} ∩ {u0 ∈ X| |u0| < 2ε}

denote the cut-off tangent space Wu(fϑ) at v ≡ 0 for ϑ = 0. Then the local unstable manifolds with

respect to an fϑ are parametrized by diffeomorphisms

ρϑ : Wu
loc(f0) −→Wu

loc(fϑ)

where ρ−1
ϑ is induced by the orthogonal projection onto span{ϕ0, ..., ϕn}. Notice that ρϑ depends contin-

uously on ϑ in the uniform C0 topology.

Fix a sphere

Σn := {u ∈Wu
loc(f0)| |u| = ε}

in Wu
loc(f0) and let yϑ denote the restriction to ρϑ(Σn) of the y-map associated to fϑ. We may assume

Σ = ρ1(Σn), after a homotopy. We thus can define

yϑ := yϑ · ρϑ : Σn −→ Sn,

since z(u) ≤ n on Wu(fϑ), [BF86]. This mapping is continuous and depends continuously on ϑ due to

its continuous dependence on f and u0. Lemma 3.0.4 implies that

y0 = y0 · ρ0 = y0 : Σn −→ Sn

is essential. By homotopy invariance of this property, y1 = y1 · ρ1 = y · ρ1 is essential and hence y is

essential.

The restricted y-map

y : Σ −→ Sn

being essential implies that it is surjective. Then define the vector ς just as the y-map was defined, but

replacing tk with δk and ιk with sk. By the surjectivity of y, there exists an initial data u0 ∈ Σ such

that y(u0) = ς. But as we noticed before, y(u0) uniquely determines the dropping times tk and signs

ιk of the solution u(t, .) corresponding to u0. Thus, it is determined that tk = δk and ιk = sk whenever

δk < δk−1.
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Chapter 4

Heteroclinics to infinity and the

bounded solutions

The aim of this and the next chapter is to give a decomposition of the non-compact global attractor

Af . We will first draw our attention to the grow-up solutions, since these trajectories consist of hetero-

clinic connections to infinity, which will be defined as a connection from a bounded to an unbounded

equilibrium. We will then present a brief discussion on the heteroclinics at infinity and conclude with a

discussion on the set of bounded solutions of equation (2.1). However an exact criterion to solve the

problem of heteroclinic connections among the bounded equilibria will be presented only in the next

chapter.

4.1 Asymptotics of grow-up solutions

As we have noticed before, the non-compact global attractor is comprised of a bounded and an

unbounded subset. The former, henceforth denoted by Acf , is composed of the set of solutions in Af
which remain bounded in the state space Xα for t ≥ 0. Given that, we may apply the standard theory

for dissipative equations and conclude that the bounded subset Acf is entirely composed of bounded

equilibria and orbits connecting them (see [Hal88]).

We can then affirm that the global attractor is defined as

Af = Acf ∪ A∞f ,

where Acf is a compact set contained in some sufficiently large ball B ⊂ Xα, and A∞f is the unbounded

part of Af which will be next described.

We turn our attention to the unbounded subset A∞f of the non-compact global attractor. This means

that the grow-up solutions of (2.1) are now the center of our investigation. We have learned previously

that the solutions of equation (2.1) whose norm grows to infinity with time converge to some objects

at infinity, and these objects consist of infinite projections of the eigenfunctions of the Laplacian with
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Neumann boundary conditions.

Later we intend to determine the bounded equilibria connecting to infinity as well as the exact limit

of the grow-up solutions. In order to do that, it would be crucial to be able to work in higher norms that

the L2-norm. This is due to the fact that the L2-norm is insufficient for determining the limiting object

at infinity and the y-map alone does not prohibit the zero number to drop at ∞. As it was observed in

[BG10], despite the fact that the influence of the bounded nonlinearity g must decrease as the norm of

u(t, .) grows to infinity, we are unable to study the limit in the Xα norm.

To obtain the limits in C1, we appeal to the theory of inertial manifolds. For slowly non-dissipative

equations in the form (2.1) with g(x, u, ux) ≡ g(u), it was proved in [BG11a] the existence of a finite

dimensional, unbounded, exponentially attracting and positively invariant manifold, i.e., an inertial mani-

fold, provided a spectral gap condition is satisfied. In the setting of equation (2.1), this means that there

exists an inertial manifoldM which is the graph of a function

Ψ : PNX
α −→ QNX

α

which is Lipschitz with values in Xα ⊂ C1, with α > 3
4 and N sufficiently large so that

N > max{4L+ 1

2
,
√
b},

where L denotes the Lipschitz coefficient of the Nemitskii operator G of g,

G : Xα −→ X,

PN : X → X is the orthogonal projection onto {ϕ0, ϕ0, ..., ϕN} and QN = I − PN is the projection onto

the orthogonal complement of PNX (see [BG11b]).

However, if the nonlinearity g in fact exhibits dependence on ux, we obtain a spectral gap condition

implying in a more restrictive sufficient condition for the existence ofM. This will be next stated precisely

and the result follows from the following lemma, obtained in [Mik91] and presented here in terms of our

setting. It is worth noticing that we want to consider nonlinearities in the form g(x, u, ux) which are

globally Lipschitz in the second and third variables, that is, that there exist constants L1 and L2 such

that

|g(x, u1, p1)− g(x, u2, p2)| ≤ L1|u1 − u2|+ L2|p1 − p2|.

Lemma 4.1.1. Under the following conditions:

(i) G : Xα −→ X is continuous and for some bounded operators B1, B2 : Xα −→ X we have that

‖G(u1)−G(u2)‖ ≤ ‖B1(u1 − u2)‖+ ‖B2(u1 − u2)‖,

for all u1, u2 ∈ Xα and α ∈ [0, 1),

(ii) for some λ ∈ R, with λ > 0, λ+ iω is in the resolvent of A for all ω ∈ R, (iii) for λ as before, we have
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that

sup
ω∈R
‖B1(A− λ− iω)−1‖+ sup

ω∈R
‖B2(A− λ− iω)−1‖ < 1,

there exists a N -dimensional inertial manifold M for equation (2.1). Moreover, M is the graph of a

Lipschitz function from X to Xα.

We thus have the following result where the conditions on the nonlinearity g are specified.

Lemma 4.1.2. Consider equation (2.1) with g satisfying the inequality

|g(x, u1, p1)− g(x, u2, p2)| ≤ L1|u1 − u2|+ L2|p1 − p2| (4.1)

for some L1 > 0 and for L2 < 1. Then there exists an inertial manifold M for equation (2.1) and M is

Lipschitz in C1.

Proof. We first recall that (2.1) can be written in the form

ut = Au+G(u),

where A = ∂xx + bI and G is the Nemitskii operator of g. Notice that the operators

B1u := L1u and B2u := L2ux

are bounded from Xα into X and, if u, v ∈ Xα, then

‖G(u1)−G(u2)‖ ≤ ‖B1(u1 − u2)‖+ ‖B2(u1 − u2)‖,

by (4.1). Then condition (i) in the previous lemma is satisfied. Moreover, the eigenvalues of A with

Neumann boundary conditions are given by λj = j2 − b, j ∈ {0, 1, ...} and, if we fix N ∈ N, then λ+ iω

is in the resolvent of A for all ω ∈ R if λ 6= λj . In particular, we can consider

λ :=
λN + λN+1

2
.

Condition (ii) in Lemma 4.1.1 is then verified.

We shall next calculate bounds for

S1 := sup
ω∈R
‖B1(A− λ− iω)−1‖

and

S2 := sup
ω∈R
‖B2(A− λ− iω)−1‖.

The operator (A− λ− iω)−1 has the following spectral representation

∞∑
j=0

1

λj − λ− iω
Ej ,
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where Ej is the projection on the jth eigenfunction, i.e.,

Ej(u)(x) = 〈u, ϕj〉L2ϕj(x).

We thus have

S1 = L1 sup
ω∈R
‖(A− λ− iω)−1‖

= L1 sup
ω∈R
‖
∞∑
j=0

1

λj − λ− iω
Ej‖

= L1‖
∞∑
j=0

1

λj − λ
Ej‖

≤ L1 max{| 1

λN − λ
|, | 1

λN+1 − λ
|}‖

∞∑
j=0

Ej‖

≤ L1 max{| 1

λN − λ
|, | 1

λN+1 − λ
|}

=
L1

N + 1/2
.

We similarly obtain for S2 the following

S2 = L2 sup
ω∈R
‖∂x(A− λ− iω)−1‖

≤ L2 sup
ω∈R
‖(A+ b)1/2(A− λ− iω)−1‖

= L2 sup
ω∈R
‖
∞∑
j=0

(λj + b)1/2

λj − λ− iω
Ej‖

= L2‖
∞∑
j=0

j

λj − λ
Ej‖

≤ L2 max{| N

λN − λ
|, | N + 1

λN+1 − λ
|}‖

∞∑
j=0

Ej‖

≤ L2 max{| N

λN − λ
|, | N + 1

λN+1 − λ
|}

= L2
N + 1

N + 1/2
.

We thus conclude that the condition (iii) in Lemma 4.1.1 is satisfied as long as

L1

N + 1/2
+ L2

N + 1

N + 1/2
< 1.

Therefore, if L2 < 1 and N is sufficiently large then we are guaranteed the existence of a N -dimensional

inertial manifold for equation (2.1).

The above result entails a restriction on the nonlinearity g that we must consider from now on, as we
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will strongly rely on the existence ofM. We will henceforth consider the equation

ut = uxx + bu+ g(x, u, ux), x ∈ [0, π] (4.2)

ux(t, 0) = ux(t, π) = 0

b > 0, g ∈ C2, g uniformly bounded,

and g : R3 → R also satisfies

|g(x, u1, p1)− g(x, u2, p2)| ≤ L1|u1 − u2|+ L2|p1 − p2|,

for some L1 > 0 and for L2 < 1.

In view ofM being forward invariant and exponentially attracting, it follows that it contains all invari-

ant sets, including all the grow-up solutions whose limits we aim to establish. In particular, Af cannot

be bounded since it must contain at least one unbounded solution. Moreover, the non-compact global

attractor must be contained in the obtained non-compact inertial manifold.

The next lemma determines the limiting object at infinity by just requiring information on the zero

number of the grow-up solution. It essentially states that a grow-up trajectory with shifted zero number k

for 0 ≤ t <∞ converges to an object at infinity with zero number k.

Lemma 4.1.3. Let v be a hyperbolic equilibrium for equation (4.2) and u(t, .) a grow-up solution in the

unstable manifold of v, Wu(v), with

z(u(t, .)− v(.)) = k

ι = sign(u(t, 0)− v(0)),

for 0 ≤ t <∞. Then

lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕιk‖C1 = 0,

where ϕιk = ιϕk and ι ∈ {−1,+1}.

Proof. Recalling the existence of an inertial manifoldM = graph[Ψ] where

Ψ : PND(A) −→ QND(A)

is a C1 Lipschitz mapping, we may decompose u(t, .) as follows:

u(t, .) = p(t, .) + q(t, .)

where

p(t, .) =

N∑
i=0

〈u(t, .), ϕ(.)〉L2 ∈ PND(A)

q(t, .) = Ψ(p(t, .)) ∈ QND(A).

We know from Lemma 2.3.1 that all modes ûj(t) with j >
√
b remain bounded and also, from Lemma
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2.3.2, it follows that

lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕιi‖ = 0

for some integer i. Then i <
√
b and, moreover, the nonincreasing of the zero number implies that i ≤ k.

Notice however that, if one proves that the rescaled trajectory u(t,.)
‖u(t,.)‖ also converges in the C1-norm

to ϕιi, then both the solution u(t, .) and the eigenfunction ϕιi must have the same zero number for all t

sufficiently large, say t ≥ τ . Here τ > 0 is such that the grow-up solution and the shifted grow-up solution

share the same zero number. Therefore, once we prove that u(t,.)
‖u(t,.)‖ converges to ϕιi in the C1-norm, then

we must have i = k. We focus now on proving the C1 convergence, which will be done relying on the

fact that PND(A) has finite dimension and on the properties of Ψ.

The mapping Ψ is uniformly bounded in C1, thus we get that, as p(t, .) grows to infinity along with

u(t, .), q(t, .) remains bounded. As a result, we have that

lim
t→∞

u(t, .)

‖u(t, .)‖
= lim
t→∞

p(t, .)

‖u(t, .)‖
= lim
t→∞

p(t, .)

‖p(t, .)‖
= lim
t→∞

u(t, .)

‖p(t, .)‖
.

Therefore,

lim
t→∞

‖ u(t, .)

‖p(t, .)‖
− ϕιi‖C1 = lim

t→∞
‖p(t, .) + q(t, .)

‖p(t, .)‖
− ϕιi‖C1

≤ lim
t→∞

‖ p(t, .)

‖p(t, .)‖
− ϕιi‖C1 + lim

t→∞
‖ q(t, .)

‖p(t, .)‖
‖C1

= lim
t→∞

‖ p(t, .)

‖p(t, .)‖
− ϕιi‖C1 + lim

t→∞

‖Ψ(p(t, .))‖C1

‖p(t, .)‖

= lim
t→∞

‖ p(t, .)

‖p(t, .)‖
− ϕιi‖C1 .

Since p(t, .) and ϕιi(.) are both in the finite-dimensional subspace PND(A) and due to norm equiva-

lence in finite dimension it follows that

lim
t→∞

‖ u(t, .)

‖p(t, .)‖
− ϕιi‖C1 ≤ lim

t→∞
‖ p(t, .)

‖p(t, .)‖
− ϕιi‖C1

≤ lim
t→∞

C‖ p(t, .)

‖p(t, .)‖
− ϕιi‖ = 0,

since

lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕιi‖ = 0 =⇒ lim

t→∞
‖ p(t, .)

‖p(t, .)‖
− ϕιi‖ = 0.

We then conclude that

lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕιi‖C1 = 0.

Finally, as we have mentioned before, the above equality implies that i = k and thus

lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕιk‖C1 = 0.
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4.2 Transfinite and intra-infinite heteroclinics

In order to approach the connections to infinity, we use the same method as that applied for a class

of dissipative equations in [FR96] and for slowly non-dissipative equations in the form (4.2) with nonlin-

earities g(x, u, ux) ≡ g(u) in [BG11c]. The method consists of two steps: firstly one provides for any two

distinct equilibria v and w sufficient conditions to prevent connections from v to w and then it is shown

that connections which are not prevented in fact do exist.

At this point it is worth noticing that it does not exist a grow-up solution whose normalized trajectory

converges to ϕ±j if j >
√
b. This follows from Lemmas 2.3.1 and 2.3.2. As a consequence, the Poincaré

projection of any grow-up solution can only converge to Φ±j if j ∈ {0, 1, ..., [
√
b]}.

Let Ecf denote the set of equilibrium points of (2.1). Given v ∈ Ecf , we say that v has a heteroclinic

connection to the object at infinity Φ∞ ∈ {Φ∞,±j : j = 0, ..., [
√
b]} if there exists a grow-up solution u(t, .)

satisfying

lim
t→−∞

u(t, .) = v and lim
t→∞

‖ u(t, .)

‖u(t, .)‖
− ϕ(.)‖C1 = 0,

where ϕ ∈ {ϕ±j }j∈N and ϕ corresponds to the equilibria Φ ∈ {Φ±j }j∈N on the sphere at infinity which is

the projection of Φ∞.

Taking into account the previous crucial results, we may now continue pursuing a complete decompo-

sition of the non-compact global attractorAf . The next lemma determines when heteroclinic connections

to infinity are blocked, i.e., when connections to an object at infinity are prevented. A necessary informa-

tion to state the next result is that the eigenfunctions {±ϕj}j∈N having only simple zeros implies that the

zero number of the objects at infinity {Φ±j }j∈N are consistent, in the sense that the zero number of the

corresponding heteroclinic orbits do not drop at t =∞.

We define the zero number of Φ∞,±j as

z(Φ∞,±j ) = z(ϕ±j ) = j (4.3)

and

z(Φ∞,±j − v) = z(Φ∞,±j ), for all v ∈ Ecf . (4.4)

Also, we let

sign(Φ∞,±j (0)) = sign(ϕ±j (0)) = ±1 (4.5)

and

sign(Φ∞,±j (0)− v(0)) = sign(Φ∞,±j (0)), for all v ∈ Ecf . (4.6)

Under the above setting, we denote

Φ∞,−j (0) < v(0) < Φ∞,+j (0), for all v ∈ Ecf . (4.7)

We then introduce the next definition, following the notion of adjacency introduced first in [Wol02].

Definition 4.2.1. Let v ∈ Ecf and Φ∞ ∈ {Φ∞,±j : j = 0, ..., [
√
b]} with z(Φ∞ − v) = k, for some k ∈ N. We
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then say that v and Φ∞ are k-adjacent if there is no w ∈ Ecf with z(Φ∞ − w) = z(v − w) = k and

(i) v(0) < w(0) < Φ∞(0), if v(0) < Φ∞(0)

(ii) Φ∞(0) < w(0) < v(0), if Φ∞(0) < v(0).

Then, adapting the result of Infinite Blocking in [BG11c] to adjacency notion, we have the following.

Lemma 4.2.1 (Infinite Blocking Lemma). Let v ∈ Ecf be a hyperbolic equilibrium and Φ∞ ∈ {Φ∞,±j : j =

0, ..., [
√
b]} with z(Φ∞ − v) = k. If v and Φ∞ are not k-adjacent, then v does not have any heteroclinic

connection to the object Φ∞ at infinity.

Proof. Assume that there exists a grow-up solution u(t, .) connecting v to Φ∞. Since v and Φ∞ are not

k-adjacent, there exists w ∈ Ecf such that

z(Φ∞ − w) = z(v − w) = k (4.8)

and

Φ∞(0) < w(0) < v(0) or v(0) < w(0) < Φ∞(0). (4.9)

If v connects to Φ∞ via u(t, .) then ũ = u− w is a trajectory from v − w to Φ∞ − w = Φ∞ satisfying

ũt = ũxx + bũ+ g̃(x, ũ, ũx)

with g̃(x, ũ, ũx) := g(x,w+ ũ, wx + ũx)− g(x,w,wx). By Lemma 4.1.3 we may conclude that there exists

T > 0 such that z(u(T, .)− w(.)) = k. Since (4.9) holds, the value of w(0) lies between u(T, 0) and v(0),

increasing the value of T if necessary.

Thus

u(T, 0)− w(0) < 0 < v(0)− w(0) or v(0)− w(0) < 0 < u(T, 0)− w(0).

We have that z(v − w) ≥ z(u(T, .)− w) by the nonincreasing of z(ũ(t, .)). On the other hand, by (4.8)

z(v − w) = k = z(u(T, .)− w).

However, since v(0) − w(0) and u(T, .) − w(0) have opposite signs and ũ(t, 0) 6= 0 for all non-dropping

times, we must have

z(v − w) > z(u(T, .)− w)

which is a contradiction.

Notice that the previous result ensures that the existence of an equilibrium satisfying appropriate

conditions may block heteroclinic connections to a class of equilibria at infinity. If there exists a bounded

equilibrium w of equation (4.2) such that z(v − w) = k then w blocks v from connecting to all objects

Φ∞ ∈ {Φ∞,±j : j = 0, ..., [
√
b]} at infinity as long as z(Φ∞) = k and

Φ∞(0) < w(0) < v(0) or v(0) < w(0) < Φ∞(0).
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The next lemma, on its turn, ensures the existence of connections whenever they are not blocked.

Lemma 4.2.2 (Infinite Liberalism Lemma). Let v ∈ Ecf be a hyperbolic equilibrium and Φ∞ ∈ {Φ∞,±j :

j = 0, ..., [
√
b]} with z(Φ∞ − v) = k. If v and Φ∞ are k-adjacent, then v has a heteroclinic connection to

the object Φ∞ at infinity.

Proof. We define ι := sign(Φ∞(0)). Then choose

sk := ι and δj :=

0, j ≥ k

∞, j < k

and apply Lemma 3.0.5 to obtain an initial condition u0 ∈ Wu(v) such that the corresponding solution

u(t, .) satisfies

z(u(t, .)− v(.)) = k

ι = sign(u(t, 0)− v(0))

for all 0 ≤ t <∞. At first, we show that there does not exist any bounded equilibrium w of (4.2) such that

u(t, .) converges to w as t goes to infinity.

Let us assume that lim
t→∞

u(t, .) = w for some bounded equilibrium w. Then, as the zero number of

the shifted solution u− v is nonincreasing

lim
t→∞

z(u(t, .)− v(.)) = z(w − v)

must be less or equal to k. Suppose z(w − v) < k. It would imply that the zero number of the shifted

solution drops at infinity. We now show why this is not possible. We are assuming that lim
t→∞

u(t, .) = w,

then

lim
t→∞

(u(t, .)− v(.)) = w − v =: w̃.

Since w̃ 6≡ 0, it follows that w̃ has only simple zeros, as it solves the ODE

0 = ũxx + b(ũ) + g̃(x, ũ, ũx).

Therefore, any solution in a sufficiently small neighborhood of w̃ must also have only simple zeros. It

implies that z(u(t, .)− v(.)) is constant over some small neighborhood of t =∞ and, thus,

z(u(t, .)− v(.)) = z(w̃(.)) = z(w − v) < k

in this neighborhood of t = ∞. However, if this is the case, then z(u(t, .) − v(.)) would have to drop at

some finite time as u(t, .) converges to w, which is a contradiction.

Therefore, if v connects to w via u(t, .) then z(w − v) = k. Since ι = sign(u(t, 0) − v(0)) for all

0 ≤ t < ∞, the sign of u(t, 0) − v(0) remains always positive or negative in forward time. Then, one
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should have

sign(w(0)− v(0)) = ι.

However, there does not exist any bounded equilibrium w fulfilling these conditions, i.e,

z(w − v) = k and sign(w(0)− v(0)) = ι = sign(Φ∞(0)− w(0)),

since v and Φ∞ are k-adjacent.

Since u(t, .) cannot converge to any bounded equilibrium, we conclude by Lemma 2.2.1 that

lim
t→∞

‖u(t, .)‖ =∞

and thus u(t, .) is a grow-up solution. Finally, it was proven in Lemma 4.1.3 that in this case the nor-

malized trajectory u(t,.)
‖u(t,.)‖ converges in the C1-norm to the eigenfunction ϕιk. Which means that v has a

heteroclinic connection to the object Φ∞,ιk at infinity. We then notice that z(Φ∞) = z(Φ∞ − v) = k and

sign(Φ∞(0)) = ι. It then follows from (4.3) and (4.5) that Φ∞ = Φ∞,ιk .

The former discussion provides us with a criterion to determine the existence of heteroclinics to the

equilibria at infinity. We have then discussed the transfinite heteroclinic structure ofAf , i.e., a description

of the connections between the bounded subset Acf and a subset at infinity containing a finite number of

equilibria at infinity. It remains to describe the connecting orbit structure within infinity. This has already

been done in [Hel11], where there is a detailed discussion regarding the equilibria at infinity for equation

(2.1).

To obtain the connections between the equilibria at infinity Φ∞,±j we turn to equation (2.12). We first

study the stability of the projections of these equilibria. If j = 0, then

(ξn)t = −n2ξn, for n 6= 0,

and therefore the equilibria Φ±0 are stable. If j ≥ 1 then

j2 − n2 > 0, for 0 ≤ n ≤ j − 1

j2 − n2 < 0, for n ≥ j + 1.

In this case, the equilibria Φ±j on the sphere at infinity have j unstable directions and infinitely many

stable directions. Moreover, as proved in [Hel11], for each j ∈ N0, ι ∈ {+1,−1} and n 6= j the ξn-axis is

invariant and consists of heteroclinics from

Φιj to Φ±n if n ≤ j − 1, and

Φ±n to Φιj if n ≥ j + 1.

We say that there exists an orbit connecting the equilibria at infinity Φ∞,ιi and Φ∞,±j if the correspond-
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ing equilibria Φιi and Φ±j at the Poincaré equator He, or sphere at infinity, are connected. Therefore the

intra-infinite heteroclinics are namely the following:

Φ∞,ιj connects to Φ∞±i , for each ι ∈ {−1, 1} and all i ≤ j − 1. (4.10)

4.3 Bounded equilibria

For the characterization of the non-compact global attractor Af it remains to obtain the heteroclinic

connections between the bounded equilibria. We then present an important discussion on such equilib-

ria, obtaining results that are crucial for the next step which will be the description of the connections.

The set of bounded equilibria Ecf = {v1, ..., vn} of equation (2.1) is determined by the following

second-order ODE

uxx + bu+ g(x, u, ux) = 0, x ∈ (0, π) (4.11)

ux = 0, x = 0, π.

We then associate with (4.11) the following initial value problem

ux = v

vx = −bu− g(x, u, v), (4.12)

u(0) = u0, v(0) = 0

We shall then remark that the set of solutions

u = u(x, u0), v = v(x, u0)

of (4.12) defines the two-dimensional manifold in [0, π]× R2

L = {(x, u, v)| u = u(x, u0), v = v(x, u0), u solves (4.12), u0 ∈ R, 0 ≤ x ≤ π}.

Under the setting of equation (2.1), all trajectories of the initial value problem (4.12) are guaranteed to

exist for all x ∈ [0, π]. Also, let the section curve of L at x = π be denoted by γ, i.e.,

γ := {(x, u(x, u0), v(x, u0)| u0 ∈ R, x = π}. (4.13)

One should then notice that there is a one-to-one correspondence between the equilibria of (2.1) and

the intersection points of γ with the plane v = 0 (see [FR91, Roc91]).

We next take advantage of the just defined manifold L and obtain from its analysis that the equation

(2.1) has at least one stationary solution. The assertion is already known for dissipative equations in the

form (1.1). It follows from a series of results derived in [Zel68, Mat78, HM82]. In which concerns non-
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dissipative equations in the form (1.1), we know from [Mat79, Remark 4.6] that no satisfactory result was

obtained except for the case f(x, u, ux) = f(u). Also, this state of affairs does not seem to have changed

much in the last 30 years. Then, in the next lemma we address this matter and consider non-dissipative

equations in the general form (2.1), under the nondegeneracy condition b 6= n2.

Lemma 4.3.1. If the dynamical system generated by equation (2.1) is

(i) dissipative with b < 0, or

(ii) slowly non-dissipative with b > 0 and b 6= n2 for n ∈ N,

then the set of equilibria Ecf is not empty.

Proof. To verify the non-emptiness of Ecf we will prove that γ intersects the plane v = 0. We begin with

the slowly non-dissipative case (ii). Rewriting (4.12) in the form

ux =
√
bw,

wx = −
√
bu− 1√

b
g(x, u,

√
bw) (4.14)

u(0) = u0, w(0) = 0.

We then introduce in (4.14) the change to polar coordinates:

u = ρ cos θ, w = −ρ sin θ, (4.15)

with ρ(0, u0) = u0 and θ(0, u0) = 0. From (4.14) and (4.15), we obtain for ρ 6= 0 that

ρx =
2uux + 2wwx

2ρ

=
1√
b
g(x, ρ cos θ,−

√
bρ sin θ) sin θ. (4.16)

Moreover, from (4.14) and (4.15) we get

−
√
bρ sin θ = ρx cos θ − ρθx sin θ

−
√
bρ cos θ − 1√

b
g(x, ρ cos θ,−

√
bρ sin θ) = −ρx sin θ − ρθx cos θ (4.17)

Thus (4.17) implies

−ρθx(sin2 θ + cos2 θ) = −
√
bρ(sin2 θ + cos2 θ)− 1√

b
g(x, ρ cos θ,−

√
bρ sin θ) cos θ.

One thus obtains

θx =
√
b+

1√
bρ
g(x, ρ cos θ,−

√
bρ sin θ) cos θ. (4.18)
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The function g is uniformly bounded with |g(x, u, p)| < Γ for all x, u and p. We thus have that

lim
ρ→∞

1√
bρ
g(x, ρ cos θ,−

√
bρ sin θ) cos θ = 0,

i.e., for all δ > 0 there exists M̂ > 0 large enough such that |ρ(x)| > M̂ implies∣∣∣∣ 1√
bρ
g(x, ρ cos θ,−

√
bρ sin θ) cos θ

∣∣∣∣ < δ.

Moreover, we have ∣∣∣∣∣∣
x∫

0

ρx(x)dx

∣∣∣∣∣∣ ≤
x∫

0

|ρx(x)| dx

=

x∫
0

∣∣∣∣ 1√
b
g(x, ρ cos θ,−

√
bρ sin θ) sin θ

∣∣∣∣ dx
≤ 1√

b
Γx ≤ C,

for some constant C, which implies that

|ρ(x)− ρ(0)| =

∣∣∣∣∣∣
x∫

0

ρx(x)dx

∣∣∣∣∣∣ ≤ C, ∀x ∈ [0, π]. (4.19)

From (4.19) we conclude that, for |ρ(0)| sufficiently large, |ρ(x)| > M̂ uniformly on [0, π].

Therefore, if |ρ(0)| is sufficiently large, we have∣∣∣∣ 1√
bρ
g(x, ρ cos θ,−

√
bρ sin θ) cos θ

∣∣∣∣ < δ

and thus, from (4.18) we have∣∣∣∣∣∣
π∫

0

(θx −
√
b)dx

∣∣∣∣∣∣ ≤
π∫

0

∣∣∣θx −√b∣∣∣ dx
=

π∫
0

∣∣∣∣ 1√
bρ
g(x, ρ cos θ,−

√
bρ sin θ) cos θ

∣∣∣∣ dx
< δπ.

Since θ(0) = 0, we obtain ∣∣∣θ(π)−
√
bπ
∣∣∣ < δπ.

Denoting ε = δπ, we finally obtain that for all ε > 0 there exists M > 0 such that |ρ(0)| > M implies

∣∣∣θ(π)−
√
bπ
∣∣∣ < ε. (4.20)
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As |ρ(π)| grows with |ρ(0)| = |u0| and b 6= n2 for n ∈ N, we conclude from (4.20) that for both ρ(0) > M

and ρ(0) < −M , the curve γ is asymptotic to a straight line going from one semiplane of {(x, u, v) : x =

π} to the other. Therefore, the curve γ must intersect the plane v = 0, which implies that Ecf is not empty.

For an idea of the proof of item (i) we refer the reader to [Zel68, Mat78, HM82].

The nondegeneracy condition b 6= n2 in the previous lemma corresponds to the hyperbolicity of the

equilibria at infinity, as we can see in [Hel11] and [BG11c]. This concept, as it is indicated in Section

2.3, relates to the projected equation obtained on the equator He from which we obtain the equilibria at

infinity.

The previous lemma allows us to assume without loss of generality that

f(x, u, ux) = bu+ g(x, u, ux) ∈ F0,

i.e., f(x, 0, 0) = 0. Indeed, the set of equilibria Ecf being not empty allows us to introduce the change of

variables ũ = u− w for w ∈ Ecf , obtaining (3.4) from equation (3.1).

Let Ecf = {v1, ..., vn} denote the set of equilibria of equation (2.1) ordered by their value at x = 0. We

want now to determine the Morse index of v1 and vn by analysing the curve γ. We denote by θ = θ(x, u0)

the solution of the differential equation

θx =
√
b+

1√
b
q(x, u0) cos2 θ − r(x, u0) cos θ sin θ, θ(0, u0) = 0 (4.21)

where q(x, u0) = gu(x, u(x, u0), v(x, u0)) and r(x, u0) = gp(x, u(x, u0), v(x, u0)). We also denote by

s(u0) := (π, u(π, u0), v(π, u0)) the point in the section curve γ corresponding to the initial condition u0.

Then θ(π, u0) can also be read as the angle swept clockwise by the unit vector tangent to γ at s(u0) as

s(u0) describes γ, with u0 going from −∞ to ∞ (see [Roc85, Roc91]). Finally, let ul0 be the initial value

satisfying ul0 = vl(0) for the equilibrium vl. Then, the Morse index of vl is given by

i(vl) = 1 + [θ(π, ul0)/π],

[Roc85, Roc91].

Lemma 4.3.2. Assume that all equilibria of (2.1) are hyperbolic. Then the Morse index of the minimal

and maximal equilibria, v1 and vn, are given by

i(v1) = i(vn) = 1 + [
√
b]. (4.22)

Proof. The Morse index of an equilibrium vl is given by

i(vl) = 1 + [θ(π, ul0)/π], ∀ l = 1, ..., n,
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where ul0 = vl(0). The equilibria v1 and vn being hyperbolic implies that

θ(π, u1
0), θ(π, un0 ) 6= kπ, ∀ k ∈ N

(see [Roc85]). Let θ(π, u0) be the angle swept clockwise by the position vector (u(x, u0), v(x, u0)) as x

runs from x = 0 to x = π. It follows from the previous lemma that θ(x, u0) satisfies

θx =
√
b+

1

ρ
√
b
g(x, ρ cos θ,−ρ

√
b sin θ) cos θ

and

lim
|u0|→∞

θ(π, u0) =
√
bπ

(see (4.18) and (4.20)).

We affirm that

lim
|u0|→∞

|θ(π, u0)− θ(π, u0)| = 0. (4.23)

To see this, we first modify the nonlinearity g as follows. We let C1 > 0 be such that

|v1(x)|, |vn(x)| ≤ C1, ∀ x ∈ [0, π].

Then, for u satisfying

|u(t, x)| ≤ C1

uniformly in (t, x), we have that

|ux(t, x)| ≤ C2

uniformly in (t, x) for some constant C2. This follows from the fact that Xα ⊂ C1 for α > 3/4. We thus

define

g̃(x, u, p) =

g(x, u, p), if |u| ≤ C1, |p| ≤ C2

0, for (u, p) outside D,
(4.24)

where D ⊂ R2 is an open neighborhood of the set

{(u, p) : |u| ≤ C1, |p| ≤ C2}.

One should then verify that (4.24) does not alter the bounded subset Acf ⊂ Af . For that, we notice

the following. The dynamical system generated by (2.1) with g replaced by g̃ is non-dissipative and it

possesses a non-compact global attractor

Ãf = Ãcf ∪ Ã∞f

where Ãcf is a bounded subset of Ãf . Moreover, Acf is contained in a sufficiently large ball B ⊂ Xα.
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Since g = g̃ on B, we obtain

Ãcf ⊂ B,

by taking larger C2 and C1 if necessary. Therefore, Ãcf = Acf .

In what follows we consider (2.1) with g replaced by g̃. We want now to obtain the limit (4.23), i.e., we

have to prove that for any ε > 0 there exists M > 0 such that

|θ(x, u0)− θ(x, u0)| < ε,

if |u0| > M , for x = π. For that we first let x = 0. We obtain θ(0, u0) = θ(0, u0) = 0 and

cos θ(0, u0) = cos θ(0, u0) = 1.

Consequently, there exists s1 > 0 sufficiently small such that

| cos θ(x, u0)− cos θ(x, u0)| < ε0, ∀ 0 < x < s1.

We thus have

| cos θ(x, u0)| ≤ | cos θ(x, u0)− cos θ(x, u0)|+ | cos θ(x, u0)| < ε0 + ε

if 0 < x < s1 and | cos θ(x, u0)| < ε.

We notice that the solution u is given by

u(x, u0) = ρ(x, u0) cos θ(x, u0).

Since lim
|u0|→∞

ρ(x, u0) =∞ then for x ∈ [0, π] satisfying

| cos θ(x, u0)| < ε (4.25)

we have (u(x, u0), ux(x, u0)) ∈ D, otherwise (u(x, u0), ux(x, u0)) /∈ D. Therefore, if (4.25) holds then

|θx(x, u0)| ≤
√
b+ ε

if x ∈ (0, s1), since q(x, u0) and r(x, u0) are bounded. If x does not satisfy (4.25) then

q(x, u0) ≡ r(x, u0) ≡ 0

and therefore θx(x, u0) ≡
√
b. We thus obtain the bound
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|θ(s1, u0)− θ(s1, u0)| ≤
s1∫

0

|θx(x, u0)− θx(x, u0)|dx

≤
s1∫

0

| cos θ(x, u0)|| 1√
b
q cos θ(x, u0)− r sin θ(x, u0)|+ |θx(x, u0)|dx

≤ (ε0 + ε+ δ)π =: ε1,

which implies that

| cos θ(s1, u0)− cos θ(s1, u0)| ≤ ε1.

Then there exists s2 > s1 such that

| cos θ(s1, u0)− cos θ(s1, u0)| ≤ ε1, ∀ s1 < x < s2

and consequently

| cos θ(x, u0)| ≤ | cos θ(x, u0)− cos θ(x, u0)|+ | cos θ(x, u0)|

≤ ε1 + ε

if x ∈ (s1, s2) and | cos θ(x, u0)| < ε. By noticing that, if x ∈ (s1, s2) is such that (4.25) does not hold then

θx(x, u0) =
√
b, we obtain as before the following bound

|θ(s2, u0)− θ(s2, u0)| ≤
s2∫

0

|θx(x, u0)− θx(x, u0)|dx

≤ (ε1 + ε+ δ)π =: ε2.

Then

| cos θ(s2, u0)− cos θ(s2, u0)| ≤ ε2

and we obtain the existence of s3 > s2 such that

| cos θ(x, u0)− cos θ(x, u0)| ≤ ε2, ∀ s2 < x < s3.

We proceed with the argument as before until obtaining sn = π, concluding that for |u0| sufficiently large

|θ(π, u0)− θ(π, u0)| ≤ εn. (4.26)

Inequalities (4.26) and (4.20) imply that

lim
|u0|→∞

|θ(π, u0)−
√
bπ| = 0.
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We want finally to conclude that [θ(π, un0 )/π] = [
√
b]. Then, let γn be the arc described by

{(π, u(π, u0), ux(π, u0)) : un0 ≤ u0 ≤ ρ}

along γ = γ(π), γn be the line segment

{(π, u, 0) : un0 (π) < u < u(π, ρ)}

and

γ = {(π, u(π, ρ), p) : 0 ≤ p < ux(π, p)}.

We then define

Γn = γn ∪ γn ∪ γn.

Since vn is the maximal equilibrium, γn ∩ γn = ∅. Moreover, γn ∩ γn = ∅ by (4.20). We have then

constructed a closed curve Γn which is piecewise differentiable and simple, i.e., a Jordan curve. It the

follows from the turning tangent theorem applied to Γn that

[
θ(π, un0 )− θ(π, ρ)

π

]
= 0.

Since θ(π, un0 )/π /∈ N and [θ(π, un0 )/π] = [θ(π, ρ)/π], then

[θ(π, ρ)/π] < θ(π, ρ)/π.

Therefore, since we can take ρ sufficiently large such that θ(π, ρ)/π is sufficiently close to
√
b, we obtain

[θ(π, ρ)/π] = [
√
b].

Then, [θ(π, un0 )/π] = [
√
b] and

i(vn) = 1 + [
√
b].

One of the crucial properties satisfied by the minimal and maximal equilibria of a dissipative system

is that their Morse index are both equal zero. This property is fundamental if one wants to apply usual

techniques to characterize the connections between the bounded equilibria. But, as we observed in

(4.22), the Morse index of v1 and vn are both different from zero. In order to overcome this fact, we

introduce a trick which will enable us to obtain the heteroclinic connections. This will be done in the next

chapter.
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Chapter 5

A permutation encoding the

connections

For dissipative equations, some characterization results for the global attractors rely on the existence

of a crucial associated permutation. See for instance [FR91, FR96, Wol02]. Many of the main geometric

features of the global attractor are explicitly determined by this permutation. More precisely, for each

equation in a very large class of dissipative equations, the permutation associated determines the Morse

indices i(v) and the intersection number z(v−w) for all hyperbolic equilibria v, w, and these are precisely

the necessary information to ascertain the connections among the equilibria.

A natural question arising at this point refers to the possibility of doing the same for slowly non-

dissipative equations and obtain a simpler criterion to determine the heteroclinic connections. For a

dissipative equation defined on a bounded interval [x1, x2] ∈ R, the permutation associated to it consists

of labeling the equilibria ordered firstly at x = x1 and then at x = x2. We thus affirm that one possible

drawback of getting a related permutation for our equation (4.2) regards the objects playing the role

of equilibria at infinity. Moreover, a permutation associated to a dissipative system satisfies specific

properties which allow us to obtain the connections and, as one can expect, the permutation associated

to our nonlinearity f does not satisfy such properties.

In order to overcome this scenario we introduce a crucial trick. It consists of a ([
√
b]+1)-dimensionally

unstable suspension, [FR00], of the bounded subset Acf of the non-compact global attractor Af . In the

following we describe what we mean by this suspension and we show how we intend to do it.

The non-compact global attractor Af contains bounded and unbounded equilibria. The set of equilib-

ria of equation (2.1) is given by Ecf ∪E∞f . Ecf is composed of n bounded equilibria and E∞f by 2([
√
b]+1)

equilibria at infinity. Roughly speaking, the suspension consists of joining to the equilibria {v1, ..., vn} of

(2.1) a set of 2([
√
b]+1) new bounded equilibria. We then try to associate each of the new equilibria with

an equilibrium in E∞f . As a result, we will be able to work with only bounded equilibria and, moreover,

the new equilibria will be added in a such a way that we obtain a dissipative system.

We begin with a discussion regarding the permutations we will associate to our problem (4.2). We

then describe the suspension we intend to impose on Acf from which we obtain new equilibria cor-
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responding to the equilibria at infinity. After that we write a characterization theorem prescribing the

connections among all the bounded equilibria, the former and the new inserted ones, relying on the as-

sociated permutation. With the correspondence between the new bounded equilibria and the equilibria

at infinity, we will finally be able to obtain a simple criterion for the existence of heteroclinic connections

for our original problem (4.2).

5.1 Cut-off function

The starting point will be the bounded component of the non-compact global attractor. We aim at first

to modify f outside a sufficiently large ball in order to obtain a dissipative semiflow. This must be done,

however, in such a way that the modified semiflow coincides with the original one on the bounded subset

Acf of Af . Therefore, a function h will be defined as follows. Recalling that Acf is contained in a large ball

B ⊂ Xα, we notice that on B

|u(t, x)| ≤ C1, |ux(t, x)| ≤ C2

uniformly in (t, x) for some constants C1, C2, due to the fact that B ⊂ Xα ⊂ C1. Let D ⊂ R2 be a

sufficiently large ball such that it contains the set where |u(t, x)| ≤ C1 and |ux(t, x)| ≤ C2. We let h be

such that

h(x, u, p) = f(x, u, p), for all (u, p) ∈ D

and for all x ∈ [0, π]. Later on we will define h for (u, p) outside D in such a way that the dynamical

system induced by ut = uxx + h(x, u, ux), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.

(5.1)

is dissipative. Hence (5.1) will possess a compact global attractor Ah. Nevertheless, we can decompose

Ah into a maximal compact invariant subset Ach contained in B and its complement, that is,

Ah = Ach ∪ {Ah \ Ach}, with Ach ⊂ B.

We notice that the set Ecf of equilibria of (4.2) coincides with the subset of equilibria of equation (5.1)

that are contained in B. This follows directly from the fact that h = f on B. As a consequence, the set of

all equilibria of (5.1) is decomposed as follows

Eh = Ecf ∪ {Eh \ Ecf}.

The subset Ach ⊂ B is the set of all orbits that never leave B. Therefore, Ach is composed of the set Ecf
of equilibria in B and their heteroclinic orbits, which coincides with the definition of Acf . In this way, the

following lemma is verified.
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Lemma 5.1.1. Under the above notation, we have

Acf = Ach.

Also let D̂ ⊂ R2 be a larger ball than D. We require that

h(x, u, p) = cu, for all (u, p) /∈ D̂,

for all x ∈ [0, π] and for some constant c < 0. Further ahead we present the technical details for the

definition of h in the remaining portion of the domain.

5.2 Permutations

As we have previously mentioned, there are permutations related to dissipative equations determin-

ing crucial information on the dynamics of the solutions. Namely, the heteroclinic connections in the

global attractor for dissipative equations are determined by such permutations. If we suppose that the

infinite dimensional dynamical system generated by equation (5.1) is dissipative, we are then able to

recur to the well established literature addressing dissipative systems and their related permutations.

Let N be the number of equilibria for equation (5.1), i.e.,

N := #Eh.

We also assume that all the equilibria are hyperbolic. The equilibria in Eh are denoted and labeled as

w1(0) < w2(0) < ... < wN (0).

Let σh ∈ S(N) be a permutation defined as follows

wσh(1)(π) < wσh(2)(π) < ... < wσh(N)(π). (5.2)

This permutation is related to the ordering of the points of intersection of the plane v = 0 with the curve

γh defined for the stationary equation for (5.1) as in (4.13). The permutations related in this way to a

Jordan curve like γh are called meander permutations.

We next recall some other definitions in the setting of dissipative equations. We say that a permu-

tation σ ∈ S(N) is a dissipative permutation if σ(1) = 1 and σ(N) = N . Given any σ ∈ S(N) we also

define the vector (ij(σ))1≤j≤N by

i1(σ) = 0 (5.3)

ij+1(σ) = ij(σ) + (−1)j+1 sign(σ−1(j + 1)− σ−1(j))

for j = 1, ..., N − 1. Then if ij(σ) ≥ 0 for all 1 ≤ j ≤ N , σ is called a Morse permutation. We say
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that the permutation σ is realizable by a dissipative equation (5.1) if σ = σh, with σh defined in (5.2). A

permutation that is realizable in such way by a dissipative equation is referred to as a Sturm permutation.

For each equilibrium wj ∈ Eh, the Morse index i(wj), i.e., the dimension of the corresponding unsta-

ble manifold Wu(wj), coincides with ij(σh). That is to say that

i(wj) = ij(σh), for all j = 1, ..., N. (5.4)

This fact is verified in [Roc85]. The indices ij(σh) can alternatively be written as

ij(σh) =

j−1∑
m=1

(−1)m+1 sign(σ−1
h (m+ 1)− σ−1

h (m)), (5.5)

with empty sums denoting zero (see [FR96]). For dissipative systems, N is odd and the permutation

defined as above is a dissipative Morse meander permutation. Moreover, a permutation related to dissi-

pative systems satisfies (5.4) and we have i(w1) = i(wN ) = 0.

When dealing with non-dissipative dynamical systems, we do not expect the above properties to

hold. In fact, the dynamical system generated by equation (4.2) is non-dissipative and, as we verified in

Lemma 4.3.2, the Morse indices of v1 and vn satisfy

i(v1) = i(vn) = [
√
b] + 1 =: k

with k strictly positive. This motivates the arguments and definitions introduced in the next section, where

the non-dissipativity of (4.2) is highlighted.

5.3 Suspension

If dissipative properties are no longer verified, we are then led to expect that the Morse indices of

the equilibria are not given by the expression in (5.5). In what follows we obtain the Morse indices of the

equilibria vj ∈ Ecf in terms of an associated permutation defined in an analogous manner as above.

We similarly define for equation (4.2) a permutation σf ∈ S(n), where n denotes the number of

bounded equilibria in Ecf . The equilibria v1, v2, ..., vn ∈ Ec are labeled by their value at x = 0. We reorder

them according to their values at x = π and obtain σf ∈ S(n) as

vσf (1)(π) < vσf (2)(π) < ... < vσf (n)(π).

The permutation σf can also be defined from the corresponding section curve γ = γf obtained for (2.1),

as we can see in [Roc91]. Therefore σf is a meander permutation.

For this permutation σ = σf ∈ S(n) we define the vector (ij(σ))1≤j≤n by
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i1(σ) = k (5.6)

ij+1(σ) = ij(σ) + (−1)j+1+k sign(σ−1(j + 1)− σ−1(j)),

for j = 1, ..., n− 1. We shall next verify that the dimension of the unstable manifold of the equilibrium vj ,

which we are denoting by i(vj), coincides with ij(σf ) for all 1 ≤ j ≤ n.

Lemma 5.3.1. Let k = [
√
b] + 1. If σ = σf ∈ S(n) denotes the meander permutation corresponding to

the section curve γ = γf of (2.1) and (ij(σf ))1≤j≤n is the vector defined by (5.6), then

i(vj) = ij(σf ), 1 ≤ j ≤ n. (5.7)

Proof. It was established in [Roc85] that the Morse indices i(vj) of the equilibria vj ∈ Ecf are determined

in terms of the curve γ defined in (4.13). As we mention in section 4.3, the relation is given by

i(vj) = 1 + [θ̄(π, vj(0))/π] (5.8)

where θ̄ is the solution of (4.21). We now want to determine (5.8) explicitly in terms of σf .

Since θ̄(π, vj(0)) can also be read as the angle swept clockwise by the unit vector tangent to γ at

s(u0) = (π, u(π, u0), p(π, u0)), with p = ux, as u0 goes from −∞ to vj(0), we obtain from (5.8) that

i(vj+1) = i(vj) + ι(j, j + 1) (5.9)

with ι(j, j+1) ∈ {−1,+1}. From the alternative definition of θ̄(π, vj(0)) in terms of γf and from (5.8), one

obtains that

ι(j, j + 1) = sign(vj+1(π)− vj(π)) sign(pu0
(π, vj(0))),

where pu0 denotes the derivative of p with respect to u0. It follows from the definition of σf that

sign(vj+1(π)− vj(π)) = sign(σ−1
f (j + 1)− σ−1

f (j)). (5.10)

We also have the relation

sign(pu0(π, vl(0))) = − sign(pu0(π, vl+1(0))), for all 1 ≤ l ≤ n. (5.11)

Moreover, the following inequalities hold

pu0
(π, v1(0)) > 0, if k is even, and

pu0(π, v1(0)) < 0, if k is odd.
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These imply that (−1)kpu0
(π, v1(0)) > 0 and, as a result, the alternation rule

(−1)j+1(−1)kpu0(π, vj(0)) > 0

follows from (5.11). Which is equivalent to say that

sign(pu0
(π, vj(0))) = (−1)j+1+k. (5.12)

We thus conclude from (5.10) and (5.12) that

ι(j, j + 1) = (−1)j+1+k sign(σ−1
f (j + 1)− σ−1

f (j)),

i.e.,

i(vj+1) = i(vj) + (−1)j+1+k sign(σ−1
f (j + 1)− σ−1

f (j)), (5.13)

for all 1 ≤ j ≤ n, as we wanted to prove.

Remark that by (4.22) and (5.7) we have

i1(σf ) = in(σf ) = k.

In the sequel, we present the definition of suspension of σ ∈ S(n).

Definition 5.3.1. Let σ ∈ S(n) denote a meander permutation and k a positive integer. We define the

suspension σ̂k of the permutation σ as the permutation σ̂k ∈ S(n+ 2) which satisfies:

(i) σ̂k(j) = σ(j − 1) + 1, for j ∈ {2, ..., n+ 1}; and

(ii) if k is odd

σ̂k(1) = 1 and σ̂k(n+ 2) = n+ 2 ,

and if k is even

σ̂k(1) = n+ 2 and σ̂k(n+ 2) = 1 .

It is clear that σ̂k is a meander permutation. For this permutation we define the vector (ij(σ̂
k))1≤j≤n+2

by (5.6) with k replaced by k − 1. In particular, we have

i1(σ̂k) = k − 1. (5.14)

We thus conclude from (5.14) that after k suspensions of σf one obtains a meander permutation σ̂1
f ∈

S(n+ 2k) with a vector (ij(σ̂
1
f ))1≤j≤n+2k satisfying

i1(σ̂1
f ) = in+2k(σ̂1

f ) = 0. (5.15)
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Indeed, since we are denoting by σ̂jf the suspension of σ̂j+1
f and we have

i1(σ̂jf ) = j − 1, for 1 ≤ j ≤ k,

it follows that i1(σ̂1
f ) = 0. In order to prove that in+2k(σ̂1

f ) = 0, the following should be verified

in+2(σ̂k) = k − 1.

We know that

in+2(σ̂k) = in+1(σ̂k) + (−1)n+2+k−1 sign((σ̂k)−1(n+ 2)− (σ̂k)−1(n+ 1)),

by definition. It follows that

in+2(σ̂k) = in+1(σ̂k) +

− sign(n+ 2− (σ̂k)−1(n+ 1)), if k is odd

sign(1− (σ̂k)−1(n+ 1)), if k is even

= in+1(σ̂k)− 1,

since 1 < (σ̂k)−1(n + 1) < n + 2. We shall next prove that in+1(σ̂k) = k. For that we need to verify the

following

ij+1(σ̂k) = ij(σ), for all 1 ≤ j ≤ n. (5.16)

If j = 1, we have

i2(σ̂k) = i1(σ̂k) + (−1)2+k−1 sign((σ̂k)−1(2)− (σ̂k)−1(1))

= k − 1 +

sign((σ̂k)−1(2)− 1), if k is odd

− sign((σ̂k)−1(2)− (n+ 2)), if k is even

= k − 1 + 1 = k = i1(σ).

Suppose that ij(σ̂k) = ij−1(σ) for some j ∈ {1, ..., n− 1}. Then

ij+1(σ̂k) = ij(σ̂
k) + (−1)j+1+k−1 sign((σ̂k)−1(j + 1)− (σ̂k)−1(j))

= ij−1(σ) + (−1)j+k sign(1 + σ−1(j)− (1 + σ−1(j − 1)))

= ij−1(σ) + (−1)j+k sign(σ−1(j)− σ−1(j − 1))

= ij(σ).

We thus conclude that (5.16) holds and, consequently,

in+1(σ̂k) = in(σ) = k.
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We then consider in more detail the permutation σ̂1
f . It is clear that σ̂1

f ∈ S(N) with N = n + 2k.

Moreover, for all j ∈ {1, ..., k} ∪ {n+ k + 1, ..., n+ 2k}, the permutation σ̂1
f satisfies

σ̂1
f (j) =

j, for j odd

n+ 2k − (j − 1), for j even
, (5.17)

Furthermore, by (i) of Definition 5.3.1, σ̂1
f and σf are related by the following

σ̂1
f (k + l) = k + σf (l), (5.18)

for all l = 1, ..., n. The next step is to verify the existence of a function h realizing the permutation σ̂1
f .

Which is equivalent to say that there exists a function h such that σ̂1
f is in fact the permutation obtained

from the meander γh corresponding to h as defined in (5.2), i.e.,

σ̂1
f = σh.

In order to do that we recall the following result, obtained in [FR99].

Proposition 5.3.1. There exists a C2 function h realizing the permutation σ ∈ S(N) if, and only if, N is

odd and σ is a dissipative Morse meander permutation.

We already mentioned that the suspension process preserves the meander property of the permu-

tation σf . Hence we have that σ̂1
f is a meander permutation. Also, the permutation σ̂1

f ∈ S(N) is a

dissipative permutation since N = n+ 2k is odd and, by (5.17),

σ̂1
f (1) = 1 and σ1

f (N) = N.

Moreover, the vector (ij(σ
1
f ))1≤j≤N defined in (5.3) satisfies

ij(σ
1
f ) ≥ 0, (5.19)

for all j = 1, ..., N . Indeed, it follows from (5.15) that (5.19) holds for j = 1 and j = N . If j ∈ {k+1, ..., k+

n}, we have from (5.16) that

il+k(σ̂1
f ) = il+k−1(σ̂2

f ) = ... = il+1(σ̂kf ) = il(σ) ≥ 0,

for l = 1, ..., n. Lastly, if j ∈ {2, ..., k} ∪ {n+ k+ 1, ..., n+ 2k− 1} we recur to the formula in (5.3). Hence,

ij+1(σ̂1
f ) = ij(σ̂

1
f ) + (−1)j+1 sign((σ̂1

f )−1(j + 1)− (σ̂1
f )−1(j))

= ij(σ̂
1
f ) +

− sign(j + 1− (n+ 2k − (j − 1))), for j even

sign(n+ 2k − j − j), for j odd
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if j ∈ {1, ..., k − 1} ∪ {n+ k + 1, ..., n+ 2k − 1}, which is equivalent to

ij+1(σ̂1
f ) = ij(σ̂

1
f ) + 1, for j ∈ {1, ..., k − 1}

and to

ij+1(σ̂1
f ) = ij(σ̂

1
f )− 1, for j ∈ {n+ k + 1, ..., n+ 2k − 1}.

Then, by recalling that i1(σ̂1
f ) = in+2k(σ̂1

f ) = 0, it follows that

ij(σ̂
1
f ) = j − 1 ≥ 0

in+k+j(σ̂
1
f ) = k − j ≥ 0,

for j = 1, ..., k. Therefore, σ̂1
f is a Morse permutation. We are then able to apply the previous proposition

and obtain the existence of a function h realizing σ̂1
f .

Next, we proceed by verifying that, in Proposition 5.3.1, it is possible to choose a function h satisfying

the following requirements:

h(x, u, p) = f(x, u, p), for (u, p) ∈ D (5.20)

and

h(x, u, p) = cu, for (u, p) /∈ D̂, (5.21)

for all x ∈ [0, π] and some c < 0. This is to say that we preserve the function f on the compact set

(x, u, p) ∈ [0, π]×D, and modifying it outside so that h becomes linearly dissipative outside a large set.

Before imposing on h the requirements (5.20) and (5.21) we remark that, on both the meanders

γ = γf and γh, the arcs joining the intersection points with the u-axis can be isotopically transformed

into semicircles. Therefore, we are allowed to work with meanders γ in canonical form, i.e., essentially

composed of semicircle arcs (see [FR99]).

The first requirement (5.20) is quite simple since we notice that γf and γh share the same permutation

on the set Ecf . We can then assume that h(x, u, p) = f(x, u, p) for (x, u, p) ∈ [0, π]×D.

The second requirement (5.21) follows from the realization results of canonical meanders by bound-

ary value problems (see [FR99, FR91]), and the condition that for |u| sufficiently large the projection

(u, p) 7→ (u, 0) is a local diffeomorphism. We can thus assume that h(x, u, p) = cu for (u, p) /∈ D̂, for

some c < 0. We also have that the canonical meander γh, outside the semicircles shared with γf , is

composed of semicircles corresponding to the suspension σ̂kf , σ̂
k−1
f , ..., σ̂1

f .

Therefore, the requirements (5.20) and (5.21) on h imply that the dynamical system induced by

ut = uxx + h(x, u, ux), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.

is dissipative and preserves the equilibria in Ecf and their heteroclinic connections. In particular, we

conclude that the permutation σ = σh is a Sturm permutation.
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1 2 3 4 5 6 7 8 9

9 8 3 6 5 4 7 2 1

Figure 5.1: Meander curve γf for f(x, u, ux) = 10u+ 16 sinu.

In order to illustrate the suspension method we consider an example. If we set the function f to be

f(x, u, ux) = 10u+ 16 sinu,

we obtain from the initial value problem (4.12) the canonical form of the curve γf , as depicted in Fig.

5.1. Moreover, a numerical computation of a time map related to (4.12), performed in [BG11c, Section

6], leads us to

σf = (9 8 3 6 5 4 7 2 1).

Hence, the 4-th suspension of σf is given by

σ̂1
f = (1 16 3 14 13 12 7 10 9 8 11 6 5 4 15 2 17),

as in Fig. 5.2. The solid line in Fig. 5.3 is associated with the permutation σf , while the dashed line

represents the suspension σ̂1
f of σf . We notice that, in this particular case, n = 9 and k = 4. Furthermore,

the computed Morse vector related to σ̂1
f is given by

(ij(σ̂
1
f ))1≤j≤17 = (0, 1, 2, 3, 4, 3, 4, 5, 6, 5, 4, 3, 4, 3, 2, 1, 0),

as indicated in Fig. 5.3.

The permutation σh = σ̂1
f being Sturm implies that the Morse indices i(wj) can be obtained in terms

of σh as in (5.5). Moreover, in this case, the intersection numbers z(wj −wm) are also given explicitly in

terms of σh, for all j,m ∈ {1, ...N}, as we can see in [FR91, Roc91, FR96] and as it is presented in the

next proposition.

Proposition 5.3.2. Under the above setting and considering the Sturm permutation σh ∈ S(N), for

1 ≤ m < l ≤ N , the Morse indices are given by

i(wm) =

m−1∑
j=1

(−1)j+1 sign(σ−1
h (j + 1)− σ−1

h (j))

and the intersection numbers by

z(wl − wm) = i(wm) +
1

2
[(−1)l sign(σ−1

h (l)− σ−1
h (m))− 1]
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Figure 5.2: Meander curve with permutation σ̂1
f for f(x, u, ux) = 10u+ 16 sinu.

Figure 5.3: Suspension of the meander curve γf for f(x, u, ux) = 10u+ 16 sinu.
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+

l−1∑
j=m+1

(−1)j sign(σ−1
h (j)− σ−1

h (m)),

where empty sums denote zero.

We are then allowed to apply Proposition 5.3.2 to obtain explicit expressions for the Morse indices

i(wj) and the zero numbers z(wj −wm), for all j,m ∈ {1, ..., n+ 2k}, in terms of σh = σ̂1
f , or equivalently,

use the recursion formulas in [FR96, Porposition 2.1]. We collect in the following lemmas the results

previously obtained from σ̂1
f for the Morse indices i(wj), wj ∈ Eh.

Lemma 5.3.2. The Morse indices of the exterior equilibria in Eh, i.e., the equilibria wj ∈ Eh with j ∈

{1, ..., k} ∪ {n+ k + 1, ..., n+ 2k}, satisfy:

i(wj) = j − 1, for 1 ≤ j ≤ k,

and

i(wn+2k−j) = j, for 0 ≤ j ≤ k − 1.

Lemma 5.3.3. The Morse indices of the interior equilibria in Eh, i.e., the equilibria wj ∈ Eh with j ∈

{k + 1, ..., k + n}, satisfy:

i(wk+l) = i(vl), for 1 ≤ l ≤ n.

Hence, the Morse indices i(vl) and i(wk+l) coincide for all 1 ≤ l ≤ n. This follows from (5.16) and

is also a direct consequence of (5.20). The above lemma displays a relation between the Morse indices

i(wj), wj ∈ Eh, and the Morse indices i(vl), vl ∈ Ecf .

Regarding the information on the zero numbers contained on the permutation σh we have two results.

In Lemma 5.3.4 we present the zero numbers results on the intersection of the k first and last equilibria

with the remaining n middle equilibria in Eh, i.e, the intersection of the exterior with the interior equilibria.

In Lemma 5.3.5 we obtain the zero number results for the n middle equilibria wj ∈ Eh, i.e, the interior

equilibria. We also notice that these results coincide with those for the equilibria vl ∈ Ecf .

Lemma 5.3.4. For any 1 ≤ l ≤ n, the following holds

z(wk+l − wj) = j − 1, for 1 ≤ j ≤ k (5.22)

z(wn+2k−j − wk+l) = j, for 0 ≤ j ≤ k − 1. (5.23)

Proof. By [FR96, Proposition 2.1] we are also provided with the following expressions
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z(wj+1 − wj) = min{i(wj+1), i(wj)}, 1 ≤ j ≤ n+ 2k (5.24)

z(wl+1 − wj) = z(wl − wj) +
1

2
[(−1)l+1 sign(σ−1

h (l + 1)− σ−1
h (j)) (5.25)

+ (−1)l sign(σ−1
h (l)− σ−1

h (j))], 1 ≤ j < l ≤ n+ 2k − 1

z(wj − w1) = z(wn+2k − wj) = 0, 2 ≤ j ≤ n+ 2k − 1. (5.26)

In order to prove the first statement of the lemma we claim that, for any 1 ≤ j ≤ k

z(wk+l − wj) = z(wk+1 − wj), for 2 ≤ l ≤ n. (5.27)

Indeed, from (5.25) one gets the equality

z(wk+l − wj) = z(wk+l−1 − wj) +
1

2
[(−1)k+l sign(σ−1

h (k + l)− σ−1
h (j))

+ (−1)k+l−1 sign(σ−1
h (k + l − 1)− σ−1

h (j))]

and the computation should then be split into two cases:

sign(σ−1
h (k + l)− σ−1

h (j)) = sign(σ−1
h (k + l − 1)− σ−1

h (j)) = −1,

for j even, and

sign(σ−1
h (k + l)− σ−1

h (j)) = sign(σ−1
h (k + l − 1)− σ−1

h (j)) = +1,

for j odd. This follows from the fact that

σ−1
h (k + l) ∈ {k + 1, ..., k + n} for all 1 ≤ l ≤ n. (5.28)

But, since (−1)k+l = −(−1)k+l−1, in both cases one should obtain

1

2
[(−1)k+l sign(σ−1

h (k + l)− σ−1
h (j))

+ (−1)k+l−1 sign(σ−1
h (k + l − 1)− σ−1

h (j))] = 0.

Therefore, z(wk+l − wj) = z(wk+l−1 − wj) for all 1 ≤ j ≤ k and 2 ≤ l ≤ n. In particular, we obtain the

claim (5.27).

It is then sufficient to calculate z(wk+1 − wj). For that we write

z(wj+m − wj) = z(wj+m−1 − wj) +
1

2
[(−1)j+m sign(σ−1

h (j +m)− σ−1
h (j))

+ (−1)j+m−1 sign(σ−1
h (j +m− 1)− σ−1

h (j))],
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for 2 ≤ m ≤ k − j and 1 ≤ j ≤ k. We further notice that

sign(σ−1
h (j +m)− σ−1

h (j)) = sign(σ−1
h (j +m− 1)− σ−1

h (j)) = −1,

for j even, and

sign(σ−1
h (j +m)− σ−1

h (j)) = sign(σ−1
h (j +m− 1)− σ−1

h (j)) = +1,

for j odd, by (5.17). As before, we obtain

z(wj+m − wj) = z(wj+m−1 − wj) (5.29)

for 2 ≤ m ≤ k − j, since (−1)j+m = −(−1)j+m−1. For m = k + 1− j we have

z(wk+1 − wj) = z(wk − wj) +
1

2
[(−1)k+1 sign(σ−1

h (k + 1)− σ−1
h (j))

+ (−1)k sign(σ−1
h (k)− σ−1

h (j))]

which, along with (5.28), imply that

z(wk+1 − wj) = z(wk − wj).

Therefore we have that (5.29) holds for 2 ≤ m ≤ k + 1− j. We thus conclude that

z(wk+1 − wj) = z(wj+1 − wj).

By (5.25) and the previous lemma we conclude that z(wk+1 − wj) = j − 1. Hence, (5.27) implies (5.22)

for 1 ≤ l ≤ n.

To guarantee (5.23), we first prove that

i(wk+l) = k −
n∑

m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l)) (5.30)

for all 1 ≤ l ≤ n. We should remark that for l = n the sum above is empty, which means that i(wk+n) = k,

as we expect it to be. In order to prove (5.30), we first notice the following:

z(wn+2k − wk+l) = 0,

by (5.26), and

z(wn+2k − wk+l) = i(wk+l) +
1

2
[(−1)n+2k sign(σ−1

h (n+ 2k)− σ−1
h (k + l))− 1]

+

n+k−1∑
m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l)),
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by Proposition 5.3.2. The above equalities imply

i(wk+l) = 1−
n+k−1∑
m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l)), (5.31)

since (−1)n+2k sign(σ−1
h (n+ 2k)− σ−1

h (k + l))− 1 = −2. Therefore,

i(wk+l) =1−
n∑

m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l))

− (−1)k+n+1 sign(σ−1
h (k + n+ 1)− σ−1

h (k + l))− ...−

− (−1)n+2k−1 sign(σ−1
h (n+ 2k − 1)− σ−1

h (k + l))

=1−
n∑

m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l))− (−1)(k − 1)

=k −
n∑

m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l)).

This shows (5.30).

We are then able to obtain (5.23) using (5.30). It follows from Proposition 5.3.2 that

z(wn+2k−j − wk+l) =i(wk+l) +
1

2
[(−1)n+2k−j sign(σ−1

h (n+ 2k − j)− σ−1
h (k + l))− 1]

+

n+k−j−1∑
m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l))

=i(wk+l)− 1 +

n∑
m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l))+

+ (−1)k+n+1 sign(σ−1
h (k + n+ 1)− σ−1

h (k + l)) + ...+

+ (−1)n+2k−j−1 sign(σ−1
h (n+ 2k − j − 1)− σ−1

h (k + l))

=i(wk+l)− 1 +

n∑
m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l))+

+ (−1)(k − j − 1)

=i(wk+l) +

n∑
m=l+1

(−1)k+m sign(σ−1
h (k +m)− σ−1

h (k + l))− k + j

=k − k + j = j,

for 0 ≤ j ≤ k − 1 and 1 ≤ l ≤ n. Then (5.23) holds for 1 ≤ l ≤ n.

We finally present the next result on the zero number of the interior equilibria in Eh. The next lemma

follows from (5.20). The result also provides a relation between the zero numbers of the equilibria wj ∈

Eh, with j ∈ {k + 1, ..., k + n}, and the equilibria vl ∈ Ecf .

Lemma 5.3.5. For all 1 ≤ r < l ≤ n, the following holds:

z(wk+l − wk+r) = z(vl − vr). (5.32)
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The next result, along with the above lemma, provides us with an expression for z(wk+l − wk+r) in

terms of σf .

Lemma 5.3.6. For any 1 ≤ r < l ≤ n, the zero number z(vl − vr) is given by

z(vl − vr) = i(vr) +
1

2
[(−1)l+k sign(σ−1

f (l)− σ−1
f (r))− 1]

+

l−1∑
j=r+1

(−1)j+k sign(σ−1
f (j)− σ−1

f (r)).

Proof. We let δl denote the unit tangent vector to γf at s(vl(0)) and crl denote the winding of γf around

(vl(π), 0) ∈ γf , that is, the number of half-turns swept clockwise by the curve γf around (vl(π), 0), from

vr(0) to vl(0). We then know from [Roc91] that

z(vl − vr) = i(vr) + crl (5.33)

if δl belongs to the odd quadrants, and

z(vl − vr) = i(vr) + crl − 1 (5.34)

if δl belongs to the even quadrants. Hence, it follows from an argument similar to that used in Lemma

5.3.1 that

z(vl − vr) = i(vr) +

l−1∑
j=r+1

(−1)j+k sign(σ−1
f (j)− σ−1

f (r))

if δl belongs to the odd quadrants, and

z(vl − vr) = i(vr) +

l−1∑
j=r+1

(−1)j+k sign(σ−1
f (j)− σ−1

f (r))− 1

if δl belongs to the even quadrants.

Moreover, if δl belongs to the odd quadrants then

sign(pu0
(π, vl(0))) = −1 and sign(σ−1

f (j)− σ−1
f (r)) = −1

or

sign(pu0(π, vl(0))) = +1 and sign(σ−1
f (j)− σ−1

f (r)) = +1.

Which is equivalent to say that

sign(pu0
(π, vl(0))) sign(σ−1

f (j)− σ−1
f (r)) = +1.
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If δl belongs to the odd quadrants then

sign(pu0(π, vl(0))) = −1 and sign(σ−1
f (j)− σ−1

f (r)) = +1

or

sign(pu0
(π, vl(0))) = +1 and sign(σ−1

f (j)− σ−1
f (r)) = −1.

Which is equivalent to say that

sign(pu0
(π, vl(0))) sign(σ−1

f (j)− σ−1
f (r)) = −1.

We also have, as in Lemma 5.3.1, that sign(pu0(π, vl(0))) = (−1)k+l. We thus obtain

z(vl − vr) = i(vr) +
1

2
[(−1)l+k sign(σ−1

f (l)− σ−1
f (r))− 1]

+

l−1∑
j=r+1

(−1)j+k sign(σ−1
f (j)− σ−1

f (r)),

as we wanted.

Remarkably, Lemmas 5.3.2 and 5.3.4 yield the following convenient relations, for 0 ≤ j ≤ k − 1:

i(wj+1) = i(Φ∞,−j ) (5.35)

i(wn+2k−j) = i(Φ∞,+j )

and

z(wk+l − wj+1) = z(v − Φ∞,−j ) (5.36)

z(wn+2k−j − wk+l) = z(Φ∞,+j − v)

for all 1 ≤ l ≤ n, for any bounded equilibrium v ∈ Ecf and any equilibria at infinity Φ∞,±j . Moreover, as

seen in Lemmas 5.3.3 and 5.3.5, the Morse indices and zero numbers for the interior equilibria wj ∈ Eh,

with j ∈ {k + 1, ..., k + n}, coincide with the corresponding Morse indices and zero numbers for the

equilibria vl ∈ Ecf .

In the next section we use the above relations to obtain all the heteroclinic connections on the non-

compact global attractor.

5.4 Heteroclinic connections

Under the setting of equation (5.1), we recall the following definition and proposition from the theory

of dissipative systems, as we can see in [Wol02].

Definition 5.4.1. Consider any two equilibria wr and wm in Eh with z(wr−wm) = j and wm(0) < wr(0).
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We say that wr and wm are j-adjacent if there does not exist any other equilibrium w ∈ Eh satisfying

z(wr − w) = z(w − wm) = j

and

wm(0) < w(0) < wr(0).

Proposition 5.4.1 ([Wol02]). Let wr and wm be equilibria in Eh with z(wr − wm) = j. Then there exists

a heteroclinic connection between wr and wm if, and only if, they are j-adjacent.

It is verified in Lemma 5.1.1 that the bounded subset Acf of Af coincides with the subset Ach ⊂ Ah,

where Ach ⊂ B and Ah = Ach ∪ {Ah \ Ach}. We know, in particular, that the equilibrium wk+l ∈ Eh

coincides with the equilibrium vl ∈ Ef , for any l ∈ {1, ..., n}. Moreover, the heteroclinic connections in

Ach between the equilibria wk+l are identical to the heteroclinic connections in Acf between the equilibria

vl. All of the above facts follow from (5.20). We thus conclude that the connections on Acf are given as

in Proposition 5.4.1, i.e., there is a heteroclinic connection between vl and vm if, and only if, vl and vm

are adjacent. Then σh determines the connecting orbit structure on Acf .

Regarding the connections with the equilibria at infinity we have the following. Suppose that an

equilibrium wk+l = vl, for some l ∈ {1, ..., n}, has a heteroclinic connection to the equilibrium wj , for

some j ∈ {1, ..., k}. We thus know, from Lemma 5.3.4, that

z(wk+l − wj) = j − 1.

Since wk+l connects to wj , we conclude from Proposition 5.4.1, that there does not exist any equilibrium

w ∈ Eh satisfying

z(wk+l − w) = z(w − wj) = j − 1 (5.37)

and

wj(0) < w(0) < wk+l(0). (5.38)

We want to see that the equilibrium vl = wk+l connects to the equilibrium in Ef that corresponds

to wj , that is, the equilibrium at infinity Φ∞,−j−1 . Assume by way of contradiction that this is not the case.

Then, it follows from Lemma 4.2.2 that there exists an equilibrium v ∈ Ecf satisfying

z(vl − v) = z(v − Φ∞,−j−1 ) (5.39)

and

Φ∞,−j−1 (0) < v(0) < vl(0). (5.40)

Which leads to a contradiction because v = wk+m for some m ∈ {1, ..., n} and, then, v could not satisfy

(5.39) and (5.40) since there does not exist w ∈ Eh satisfying (5.37) and (5.38).

We thus conclude that the heteroclinic connections to infinity in Af are also given as in Proposition

5.4.1, that is to say that the permutation σh determines the heteroclinic connections to infinity in Af .
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Theorem 5.4.1. Let u and v be equilibria in Ef satisfying z(u− v) = j, with the extended interpretation

of the zero number for the equilibria at infinity given by (4.3) and (4.4). Then there exists a heteroclinic

connection between u and v if, and only if, they are j-adjacent. Moreover, if the equilibria v and w are

connected, then the one with higher Morse index is the source of the connection.
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Chapter 6

Conclusion

We have considered the slowly non-dissipative system generated by equation (4.2). We have ob-

tained that the associated non-compact global attractor Af is composed of a compact subset Acf and

an unbounded subset A∞f . We have noticed that Acf is contained in a sufficiently large ball B ∈ Xα

and it comprises the bounded equilibria and their heteroclinic connections. The unbounded subset A∞f ,

on its turn, contains the equilibria at infinity and the grow-up solutions. From the existence of an inertial

manifold containing the non-compact global attractor, we have obtained Lemmas 4.2.1 and 4.2.2 which

determine the heteroclinic connections between the bounded equilibria in Ecf and the equilibria at infin-

ity E∞f , i.e., the transfinite heteroclinics. Moreover, (4.10) describes the heteroclinic connections within

infinity, as obtained in [Hel11].

By considering a suspension of the permutation σf related to our equation (4.2), we have obtained

the associated dissipative equation (5.1). We have constructed the nonlinearity h of the obtained dissi-

pative equation in such a way that it coincides with f in the large ball B ∈ Xα. Since the set of bounded

equilibria Ecf is contained in B, it coincides with the set of equilibria of equation (5.1) that are contained

in B. Therefore, since the permutation σh determines, through the adjacency notion, the heteroclinic

connections between the equilibria in Eh of equation (5.1), the permutation σh also determines the het-

eroclinic connections between the equilibria in Ecf of equation (4.2). By gathering the above mentioned

results, we have obtained all the heteroclinic connections on the non-compact global attractor Af .

We have further made a correspondence between the equilibria of our slowly non-dissipative equa-

tion (4.2) and the equilibria of the associated dissipative equation (5.1). We have then proved that this

correspondence preserves the Morse indices and the zero numbers of the difference between the equi-

libria. Given that, we verified that the correspondence also preserves the connections between the equi-

libria. Since the permutation σh determines the Morse indices and the zero numbers of the equilibria

of equation (4.2) we have then concluded that σh determines, also through the notion of adjacency, the

heteroclinic connections on the non-compact global attractor.

It is worth noticing that our main result also holds for the case f = f(u). We have then generalized the

main Theorem in [BG10] to include the case of the more general nonlinearity f = f(x, u, ux). We have

also provided a much simpler criterion for describing the connections than that appearing in [BG10].
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[BF88] P. Brunovskỳ and B. Fiedler. Connecting orbits in scalar reaction diffusion equations. Dynamics

Reported, 1:57–89, 1988. 2, 17, 18, 22
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